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Preface

These are notes, incomplete but extensive, for a book which I hope will give a personal view 
of the first forty years or so of Software Engineering. Whether the book will ever see the light 
of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in 
SE. I want to capture not only the evolution of the technical discipline which is software 
engineering, but also the climate of social practice in the industry, which has changed hugely 
over time. To what extent, if at all, others will find this interesting, I have very little idea.

I mention other, real people by name here and there. If anyone prefers me not to refer to 
them, or wishes to offer corrections on any item, they can email me (see Contact on Home 
Page).

Introduction

Everybody today encounters computers. There are computers inside petrol pumps, in cash 
tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and 
beside the dentist’s  chair.  A large proportion of people have personal  computers  in their 
homes and may use them at work, without having to be specialists in computing. Most people 
have at least some idea that computers contain software, lists of instructions which drive the 
computer and enable it to perform different tasks.

The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference, 
but the activity that it stands for had been carried out for at least ten years before that. To 
engineer something, a road, a car engine, a skyscraper or a piece of computer software is to 
design and build it, using the techniques and technology known at the time. I have worked in 
software engineering for about forty years, from 1962 to 2002. For the last 20 years of this 
time I specialised in formal methods of software development. My first job after graduating 
was with Elliott’s, a British computer manufacturer, in 1962. Elliott’s no longer exists as a 
separate  company,  but  has  been  absorbed  into  the  last  remaining  British  mainframe 
manufacturer, ICL, through a succession of mergers and take-overs.

Chapter 1 Flanges and Festivities
Late in the fifties, British Thompson-Houston merged with Hollerith to become the British 
Tabulating  Machine  Company.  Both  these  companies  produced tabulators,  machines  that 
sorted punched cards and which, with a bit of persistence and patience on the part of their 
operators, could carry out basic statistical processes. In 1960 Powers Samas, an engineering 
firm, merged with them and the result was International Computers and Tabulators, ICT. I 
had worked as a vacation student with ICT just at that time, doing logic design and circuit 
board layout  for a new compact  military machine;  if  I  ever knew the name of it,  I  have 
forgotten. But ICT at about that time were conscious that the word “tabulator” indicated an 
obsolescent technology, and so they changed their name to International Computers Limited, 
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ICL. By the time I had graduated, there were two other large British computer manufacturers, 
English Electric and Elliott's. Elliott Brothers had themselves recently absorbed part of NCR, 
National  Cash  Registers  Ltd.  There  was  also  a  smaller  firm  that  nonetheless  produced 
mainframe machines, Leo Computers. Leo Computers came about in a rather surprising way. 
A chain  of cafés  called  Lyons’  Corner Houses were to  be found all  over  London.  They 
needed to coordinate their accounts and required computer power to do so efficiently. Rather 
than  pay  someone  else  to  supply  their  computers,  they  formed  their  own  computer 
manufacturing  subsidiary,  Leo.  No  “buy  in”  policy  for  them!  Leo  continued  producing 
computers for some years before they were bought by English Electric, who also took over 
Marconi,  an  electronics  firm who,  famously,  designed and manufactured  radios  but  also 
much other electronic equipment, especially for the military. Marconi was one of the firms 
with whom I had an interview when choosing my first job after graduating. English Electric 
made the KDF9 computer, a rival in size and performance to the IBM 360, which dominated 
the market for many years. Later still, towards the end of the sixties, English Electric-Leo-
Marconi, EELM, was absorbed into ICL.

But  back  in  1962  Elliott’s  produced  the  803  machine  and  were  embarking  on  a  more 
powerful version of it, with the same instruction code, the Elliott 503. In the early 1960s 
computers  were  seen  as  large  calculators:  machines  that  could  carry  out  complex 
mathematical calculations. Most, if not all, application software was about performing large 
calculations for some purpose. Academic courses reflected this, and were limited to post-
graduate  diplomas,  concentrating  on  numerical  analysis  and  automata  theory.  Several 
polytechnics also provided some more practical HNC courses. Most programmers working 
for  Elliott’s  were maths  graduates,  a  few with a  post-graduate  diploma in  computing.  A 
minority were HNC holders.

I  was one of a batch of new graduates  who joined the Scientific  Computing Division at 
Elliott’s. Other graduates joined several other divisions at the same time, so there were some 
twenty or thirty of us, all newcomers. We rapidly got to know each other and, almost all of us 
being single graduates living in digs and assorted shared flats and so on, there would be a 
party to go to every Saturday night. All of us in the Scientific Computing Division spent a 
few days on a course in which we were taught to program. The language we were taught was 
the machine code for the Elliott 803. This machine occupied a fairly large room. The central 
processor was housed in several six-foot high 19 inch wide cabinets. The 803 was one of the 
first machines to use semiconductors, germanium transistors and diodes, for its electronics. It 
was consequently relatively compact. A paper tape reader and punch, and a card reader and 
punch were held in similar cabinets, and the operator’s console was desk-shaped, and held an 
on-off switch,  various lamps and buttons and a “number generator”,  which was a row of 
toggle switches on which one could set up a binary number. There were instructions in the 
machine for reading the setting on the number generator and for displaying patterns on the 
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lamps.  One could also set  up an instruction on the number  generator  and press a  button 
causing the machine to obey it.  This was the principal way of booting up a program, by 
setting up a jump to its starting address on the number generator and obeying it. A line printer 
could print out results of the calculations or other work that a program had performed. These 
printers were the first to be attached to a computer and consisted of a rotating drum and rows 
of hammers. Paper edged with detachable sprocket holes would be fed into the printer. The 
drum had lines of characters embossed on it.  Each line had the same character embossed 
along all of its character positions. Usually, a line of characters would be printed on each 
rotation of the drum. The character to be printed at each character position was controlled by 
timing the hammer at that position to strike when the correct line of the drum was under it. 
These printers were large and noisy, but were the main means of printing output for most 
computers. Programmers could book time on the machine to run their programs, or request 
one of the operators to do so. I preferred to make use of the operators’ services, but most of 
my colleagues liked to be more hands on. I caused much amusement when I went to use the 
machine myself for the first time after I had been working there for nearly a year. “What, 
you’ve never used the machine before, Tim?”

The first programming course covered the two main versions of the machine code and gave 
advice about how to program, using the accumulator and main storage. The machine code 
was numeric, having a couple of octal digits for the instruction and the rest for the address. 
Octal numbers were used rather than hexadecimal. The word size in the machine was 39 bits. 
This may seem bizarre today, when word sizes are invariably a whole number of bytes. Each 
instruction occupied 18 bits, so that two instructions fitted into each word. One bit remained, 
in between the two instructions. This was called the “B-line”. Setting the B-line caused the 
contents of the address in the first half to be added to the second instruction. This was useful 
for  working  with  arrays  and  lists.  The  first  five  bits  of  each  instruction  contained  the 
operation code and the remaining 13 bits the address. In this way the instruction code could 
address a store of 8192 words. The computers were supplied with a main store of either 4096 
or  8192  words.  The  first  versions  of  the  803  had  no  backing  store.  Any  intermediate 
information generated by a program would be punched out onto paper tape, ready to be read 
in  again.  Later  versions  had  backing  stores  consisting  of  magnetic  film,  specially 
manufactured by Kodak. This was 35 mm film with sprocket holes and a magnetic coating 
instead of a photographic one. The film was wound onto reel-to-reel decks.

The simplest version of the machine code was “ absolute”; the addresses in the instructions 
referred to specific, absolute locations and the program would only work if it was loaded into 
a specific location in store. This was so primitive and restrictive that it was only used for 
some very basic utilities. The relocatable version of the machine code would be loaded into 
the store with an offset address added to all the relevant address parts of the instructions by 
the loader program, so that the program would work wherever it was located in the main 
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store. There was also an assembly language, in which address locations were more like the 
identifiers in higher level programming languages and the operation codes were three-letter 
mnemonics, like LOA for Load and STO for Store.

The programming course put great emphasis on subroutines. This is a term that has almost 
fallen out of use; the equivalent construct in high level languages is the procedure or function. 
However,  strangely there  is  one exception:  in  the various  instantiations  of  the  Star  Trek 
episodes,  Commander  Data and the  holographic  Doctor,  both containing  as  sophisticated 
software as you could imagine, have “subroutines” for ethics and other features. Subroutines 
in 1962 could give structure to a program, separate concerns, and save a great deal of storage 
space. Storage space was at a great premium in those days. The main store consisted of very 
small magnetic rings with activating and readout wires wrapped round them. The typical cost 
was about GB £1 (US $1.8 or €1.5) per word. So a great deal of effort was put into keeping 
one’s programs compact. In my first project, I started by taking this advice a bit too literally. 
Having  written  my  program,  I  scanned  it  for  instances  of  repetitions  of  three  or  more 
instructions  and turned  them into  a  subroutine.  Of course these  little  subroutines  had no 
intrinsic  meaning  or  purpose,  and  the  overall  structure  of  the  program  became  quite 
amorphous. I could not get it to work and was advised to start again from the beginning. So 
my first lesson in software engineering was to use structuring tools like subroutines to reflect 
aspects of the problem rather more than to try to save storage space.

I was given a project to do shortly after the programming course. The program was typical of 
those written to perform calculations. It also indicated part of the different economic balance 
between supplier  and customer.  Many customers  who bought computers did not program 
them themselves. They would often require them for just a small range of calculations. So 
Elliott’s quite often used to write a few programs for a customer in order to secure a sale. 
Tube Investments used an empirical formula to calculate the size of flanges for bolting two 
tubes together, and the number and diameters of holes in the flange, given the diameter of the 
tube (figure 1).

Figure 1

I was asked to write a program to perform this calculation. I threw away my first version with 
its too many low level subroutines, and was able to get a second version working without 
trouble.
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Working at Elliott’s was interesting, and quite fun, if exasperating at times. The location was 
Borehamwood, a small town alongside Elstree, on the north edge of London. The workplace 
included  a  small  manufacturing  plant,  with  the  offices  and  computer  rooms  where  the 
programmers  and  design  engineers  worked,  at  the  front  of  the  building.  The  main 
manufacturing plant was in Cowdenbeath in Scotland, and few of us ever needed to go there. 
Elliott’s was emerging from an industrially class-ridden tradition into a more enlightened era, 
but still had some way to go by today’s standard. In the year I joined them Elliott’s paid men 
and women graduates the same rate for equal qualifications for the first time; in previous 
years a woman graduate with exactly the same degree class was paid slightly less than a man. 
In the programming areas there were several women managers, a fairly rare phenomenon in 
those days. Most firms had separate “executive canteens” for senior staff, but an increasing 
number were following American lines of a single, “democratic” facility. Some firms even 
banned employees  from discussing or revealing their salaries to each other;  it  could be a 
sackable offence. Although Elliott’s did not like their staff doing so, they did not penalise 
people  for  it.  Because  computing  was  a  relatively  new occupation,  the  demand  for  new 
graduates in the appropriate disciplines,  mostly maths and engineering, was high. So new 
graduates  were  enticed  with  higher  salaries,  and  existing  employees  of  a  year  or  two’s 
experience discovered to their annoyance that raw recruits were engaged at a higher salary 
than  they  were  earning  themselves.  In  one  case  a  section  leader  even  found  that  new 
graduates in her group were earning more than she was. Elliott’s was persuaded to make 
some adjustments.

There  was  an  ambience  of  scientific  enterprise  and  excitement  about  Elliott’s  Scientific 
Computing Division. One of the first ever Algol60 compilers was being designed and built. 
Two new machines were designed in succession, the 503, which was a more powerful version 
of the 803, and later the 4100 series of machines.

There were two professional  institutions  to which programmers  could belong:  the British 
Computer Society and the Association of Computing Machinery, which was centred in the 
USA although people from any nationality could belong to it, as indeed they can to the BCS. 
Elliott’s encouraged us to join the BCS and there was an excellent subscription rate of just £1 
per year for anyone who had graduated in the last three years. I joined. One got a good deal 
for one’s £1, four copies of the quarterly BCS Journal and copies of the more frequent and 
less formal BCS Bulletin. Three years later I ceased to be eligible for the ultra-low student 
rate and, at the same time, the BCS decided to seek a Royal Charter, have its own coat of 
arms, and various other things. I did not like the way the society was going, trying, it seemed 
to me, to turn itself into an august and remote organisation and not as centred on academic 
excellence  as  it  had  been.  In  addition,  they  were  putting  their  rates  up,  so  my  own 
subscription was going to increase from £1 to £9 a year, equivalent to half a week’s salary. 
So, although I enjoyed membership of the BCS for the first three years after I graduated, I 
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left. I was to join them again many years later in the 1980s, when membership of the BCS 
became a qualification and normally entailed passing an exam. The BCS Journal and the 
Journal  of the ACM were circulated  round the programmers  in the Scientific  Computing 
Division. We used to read most of the papers in those journals eagerly. This would be an 
impossible feat nowadays. There is a plethora of journals, many of them highly specialised. 
Twenty years later when I was a Chief Research Engineer at Standard Telecommunications 
Laboratories in Harlow, I realised that my division was receiving 41 different journals and 
most people did not have time to read any of them.

Software lives inside a many-faceted context. Who writes it? Who uses it? What technology 
underlies it? How is it executed? What influences its development? In 1962 not many people 
wrote software, even those rare organisations that bought themselves a computer. Hardware 
was very expensive, hence computer time was expensive, and labour cheap by comparison. A 
firm would usually buy a computer just to carry out a small handful of different calculations, 
repeated many times with different data. Computer manufacturers like Elliott’s would often 
write this  “application software” (the phrase had not been coined then) for a prospective 
customer, just to obtain the sale of a computer, such were the relative economics of hardware 
and software. The very large machines were owned by few organisations, such as computer 
bureaux. Time on the bureau’s machine would be hired to customers. So the bureau would 
usually double up as a software house, writing the application program and selling the result 
and the computer time spent in running it to the customer. Often the bureau would retain the 
program, since it could only be run on a possibly unique machine. The bureau indeed might 
keep the IPR of the program. My first program for flange design was such an application 
program for a customer. The programmers at Elliott’s found themselves writing a mixture of 
customer’s  application  programs  and  systems  programs  that  supported  the  use  of  the 
machine: compilers, assemblers, device handlers, and parts of the minimal operating systems. 
Periodically  we  produced  new  and  updated  examples  of  these  and  distributed  them  to 
customers  who  had  purchased  machines.  One  enthusiast,  a  Dr.  Murray  at  Edinburgh 
University, would examine each of these new products and produce one of his own, faster, 
more compact and sometimes with extra useful facilities. He would then send it to Elliott’s 
Scientific Computing Division as a gift. We would check it out, find that indeed it was a 
superior  product,  thank  him  graciously  and  adopt  it  as  the  next  released  version.  This 
customer became quite a legend within the division. We even joked that we need not try too 
hard to make a fast, efficient software product; Dr. Murray would respond with a high quality 
version in short order! But we did not actually adopt such a policy. As far as I know Dr. 
Murray never asked for any reward. I wonder where he is now.

My second project was not a programming project at all. Elliott’s were producing the 503, a 
development of the 803 machine, but faster, with superior electronics employing more up to 
date semiconductor devices, and with a larger range of peripherals. Instead of the rather crude 
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row of toggle  switches,  the “number generator”,  the operator  controlled  the computer  by 
means of an on-line IBM electric typewriter, the most up to date “golf-ball” typewriter. The 
golf-ball had embossed on its surface the whole character set in the chosen typeface. These 
golf-balls could be exchanged, so it was possible to type documents containing Greek letters 
and mathematical symbols using such a typewriter. They were expensive, costing about £650, 
about £13,000 or €20,000 in today’s money.

Other new peripherals were candidates for attachment to the 503, including some rather odd 
suggestions, which fortunately were not adopted. One was a card reader-punch. Although 
paper  tape,  in  two widths,  5  holes  and 8  holes,  was  becoming  the  dominant  bulk  input 
medium,  punched  cards  were  still  used  to  a  considerable  extent.  These  cards  could  be 
punched with holes in fixed positions along twelve rows and eighty columns. The proposed 
card reader-punch could both read and punch cards, so it would be possible for the computer 
to read a card and punch extra holes in it. We were mostly horrified at the idea and could not 
imagine how it could be used in any systematic way. Another proposed peripheral device was 
a magnetic card reader. Again, although this seemed more practical, most of the staff thought 
it would not be accepted and it too was dropped. It is intriguing to think that today credit, 
debit and other cards with magnetic stripes have for a long time been a universal part of our 
lives.

One peripheral which was adopted was a flat-bed plotter. This was a graph plotting device 
rather like those one sees in weather stations for plotting the temperature and pressure. The 
computer could drive the pen back and forth and the paper under it, using subroutines for 
drawing lines and curves. This was rather fun to write software for, and we experimented 
with various routines for drawing and scribing titles and even continuous script. One more 
advanced model even had several colours of pens that could be called into action.

Another peripheral device that was adopted was the magnetic tape deck. A development from 
the magnetic film complete with sprocket holes that the 803 used, the magnetic tape was 
much like a bulky version of the tape that is used today in video and audio cassettes, but 
mounted on reel-to-reel, vertical decks. A more experienced colleague, Vivian Kelly, and I 
were given the task of specifying the magnetic tape system. It would normally have been the 
role of hardware engineers to specify this system, that is, to define exactly what the system 
should do in detail, how it should respond to instructions from the central processor within 
the computer and from the operator. Elliott’s had the novel idea that instead of the hardware 
engineers  writing  this  specification,  the  programmers  should  do so.  After  all,  it  was  the 
programmers  who would be writing the software to drive the magnetic  tape system,  and 
therefore  who  were  its  “users”.  This  task  of  specification  is  separate  from  design; 
specification determines what the system should do, whereas design determines how it should 
do it.  The argument  was, therefore,  that  the “users” of the magnetic tape system, i.e.  the 
programmers, were in the best place to specify it. The programmers were the users because 
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they wrote the software that drove, i.e. used, the system. I have always thought that, although 
logical, this was a bold move on the part of the management. The programmers, not being 
electronic or mechanical  engineers, had no idea what would be feasible.  Nonetheless, we 
wrote the specification, consulting the hardware engineers at frequent intervals. This was a 
tedious writing task, since we were using carefully framed English; our phraseology became 
almost legalistic, for it was very important that what we wrote should not be ambiguous or 
misunderstood. I remember painstakingly writing sentences such as “when the Load Button is 
depressed, the Load Lamp is extinguished”, and page after page of such statements. When we 
had  finished  the  hardware  engineers  designed  the  electronic  and  mechanical  system  to 
perform the functions we had defined,  and I moved on once more to some real software 
design, the device handler for the magnetic tape system we had just finished specifying.

This  distinction  between  the  specification  of  what  a  software  or  hardware  system  was 
intended to do, and the design of how it was going to achieve it, was beginning to be seen as 
more and more important. The idea of separating the stages of thinking required to produce a 
design eventually led to the notion of “separation of concerns” coined by one of the greatest 
computer scientists,  Edsger W. Dijkstra, in 1974. I remember one of our colleagues,  Bill 
Williams, wrote a paper for the British Computer Journal about the project he was working 
on, a simulator program called the “Elliott Simulator Package”, or ESP. The editor of the 
journal queried this choice of name for the program, pointing out that ESP usually stood for 
Extra-Sensory Perception. Bill’s riposte to the editor was that the paper described what the 
program  did,  and  not  how  it  did  it!  The  editor  relented.  Elliott’s  approach  of  the  user 
specifying  the  functions  of  a  piece  of  software  foreshadowed the  user-led  approach  that 
became  the  vogue  in  the  nineties,  especially  within  Framework  5  of  the  European 
Commission’s research and development programme in information technology.

Vivian Kelly and I had desks next to each other while we worked on specifying the magnetic 
tape system. We got on well together and had many conversations. I admired the way he 
spoke  with  warmth  and  affection  to  his  wife,  a  delighted  smile  on  his  face,  when  she 
occasionally telephoned him at the office. Most of the men I worked with, including myself, 
felt  embarrassed  and  inhibited  when  telephoning  our  loved  ones  within  earshot  of  our 
colleagues. One day after work I found myself walking to the railway station alongside him. 
Vivian usually drove to and from work, so I asked him where his car was. He replied that his 
wife had taken it on holiday with her. Rather nervously, I asked him if he and his wife did not 
go on holiday together. He explained that his wife was a barrister and that the Inns of Court 
in London closed down for eight weeks during the summer “on account of the stench of the 
river Thames”1.

1 For the benefit of those not familiar with London, the odorous problems with the Thames were largely cured 
during the nineteenth century when Joseph Bazalgette and the Metropolitan Board of Works designed and built 
the London sewage system .
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My next  project,  designing  the  magnetic  tape  device  driver  for  the  503,  was  a  natural 
progression from specifying the system.  This was a true software project,  and a systems 
program rather than a user application. I recall little difficulty with this task. These were, 
however, before the days of widespread use of interrupts in computers. A program requiring 
data to be read from or written to the magnetic medium would simply have to wait for the 
transfer to finish. But interrupt systems were being devised in the industry and theoretical 
work was being done to find ways of ensuring the integrity of processes that were interrupted 
by others. Today every personal computer user takes for granted the ability to carry on doing 
some word-processing, say,  while some information is slowly being downloaded from the 
internet. The principles enabling this kind of multi-processing were being researched around 
the beginning of the 1960s.

For the first few months at Elliott’s, because of lack of desk space, I worked in an office full 
of  sales  representatives,  all  men.  They  were,  like  the  programmers,  all  graduates  in 
engineering disciplines but had, I presume, decided to pursue a career in sales. They wore 
suits and ties and seemed to spend their time in the office making phone calls, projecting their 
personalities  down  the  telephone  and  starting  their  persuasive  tactics  by  enthusiastically 
inviting the prospective client to lunch. This was a noisy and energised environment to work 
in, and I found it distracting to say the least. The salesmen never ate in the canteen, but would 
drive to some nearby pub for lunch. They would invite me along, and our lunchtimes tended 
to be substantially longer than the regulation hour. One day Tony Hoare, who was in a line 
manager position in charge of the programmers,  decided that we needed a pep-talk about 
extended lunchtimes, but perhaps unwisely called the meeting for two o’clock. I heard later 
that he started his talk with the words “most of the offenders are notable by their absence”. I 
fear I was not a good time keeper. Security guards used to take one’s name if one was late, 
but I soon discovered that if one arrived seriously late, forty minutes or so, they would have 
given up taking names down, probably assuming that one had attended to some legitimate 
duty in another part of the building. However, I believe I put in a fair amount of time and 
effort in total.

After a while I was moved out of the sales office into a room with other software staff. I have 
to say I was quite relieved, for although I enjoyed the company of the salesmen, I found their 
office was not conducive to deep analytical thought! The dress code among the programmers 
was more relaxed than that of the salesmen, but I probably carried this a little too far. One of 
my managers enquired with a polite smile “No shirt? Holes in your jersey?”. Well, it was a 
polo neck, so any shirt would have been invisible. The Scientific Computing Division had 
decided to embark on designing and manufacturing a new machine. No name was given to 
this machine at first, but the whole enterprise was called “Project 41”. It was supposed to be 
commercially highly confidential. We were under strict instructions not to discuss it outside 
Elliott’s. The design of the machine instruction code was still in a state of flux. The senior 
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technical people thought that experiments should be done with programming the machine 
before setting the new instruction code in concrete, so to speak. I was therefore asked to write 
a  simulator  for the new machine,  which would run on the 503.  People could then write 
prototype  systems  software  in  the  code  of  the  new machine,  test  it  out  and measure  its 
performance in terms of time and storage space, before the first machine cast in real hardware 
was produced. The development of the systems software could progress in parallel with the 
hardware development, so that both would be ready at the same time, shortening the time 
from first ideas to available product, the “time to market”.

There  was a lot  of discussion about  what  would be a useful  repertoire  of  machine  code 
instructions for the new machine. One idea was to take the systems software already written 
for previous machines, the 803 and 503, and to count the usage of the different instructions. 
However,  this  study produced an  unexpected  result.  Instead  of  showing  which  were  the 
generally  favourite  and  useful  instructions,  the  count  showed  that  there  were  marked 
differences  between styles  of the different  programmers  who had authored the programs; 
indeed the counting technique turned out to be quite an accurate way of determining who was 
the author of different pieces of software! So that approach was abandoned.

After a while the repertoire of the instruction set was mostly agreed, but then there seemed to 
be interminable discussions about the design of the written form of the assembly language 
itself. The instruction set was simply an association between binary patterns and functions 
that the machine’s central processor would carry out. The way the programmer would write 
down these  instructions  was  yet  another  thing  to  be  decided.  We seemed  to  be  getting 
nowhere, and I thought that if we had something concrete to criticise, at least we might make 
progress. So I spent just on a week writing a proposal for the assembly language. The office 
environment was very different from today’s. There were no photocopiers. If you wanted to 
make copies, you needed to know in advance, and have a typescript prepared on a special foil 
which was then used as a master for a Gestetner copying machine.  Then copies could be 
rolled off. These copies I remember were on flimsy paper, shiny on one side, with faint print 
and a bit unpleasant to handle. A typewriter could be used to make up to about four carbon 
copies, but these had to be made at the time that the document was being typed. So I simply 
wrote my document by hand and passed it round the three or so others who were involved in 
the project. They were surprised at the progress I had made and this assembly language, with 
a  few  revisions,  was  adopted.  For  the  Elliott  803  and  503  machines  the  company  had 
produced  a  programmer’s  “Facts  Card”,  a  small  fold-over  card  with  all  the  essential 
instructions succinctly listed. It was small enough to fit in one’s pocket, and we found these 
very useful. Much of my description for the new machine code eventually found its way onto 
the new Facts Card, something I felt rather pleased about at the time.

The simulator for the project 41 machine did not take me too long to write, although it was a 
large program – some 900 instructions I recall. The reason was that it was extremely simple 

11



in structure. A central controlling piece of code would extract the instruction to be obeyed 
and switch on its operation code to a routine which handled that particular function. I used 
subroutines to deal with the actions that were common to many instructions, like extracting 
the contents of the address, modifying the address with an index, etc. I seem to remember the 
whole exercise took me about three weeks, although I was continually adjusting the program 
as new suggestions and ideas for the machine came forward. At the same time one of the 
hardware engineers, Fred Harkin, who had been at Elliott’s for the same length of time as I 
had, was building the prototype machine. However, to make even a small modification to my 
simulator I had to change the code, edit the tape, re-assemble the program by booking time on 
the 503 and test it out with suitable test data, which I also had to prepare. The turn-round for 
this  process would take a day.  Fred just had to go to his prototype,  make some physical 
changes and as often as not his modifications would be up and running within an hour. So, in 
the end, my simulator was not used very much; programmers would use Fred’s prototype 
instead, for which there was not a lot of demand, whereas the department’s 503 was used for 
many different purposes and one had to book time on it in advance.

A few years later, in the late 1960s, the topic of software metrics would become all the rage. 
More of this in due course, but it was a theory that I never found at all convincing, largely 
because of this early experience.  My simulator comprised 900 instructions and took three 
weeks to complete. My next project was to result in a thirty-instruction program and took 
nine months to complete, for very good reasons. The general objective of software metrics 
was to predict the effort that developing a piece of software would take by estimating its 
physical characteristics, number of instructions or lines of code, or something a little more 
complicated. These two early projects of mine belied this possibility.

A name had to found for the new computer being developed in project 41. Great commercial 
secrecy had surrounded the project up to that point, because the company did not want its 
competitors to know anything about the new machine or indeed that we were developing one 
at all. There were lots of discussions about this: whether the machine should have a name 
rather  than  a  number,  even.  Ferranti  had  named  all  their  machines  after  classical  Greek 
deities, Mercury, Orion, Pegasus, Atlas, Titan. So we felt that we could not go along that 
path. Nor could we use the names of planets or constellations, because they coincided with 
the names of deities. Other ranges of numbers had been taken by other manufacturers, for 
example 360 by IBM, KDF9 by English Electric. In the end we just called the new machine 
after the project, and added a couple of zeros on the end, so that it became the 4100 series. No 
other  company was  using  four  digits  in  their  machine  names  at  that  point.  So  the  4100 
machine became so named rather accidentally.

There  was,  throughout  Elliott’s,  an atmosphere  of  exciting  innovation.  The programming 
language  Algol60  had  been  designed  just  two  years  earlier  by  an  international  panel  of 
distinguished experts. To be able to program in a language like Algol60, a “compiler” has to 
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be  written.  This  is  a  program  that  translates  programs  written  in  the  language  into  the 
machine code of the machine on which that program is to run. Compilers were considered to 
be some of the most complex programs anyone could be called upon to design, requiring a 
great deal of analytical thought. The more sophisticated the language, the more complex its 
compiler. Algol60 was the most advanced high level language designed up to that point. Its 
predecessors  were  Fortran  and  Cobol.  Fortran  was  a  language  principally  for  translating 
formulas and Cobol, essentially the same in its  technical  sophistication,  was designed for 
business  calculations.  Algol60  was  a  step  forward  in  concept,  treating  computational 
procedures  and functions  as  principal  objects  and  being  based on a  mathematical  theory 
called “Lambda Calculus”. Under this theory the meaning of a computational procedure was 
defined by rewriting and expanding textual formulas. But, for efficiency, indeed for practical 
feasibility,  the computer  had to translate  this  textual  rewriting process into a more direct 
computational one. In the room next to the one where I worked, the first ever commercial 
Algol60 compiler was being written for the Elliott 803. I experienced some envy not being a 
member of that team but, happily, there was a culture of sharing ideas among the different 
projects and academic style seminars would be held quite often, in which the design ideas of 
different groups would be explained and discussed amongst everybody. I was most impressed 
to  hear  that,  for  an  exhibition,  a  machine  was  dismantled  into  parts,  crated  and shipped 
(literally, by ship) to Moscow, reassembled, switched on, and displayed the message “Algol 
Ready”: the Algol60 compiler was still intact in the main, random access, core store of the 
computer and ready to go.

However, the proximity of this innovative work on the Algol60 compiler was something of 
an inspiration, and in any case I was given a fairly leading edge task, that of writing the 
kernel of the operating system for the 4100 machine. My technical manager for doing this 
was Tony Hoare, who had also led the team producing the Algol60 compiler. An interrupt 
system was being designed for  the 4100 machine.  This  was a  hardware extra  that  could 
enable an external event like a signal from a peripheral device, a magnetic tape for example, 
to interrupt the program currently running and divert control to another piece of software 
designed to receive data from the device. So a program could continue running while data is 
being  sent  to  or  received  from  a  peripheral.  Users  of  present-day  personal  computers 
probably take this for granted. As soon as you ask for a document to be printed, for example, 
you can continue using an application while the printing goes ahead. Until interrupt systems 
were invented, a program simply had to wait until peripheral activity had finished, before 
resuming. The kernel of the operating system is a central piece of software that directs the 
computer  to  switch between obeying different  sections  of code associated  with interrupts 
from the various peripheral devices. Interrupts were organised into priority levels. All these 
rules and arrangements were being designed, mostly from scratch. I was working very much 
under Tony Hoare’s direction in this effort. He was conceiving new ideas at an amazing rate. 
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At times it felt as if he would have new insights every night and would explain them to me in 
the morning first thing each day.

Tony Hoare later moved to academia, becoming Professor of computer science at Queen’s 
University, Belfast in 1968, and subsequently joining the Computing Laboratory at Oxford 
University in 1977, of which he was later Director. In 1980 he was awarded the ACM Turing 
award  and was  made  a  Fellow of  the  Royal  Society  in  1982,  one  of  the  first  computer 
scientists to be made an FRS. In 2000 he was knighted for his services to computer science, 
again  one  of  the  first  computer  scientists  to  receive  such  an  honour.  Yet  his  initial 
background was not science, but in classics; his knowledge of computer science theory and 
the mathematics that is necessary for its understanding were entirely self-taught. Having such 
a brilliant individual as my project supervisor in 1964 was a stimulating, if at times gruelling, 
experience.

Eventually I completed the 4100 operating system kernel after about nine months. It was a 
mere 30 instructions, but it took me over thirty pages of documentation to explain its purpose 
and how it worked. “Documentation” is a set of documents describing a piece of software, 
written for the human reader. Elliott’s considered documentation to be very important, but 
concentrated on documents aimed at subsequent programmers who might want to understand 
the software so that they could extend it or modify it. This was especially important if the 
original  author  left  the  company.  Over  the  next  few years  the computer  industry was to 
consider documentation to be extremely important, not just for other programmers, but for 
users, managers and others. But at that stage even user manuals were much less in evidence 
than today, when one may see rows of books in general bookshops explaining how to use 
Windows, Java and so on.

At one of the many Saturday evening parties I met another new graduate working at Elliott’s, 
Brenda Allatt. We danced for a long time to the strains of Diana Ross singing “Babylove”. 
We got  married  the  following year.  Brenda,  who later  changed  her  name to  Hazel,  was 
working in a division that was producing the on-board flight  control  software for a new 
military  aircraft,  the  TSR2.  The  quality  control  procedures  for  military  projects  were 
ponderous and thorough, with the result that equipment approved for use was always older 
than the current state of the art. This is, I believe, as true today as it was then. Consequently, 
the  on-board  computer  of  the  TSR2  was  of  primitive  and  archaic  design,  even  by  the 
standards of 1964. The main store of the Verdan computer was not a random access core 
store, but a rotating magnetic drum. By the time an instruction was obeyed, the drum would 
have  moved  on  several  words,  so  to  increase  the  speed  of  executing  the  program,  each 
instruction would specify the address on the drum of the next instruction to be obeyed. By 
taking into account the execution time of each instruction and carefully placing the sequence 
of instructions forming the program round the drum, the programmers could ensure that the 
software was not slowed down by unnecessary rotations of the drum. All the programs were 
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written in octal  on special  coding pads,  which were designed to facilitate  this  process of 
mapping the program’s instructions to addresses on the drum. The drum was of a limited size 
and, to save space, programmers would consult each other’s programs to share constant data 
and  other  items.  A  great  contrast  to  today’s  extravagant  attitudes  to  storage  space! 
Programming this machine in octal  was a task requiring meticulous attention to low-level 
detail and not for everyone’s aptitude. Hazel’s first task was to take over a program from 
someone who had recently left the company. After studying the program for a long time to no 
avail she consulted her manager. They could make no sense of the “program” that Hazel had 
inherited and concluded that her predecessor had no clue about what he was doing: he had 
simply filled the coding pads with random octal numbers for a few months before leaving the 
company. Much later I discovered that this individual had been promoted to data processing 
manager for a local authority in the west of England, and later still he became chairman of the 
Computer Services Association. C’est la vie.

Elliott’s was situated in Borehamwood, a small town contiguous with the village of Elstree. 
Elstree was famous for its film studios, where many classic British films were made: The 
Titchfield  Thunderbolt,  School  for  Scoundrels,  Man  in  the  White  Suit,  The  League  of 
Gentlemen among many others. From time to time one would see film extras in the street, 
which could be quite  startling  if  they were dressed as soldiers  from the German SS, for 
example. One would often see famous film actors in the Elstree Way pub immediately across 
the road from Elliott’s. This pub did an excellent line in roast beef sandwiches at lunchtime, 
freshly and generously carved,  with the option of horseradish or mustard.  The lady who 
carved the beef did so with an expression of pained reluctance, as if to say that she would like 
to carve even thicker slices, but commercial considerations forbade her from doing so. I can 
recall the taste to this day.

However, despite the fine roast beef sandwiches in the Elstree Way pub, I decided it was time 
for me to move on.

Chapter 2 Mighty Atlas
In the 1960s the several different colleges within London University shared both a computer 
science research department  and a large computer.  The University of London Institute of 
Computer Science was a free-floating department, situated in Gordon Square in the heart of 
Bloomsbury and largely independent of any particular college. Bloomsbury was an elegant 
part  of  London  with  several  green  squares  containing  shrubs  and  trees,  and  imposing 
seventeenth and eighteenth century buildings, which had once been private residences of the 
wealthy. The computer was one of the largest in the country, the London Atlas, designed in a 
joint effort with Manchester University and built by Ferranti at a cost of £3.7 million. In those 
days a new graduate would be lucky to earn £1,000, so to compare with today’s 2007 money 
one would need to multiply that by 20, say about £75 million or €120 million. When London 
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University  commissioned  the  computer,  there  were  many questions  asked about  whether 
funds intended for other purposes had been improperly diverted to this purchase,  and the 
university had to  claw half  the money back.  They did this  by establishing a  commercial 
company, which bought half the machine from them. The company owned half the time on 
the machine and used it on a commercial basis to recover its share of the cost over a number 
of years. This company was called the University of London Atlas Computing Service, or 
ULACS. It was situated in the same building as the Institute and the computer. Although the 
two bodies occupied different parts of the building, 39-43 Gordon Square, they shared several 
facilities in addition to the computer: a staff common room, a lunchtime snack bar, a lecture 
room and entrance hall.

The London Atlas computer was one of three. The first to be built was the Manchester Atlas, 
and in Cambridge a very similar machine, with the same instruction codes but a different 
operating system, was called the Titan. The London Atlas was situated on two floors. The 
central  processor  and  chief  operator’s  console  was  in  the  basement,  and  the  peripheral 
devices, that is magnetic tape decks, paper tape readers and punches, punched card readers 
and punches and so on, were on the ground floor. A closed circuit  television system and 
communication system linked the two, so that the chief operator could observe the peripheral 
activity and issue instructions to the assistant operators. They would mount and dismount 
tapes on the tape decks, feed the paper tape and card readers, unload the paper tape and card 
punches, and collect the results of the separate jobs together. The Atlas, although large and of 
sophisticated design, was older than the Elliott 803 and 503, and used valves (thermionic 
vacuum tubes) rather  than semiconductors  for its  electronics.  Even on the rare occasions 
when the machine was not in use, it was almost never switched off. The inevitable surges 
produced when the machine was switched on again would blow many valves, and the time 
taken  to  detect  which  had  blown  and  the  cost  of  replacing  them  would  outweigh  the 
considerable savings in not having the machine consuming electricity.

I  have no clear  memory of my interview with ULACS, but it  must  have gone smoothly 
because I was offered a job at a substantial increase in salary. I accepted, and started work 
there in 1965. The working hours were 9.30 to 6.00 p.m., the later starting time reflecting the 
difficulty of commuting into central London. On arriving on my first morning promptly at 
9.30 I found that no-one in the department I was to work with had yet come in to work. One 
of the managers, George Davis, was found and he bustled down into the reception hall and 
introduced himself. He supplied me with some literature to read until someone arrived.

ULACS was both a computer bureau and a software house; it sold time on its computer and it 
wrote software for clients,  software that was almost  always  designed to run on the Atlas 
machine.  There  were  two  teams  of  programmers,  the  systems  and  the  applications 
programmers. I joined as a senior systems programmer. The systems group maintained and 
improved the systems software for the Atlas, language compilers and parts of the operating 
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system, which formed the technical platform on which users’ programs could run. We were 
thus working on improving the facility that made the machine an attractive proposition on 
which  to  hire  time.  The  applications  group  wrote  bespoke  programs  under  contract  for 
customers. Occasionally members of the systems group would also write a program for a 
customer  contract,  usually  when  the  program  required  some  more  complex  technical 
expertise. Thus the work done by the applications group would lead more directly to earnings 
for the company than that done by the systems group. This was always to be a source of some 
contention,  even  though  selling  computer  time,  which  was  ultimately  supported  by  the 
systems  group,  accounted  for  80% of  the company’s  revenue,  whereas  bespoke software 
contracts accounted for 20%. There was always the suggestion that the systems group were 
distant from the company’s need to make money. The two groups were much the same size, 
about 20 programmers.

In addition to the two programming teams,  there was a team of salesmen,  and computer 
operators who worked in shifts, 24 hours and weekends. Because the machine was shared 
between ULACS and the Institute of Computer Science, those in charge of the operations 
were academic staff. These two or three academics had taken part in the design of the central 
part  of  the  operating  system  and  were  very  familiar  with  it.  There  were  also  various 
management  and accountancy staff,  and  reception  staff  who were hired  from an agency. 
These reception staff, dressed in uniforms like traffic wardens or security guards, used to 
cause a great deal of resentment. They were rude to visitors, knew nobody’s name, not even 
the managing director’s, and were offhand to everybody. From time to time the agency were 
persuaded to reassign some of their staff, but the underlying problem persisted. They could 
not have presented a good impression to potential customers.

I had started at Elliott’s at a salary of £875 and left with £1100 per year. I started at ULACS 
with £1450, a substantial 32% increase. I think computer programmers may never have had it 
so good. There was a great demand for them and firms would offer enticing salaries to attract 
staff from other organisations. One could expect to double one’s salary every five years or so. 
This led to a considerable turnover rate, with programmers typically changing their job every 
two or three years.

There was quite a lot to learn about the technicalities of Atlas. Although the machine was 
built out of more primitive hardware than the Elliott machines, the operating system was very 
advanced for its time. Up to four main programs could run concurrently, the central processor 
switching between them following the rules of a scheduling program within the operating 
system. By choosing which programs to run together, the operators could optimise the usage 
of the machine’s resources. The operating system was thus called “time sharing”, one of the 
first in the world. In addition to sharing the machine’s time and storage space between up to 
four main programs, the operating system would time-share with peripheral transfers, just 
like the Elliott 4100 did. To speed up the machine, there was a “look ahead” system within 
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the hardware of the central  processor. Instead of just obeying  the current instruction,  the 
central processor, or “mill” as they called it, would extract the next three instructions and 
start preparing to execute the next two in addition to the current one. Of course, if control was 
transferred to a different sequence of instructions, by a jump or an interrupt, most of this 
preparation work would be discarded, but generally instructions are obeyed in sequences of 
some length and the look ahead mechanism speeded up the running time of the machine 
considerably. This technique is still used in today’s computers, with look ahead mechanisms 
operating on anything up to the next twelve or more instructions.

The other advanced feature of the Atlas operating system was its two-level store. The main 
store, directly addressable by machine code instructions, was split between a fast random 
access core store and a secondary magnetic tape. The operating system would switch blocks 
of store content between these two so that the mill would in fact operate on instructions and 
data in the random access store, yet programs could behave and be written as if there were a 
vastly  larger  addressable  storage  space.  It  was  this  two-level  store  concept  that  in  turn 
enabled  the time sharing between programs that  could otherwise not  have fitted  into the 
random access core store, and indeed enabled very large programs to be written and run.

The Atlas machine was one of the very first to pioneer this two-level store concept, which is 
used routinely now in the design of personal computers and virtually all other machines of 
any size; the exception being very small embedded machines dedicated to a specific task, like 
computers  inside  manufacturing  machines  or  car  engines.  Those  computers  are  often 
classified as “programmable logic controllers” or PLCs, but they are simple computers whose 
basic design is just the same as the central processors of early computers such as the 803. The 
two-level stores of personal computers are split between random access stores and hard discs, 
but when the Atlas was designed there were no magnetic discs. So the secondary storage 
medium was magnetic tape. When I joined ULACS, discs, in particular exchangeable disc 
packs, had been invented and a couple of units were attached to Atlas, as something of an 
experiment.  Indeed,  they  had  been  introduced  as  a  peripheral  for  the  Elliott  503.  The 
exchangeable disc pack performed the same rôle as a floppy disc or rewritable  CD on a 
personal  computer,  but  the  drive  was  a  separate  unit  the  size  of  a  commercial  washing 
machine that one might find in a launderette. You could remove the disc from the unit and 
exchange it for another, hence the name. However, instead of a single disc like a floppy disc 
or CD, these discs came in packs of eight, all mounted on a single spindle and having a 
diameter of about 50 centimetres. All eight discs would be read and/or written by eight arms 
with reading and recording heads retracting in unison. The removable disc packs were also 
rather unwieldy and one would see operators heaving them across the room. Considerable 
care was needed to remove and insert them into the unit without damaging the heads or the 
drives, and only trained operators were allowed to handle them. I was told that these discs 
rotated at great speed and, given their substantial mass, if a bearing in the unit broke and a 
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disc  broke  free  it  could  slice  through  a  metal  cabinet  or  two;  potentially  lethal!  Its 
descendants, the floppy disc and the rewritable CDs and DVDs are astonishingly handy by 
comparison.

When I joined ULACS at first I  shared an office with Peter Hughes, who was the Chief 
Systems Programmer. My first programming project was to write another device handler for 
the operating system, a magnetic tape handler that could read tapes written on the Ferranti 
Orion computer. The information was recorded in a different arrangement on the magnetic 
tapes by Orion, and it was going to be useful to be able to read these tapes on the Atlas. I 
remember struggling a little at first learning the Atlas assembly code, because it was not as 
sophisticated as those used on the Elliott machines. It did not use symbolic names for the 
instruction codes like LOA for Load and STO for Store. Instead one had to remember, or 
have by one’s side, the numeric values of these codes, 358 or whatever. Likewise, I believe 
there was not the facility for using symbolic names for addresses of data to the same easy 
extent. But after overcoming this I wrote the required handler, feeling a little bemused about 
it. I had not seen any of the Orion tapes that it was supposed to handle and had no means of 
producing them, not having access to an Orion. So I had little opportunity to test my program. 
But I believe it worked without problems, because I knew at least one colleague who used it 
and he didn’t complain!

ULACS was a very pleasant environment to work in. The whole building was colourful and 
elegant. At one point they even redecorated the staff common room, picking out the ceiling 
mouldings  in  gilt  paint.  There  was  a  piano  there  which  more  talented  staff  members 
occasionally played during the coffee breaks. The common room was supplied with many 
technical journals and the day’s newspapers, and it was pleasant to spend a break in an easy 
chair surrounded by quiet discussions and an air of studious relaxation. During the summer 
months it was possible to obtain a key to the fenced green area in the middle of Gordon 
Square where there were shrubs,  trees,  grass  and seats:  something  of an oasis  in  central 
London. Within one’s lunchtime it was also possible to go right into the centre with its shops 
and city life, and to reach the Thames embankment.

The way in which programmers submitted their programs to the Atlas will seem unfamiliar to 
most present day computer users. Today, we sit at our personal computers, typing the text of 
a program directly into the machine, and saving it in a file after frequent intervals. If the 
development of a program takes a few days or months, we open the file and update it by 
typing in new information or modifying what we have done to date, and save it again in the 
same or a new file. These files are held on a backing store, typically the main hard disc, but 
possibly another medium such as a removable CD or floppy. Even before personal computers 
came on the scene, a team or firm of programmers would have a large central machine with 
terminals, either one on every programmer’s desk or in a pool of workstations which the 
programmers would arrange to go and use. The process of producing a program was just the 
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same. But Atlas and the vast majority of machines at that time were monolithic, single large 
machines without any user terminals. For a machine the size of Atlas, the operation was so 
specialised that no normal programmers would ever use the machine themselves. Because up 
to four programs could be run at once, there had to be a way of organising the input of 
programs and the collection  of their  results  so that  programmers  would receive back the 
results of their own programs and not those of someone else’s. The submission of programs 
to  the  machine  was  organised  into  “jobs”  and  the  operators  fed  batches  of  jobs  to  the 
machine. For this reason, the type of operating system used on Atlas was called a “batch” 
operating system.  The programmer asked the computer  to do a job,  that  of compiling or 
running  a  program  and  delivering  the  results.  To  that  end,  one  had  to  prepare  a  “job 
description” on paper tape or punched cards. The job description stated what software was to 
be  used by the  program,  maybe  a  compiler  for  compiling  the program or  a  package  for 
analysing  survey data.  It  also  declared  what  peripherals  the  program would  require,  the 
names of input files, the output devices and files to be generated, the maximum storage space 
and central processor time required, and an identification of the job and the programmer. The 
job  would  be  automatically  costed,  and  its  cost  would  increase  with  the  storage  space 
reserved and so on. If the job was predicted to be quick, that is to use a small amount of 
processor time, it would be scheduled sooner. It was therefore important to be fairly accurate 
in  predicting  these  statistics  for  a  program.  The  standard  turn-around time  for  having  a 
program run was one day, but priority jobs would be done in half the time, so that one could 
get two successive submissions per day. If there was a mistake in one’s program, one would 
therefore have to wait at least half a day and maybe a whole day before correcting it and 
trying again. This was a great incentive to check one’s work carefully before submitting it. 
All the programmers were given a budget of computer usage and would have to apply to their 
managers for any extension. Usually the budget was enough provided one was reasonably 
careful.  The central  processor was fast  and the time used by most  jobs like compiling  a 
program would be short, far less than the time that elapsed from the operator starting the job 
to finishing it. The default processor time allowance was one minute.

This arrangement of giving the programmers a budget of computer usage might seem a bit 
draconian, until one considers the enormous cost of the machine resources. An hour’s time 
cost £950, about the equivalent of six months’ of my salary. Sometimes a client user would 
book the entire machine for an overnight run, at a cost of several thousand pounds.

The job descriptions would be punched out on paper tape or punched cards. The program 
would also be prepared on paper tape or cards. Large scale data would initially be prepared 
on punched cards and would then usually be copied to magnetic tape. The programs and data 
would initially be punched out by data preparation staff, working from coding sheets that the 
programmers had written. Amending a deck of cards was easy enough; one could just replace 
a few cards with corrected ones. To amend a paper tape, one would use a teleprinter to copy it 
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until the point where the correction was required, punch the replacement section and continue 
copying from the appropriate point.  Teleprinters were much the same machines that were 
used for sending telegrams and produced paper tapes with five holes across and a  small 
sprocket hole used to drive the tape through the teleprinter. The combination of five potential 
holes were a code for the different characters that had been punched. The paper tape readers 
attached to the computer would read much faster than the more mechanical teleprinters and 
used photo-electric cells to detect the presence of the sprocket hole. This would trigger the 
tape reader to detect the presence or absence of holes punched in the other five positions. 
Thus,  if  the  sprocket  hole  became  blocked,  the  character  would  be  missed.  This  was  a 
frequent cause of paper tape reading errors.

Teleprinters were not the most convenient machines to use, being originally designed for a 
somewhat different purpose than preparing programs for a computer. Making small updates 
to  a  long  paper  tape  was  particularly  cumbersome,  because  one  would  have  to  make  a 
complete copy of the tape, stopping at exactly the right point, typing the new section and 
advancing over the piece of script that was to be replaced. For making small amendments, 
two other  devices  were available:  splicing  tape and the uni-punch. The uni-punch was a 
manual  instrument,  of  high  mechanical  precision,  so  costing  a  hundred  pounds  or  so, 
comprising a hinged block into which one could place the tape and holes through which one 
could insert a small  punch to make individual holes in the tape.  Guide holes enabled the 
punch to produce holes in any of the five positions in a character. There was also a groove 
and a cutting knife to sever the tape. Splicing tape would be used to join tapes together and to 
block off unwanted characters. To cancel a specific character, it was sufficient to block the 
sprocket hole, because that triggered the tape reader to read the other holes comprising the 
character.

<photos of pieces of tape, unipunch, teleprinters and flexo-writers>

Five hole paper tape was phased out in favour of eight hole tape. Programs on eight hole tape 
were  prepared  on  more  sophisticated  “flexo-writers”.  These  were  much  more  like  a 
conventional  typewriter,  and  more  pleasant  and  easy  to  use.  The  use  of  eight  holes  to 
represent  a character  enabled a greater range of characters.  For example,  both upper and 
lower case letters could now be typed out; the five hole tape, even with a case shift character, 
could only accommodate one case of letters  and digits  and a few punctuation characters. 
Paper tape came to be preferred to punched cards for programs, because it occupied less 
space and weight. One also obtained a printout from the flexo-writer of the tape that had been 
punched out, which was easier to examine and check that reading the small lines of print that 
a card punch would produce along the top edge of the punched cards. Cards continued to be 
used for large quantities of data because it was easy to separate them into parts corresponding 
to  items  of  information,  and  to  make  amendments.  For  this  reason  for  a  long  time 
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programmers writing the commercial programs that handled such large chunks of data also 
used cards for their programs, mainly because they were familiar with the medium.

Punched cards were made from card, thicker than paper tape. Each card had eighty columns 
of twelve positions in which holes could be punched. Each card represented a line of text. So 
one was restricted to lines at most eighty characters long. The stack of cards necessary to 
hold any given quantity of text would be considerably heavier than the corresponding roll of 
paper tape. On the other hand, amending a deck of cards was easy. There was no splicing or 
fiddling about with a uni-punch. One just had the replacement cards punched and threw out 
the ones to be replaced.

There was a story about one programmer who was transporting a deck of punched cards from 
abroad through customs. He was stopped by the customs officer, who asked him if the cards 
had any commercial  value.  He gleefully  replied  that  the  cards  themselves  had very little 
value, but that the holes punched in them were worth quite a lot — the holes representing 
valuable data and the result of much labour. The customs officer thought he was trying to be 
facetious and hauled him off for a long interrogation.

After data preparation staff had prepared the first version of a program, the programmers 
usually produced any amendments and corrections themselves. The task would involve only a 
relatively small amount of typing. However, handling long paper tapes and decks of cards 
was cumbersome and prone to misreads. The chief programmer, Jules Zell, proposed that the 
programmers might store their programs on magnetic tape, after the first read-in off paper 
tape. The operating system took care of selecting which device was the source of any input to 
a program, such as a compiler, through the job description. The only stumbling block was 
editing the program when it resided on magnetic tape; we had no editing program because all 
editing was done on the hard-copy medium of paper tape or cards.

So my next project was to produce the first text editing program for Atlas. It was not possible 
to edit a program on-line, sitting at the computer and using a terminal, because there were no 
terminals and all computer operations were conducted under the batch operating system. One 
would  have  to  work  out  what  amendments  were  needed  to  the  program  and  produce 
instructions to carry out these amendments. These instructions would have to be interpreted 
by  an  editing  program.  Fortunately  it  was  possible  to  submit  two  or  more  successive 
operations to the computer as one job, so an edit of a program could immediately be followed 
by compiling it and even running it if the compilation was successful.

So my task was to devise the form of the editing instructions and to produce the program that 
would interpret them. Normally when editing a piece of text using one of the current well 
known word-processing programs like Word or Wordwise, one moves a cursor to the desired 
place in the text in order to effect a change there like deleting or replacing a few characters. 
With a batch editor one doesn’t have that luxury and I had to devise a means of instructing 
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the computer to, so to speak, home in on a desired piece of text and then do some editing on 
it. Years later there were a number of line editors such as vi which did some of these things, 
but if there were any such editors in 1966, my colleagues and I had not heard of them.

The kind of text that people would want to edit was a computer program rather than a prose 
document. Computers were simply not used for holding pieces of writing then. Computer 
programs  were  always  prepared  on  some kind  of  coding  pad  with  numbered  lines,  so  I 
decided that the best targets for editing were line numbers and quoted chunks of text. One 
could instruct an imaginary cursor to move to line number 47, or to the next occurrence of the 
characters “DS46”. Then one could delete, insert or replace a number of lines or characters. I 
also supplied a global editing facility so that you could replace every subsequent occurrence 
of one sequence of characters by another.

Preparing  these  editing  instructions  was an elaborate  and clumsy process  compared  with 
today’s “What you See Is What You Get” on-screen editors. For smaller programs, even the 
process of editing a paper tape on a flexo-writer was less hassle. There was also a learning 
curve  involved:  one  had  to  learn  my little  editing  language  before  being  able  to  use  it, 
whereas the programmers already knew how to use the hand card punches and flexo-writers. 
So in the end my editing program was used only by a few of the more dedicated programmers 
who had large programs to handle and who found it definitely more convenient to store them 
on magnetic tape.

At that time, advances in program language design were a hot topic in computer science, and 
were to be so for many years to come. The advantages of high-level languages like Fortran, 
Cobol and Algol60 were widely recognised. These languages were designed to reflect the 
processes  that  programmers  wanted  to  carry  out,  rather  than  to  be  convenient  ways  of 
expressing the machine’s  instructions.  All  three of these languages were available  on the 
Atlas  and one  of  my colleagues,  Chris  Hobson,  who was  recruited  after  me  and on  my 
recommendation, spent most of his time writing and extending a huge program in Algol60 
that simulated the Atlantic Ocean for the meteorological office. Performing these simulations 
used hours of computer time and was a fine source of revenue for ULACS. A new language 
was being designed by researchers at the Institute called CPL. Although advanced, like many 
other languages that were to be devised over the next ten or more years,  it  enjoyed only 
limited  amount  of  use.  But  this  culture  of  developing  high-level  languages  was to  some 
extent stimulated by the presence on the Atlas of, I believe, the first “Compiler-compiler”. 
Brooker and Morris’s Compiler-compiler enabled one to state the syntax of a language and 
define processes that performed the computations represented by statements in the language. 
A fair amount of the work that is common to practically any compiler is thus provided by the 
Compiler-compiler,  or  CC as it  was called.  We all  regarded this  facility on the Atlas as 
exciting and somewhat technically avant-garde. Peter Hughes suggested to me that I might 
want to use it in writing my editor, for it involved a compiler for a miniature language. I 
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looked at the report describing CC and found it rather impenetrable. I thought it would be 
easier  to write the input and parsing routines, for that was essentially what CC provided, 
myself. Later I wished I had taken Peter’s advice and persevered with CC, for it would have 
given me useful experience. But this first contact with CC was for me the beginning of an 
absorption with language compilers and compiler-compilers, or parser generators as they are 
more often called. I think that many programmers must have been similarly fascinated, for 
perhaps the most  well  known parser generator  to emerge in  subsequent  years  was called 
YACC, “Yet Another Compiler-Compiler”.

Being a bureau, ULACS used to run some commercial programs like payroll preparation and 
updates, as a regular routine, once a month or even once a week. ULACS appreciated that 
this customer’s data was valuable and backup copies were regularly made by the operations 
programmers. On one occasion the update program, held on paper tape, was misread simply 
because of a blocked sprocket hole. Instead of updating the data as intended, the program 
produced blank information. This “new version” of the data was then copied back onto the 
original  as a backup. Only then did the staff discover the error – and they had carefully 
destroyed the original believing that they were making a backup copy of the new data! There 
were red faces, and the original data had to be reconstructed laboriously from a printout at the 
company’s expense.

Many years later the analysis of programming and computer procedures was studied and a 
whole discipline called “hazard analysis” was developed. It was early incidents like these that 
prompted the whole area of computer security and hazard analysis in the nineteen seventies.

In  about  1967 I  was  promoted  to  Assistant  Chief  Systems  Programmer,  which was very 
gratifying. From time to time other members of the systems group would come to my office 
to consult my advice about some difficulty they were having with their program. I would 
listen and make suggestions, but most of the time the process of explaining their difficulty to 
me would prompt the programmers to perceive the solution themselves and they would go 
away satisfied. Sometimes they would depart satisfied, thanking me for my assistance, but I 
had not understood a word of the intricate nature of their problem. Listening and asking them 
to explain things was usually enough to reveal a solution.

Various other changes in staff occurred around this time, including the appointment of a new 
managing director, Fred Gordon. He had a thoroughly commercial background, in contrast to 
his predecessor, Dr. Robinson. By coincidence, his surname was the same as the address of 
the  organisation,  Gordon Square.  Fred Gordon capitalised  on this  by starting  an  internal 
house magazine called “Gordon Square”. This bore a faint resemblance in style to the house 
magazine of the imaginary firm of Heathco, depicted by the satirical magazine Private Eye. 
The  Prime  Minister  of  the  time  was  Ted  Heath  and Heathco  symbolised  the  U.K.  as  a 
business;  indeed,  a  piece  of  political  propaganda at  the time was “U.K. plc”.  I  have the 
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impression that the Gordon Square magazine was written entirely by Fred Gordon himself. 
Our  new  MD  brought  a  more  commercial  slant  to  the  firm,  and  he  drafted  many 
advertisements promoting the services that ULACS could offer. The content of these seemed 
to us technical staff to be vague and raucous, “We’re the people!” one of them actually said, 
and we cringed somewhat, but in retrospect maybe we were being oversensitive.

There was a good deal of freedom and an easy attitude between most of the management and 
the staff. Most of us rarely met any customers and the dress code was relaxed. One day early 
in my time at ULACS the Chief Applications Programmer, Dr. Fred Dearnley, telephoned me 
about  a  forthcoming  project  for  a  customer,  which  involved  some  advanced  numerical 
analysis, the integration of a function over an irregular surface. He had heard that I had a 
degree in maths and wondered if I might do this contract. We agreed to meet in the entrance 
foyer, which was equipped with comfortable chairs and coffee tables, to discuss the matter. 
We had not met before. “How shall I recognise you” he asked. The only way I could think of 
describing  myself  was  to  tell  him  what  I  was  wearing.  I  liked  to  wear  somewhat 
unconventional clothes at that  time. I told him that I was wearing a pair of red corduroy 
trousers, a black shirt and a white woollen tie. “I see”, he said urbanely. “Well, I shall be 
wearing a three piece, navy blue, pin-striped suit”. I felt a little unnerved.

We met and talked about the project. Although I indeed had a degree in maths, I had never 
formally studied any numerical analysis, and did not feel too confident about tackling this 
particular problem. During our conversation it became apparent that Fred would quite like to 
take it on himself.  We ended up agreeing that this  was the best way forward. I think he 
wanted  to  exhaust  other  possibilities  before  metaphorically  getting  up  from  behind  his 
manager’s desk, rolling up his sleeves and doing a job on the shop floor. But a short time 
later another interesting application project came my way.

At that time in 1967 London had two airports, Heathrow and Gatwick. The government was 
proposing to build a third airport to cope with the increasing air traffic to and from London. 
There was the big question of where to site the new airport.  Wherever it was sited, there 
would be a cost. Houses and part of their neighbourhood would have to be demolished, and 
other buildings would lose value and have to be sound-proofed with double or triple glazing. 
The Board of Trade, a government department whose role is now largely carried out by the 
Department  of  Trade  and  Industry,  were  conducting  some  preliminary  studies  into  the 
projected effect  of aircraft  noise on the neighbourhood of the proposed airport.  They had 
developed an empirical formula for a nuisance value of the noise produced by the expected 
landings and take-offs of aircraft  arriving and leaving an airport.  By superimposing these 
values on the actual habitations surrounding the various possible sites, they could compare 
them and see which site produced the least overall noise nuisance.
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However, the Board of Trade wanted to verify the accuracy of their empirical formula for 
noise nuisance.  They had therefore set  up noise measurement  meters  around the existing 
Heathrow airport and had conducted a house to house survey in its neighbourhood. They 
wanted a program written which would interpolate the noise data produced by the meters so 
as  to  produce a  noise  profile  that  could  then  be compared  with the  survey data  and the 
formula.  This  comparison  would  be  done  later,  again  by  computer,  using  statistical 
techniques. The program the Board of Trade was asking us to bid for would need to use a 
great deal of interpolation, which needed to be reasonably accurate but could potentially use a 
large amount of computer time. The computer time used in the analysis would be biggest cost 
factor of the job.

The problem then,  at  this  bidding  stage,  was  to  estimate  a  cost  for  the  job.  This  meant 
estimating the computer time required to run the resulting program on the data presented to it. 
This  in turn required having a good idea about how the program was going to work,  in 
advance of designing it for real. Only a programmer could do this, but it was the salesmen 
who would bid for the job. This was a common situation and the salesmen would often come 
into  the  programming  offices  and  ask  some  programmer  for  an  estimate.  The  salesmen 
worked on commission based on the sale rather than the final profitability of the job, and so it 
was in their interest to land contracts, even if they might subsequently make a loss. If the loss 
could be blamed on the inaccurate estimate of some hapless programmer, that was all right by 
them.  The  salesmen  rapidly  learned  that  they  would  get  the  lowest  and  least  realistic 
estimates by asking the least experienced of the programmers. After that the salesmen could 
move on to catch the next contract. Not surprisingly, after a few mishaps the salesmen were 
required to consult only the more senior programmers. But that directive came later and the 
first estimate for the airport job was £50, supplied by a rather junior programmer.

Even the  salesman was suspicious  of  this  estimate,  and asked another  more  experienced 
programmer. “Nonsense,” he said, “it will cost at least £130”. News of this bid reached Fred 
Dearnley, the chief applications programmer. He decided that someone in the systems group 
should do the job, and I was approached. Fred and the financial controller, who often got 
involved in particular bids, described the task to me and asked me what I thought of the 
estimate. I reckoned on using a linear interpolation method to calculate the noise levels and 
worked out the amount of computer time required to do the total calculations. My time would 
be charged out a about £4 per hour, so the computer time was going to be the main cost 
factor. “It will need much more than £130”, I said. I estimated £650.

This was made the basis of the bid, which was accepted. I duly set to work and wrote the 
main framework of the program. After a week or so the Board of Trade wanted to talk to us 
about how we were proposing to do the calculations. A meeting was arranged, two rather 
seasoned men from the Board of  Trade  arrived  and I  told  them how I  was  using linear 
interpolation.  They insisted that  this  would not  produce accurate  enough results.  When I 
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asked them what method of interpolation they wanted me to use, they said that that was for 
me to decide. This seemed a bit of an impasse. On the one hand they were not satisfied with 
the accuracy of linear  interpolation,  but they would not agree in advance what  would be 
accurate enough. They would not budge on this point and I felt that we were in a difficult 
position. If I devised another interpolation method, they might once again object to it, and 
without any criteria agreed in advance, they would be able to refuse it again. The next more 
accurate kind of interpolation to use would normally have been a polynomial,  where you 
would  suppose  that  the  given  surrounding  points  were  on  a  surface  with  an  equation 
described by polynomial expression such as a quadratic. With a very large number of data 
points this would be much more time consuming and cost orders of magnitude more. We had 
already signed the contract.

I had a talk with the financial controller. He said, fairly casually, that the worst that could 
happen was that we came out of the contract and paid them £650. I said I would try to find 
another solution. I went back to my desk and thought about other ways of doing interpolation 
that did not go as far as polynomial calculations. One of the subjects I studied in my maths 
degree  was  projective  geometry.  I  recalled  a  theorem  about  conic  sections,  where  one 
establishes a one to one correspondence between pairs of points on the conic. Joining these 
points produces a family of lines. A conic section is the curve you get by slicing through a 
cone with a plane. Depending on where the plane is placed, the curve can be an ellipse, a 
parabola, or a hyperbola, all called conic sections or just conics for short. However, if the 
plane goes through the apex of the cone, the conic degenerates into two straight lines. The 
theorem works just as well with a degenerate conic as with a normal one. Using this theorem, 
I could get a parametrisation of the points within the area bounded by any four of the data 
points. This could lead to a method that was a bit more accurate than straightforward linear 
interpolation, and would take rather longer to compute. However, it would not take nearly as 
long as a polynomial  method.  I  worked out that  running a program which calculated the 
interpolation  in  this  way would take up more  computer  time,  costing about  £1,250.  The 
management approached the Board of Trade with a new bid based on this figure, and rather 
to my surprise they accepted it. I wrote the program and it was run with the Board of Trade’s 
data. So our estimate for this contract moved over time and a number of hiccups from £50 to 
£1,250, a twenty-five-fold increase.

One of the possible sites for the third airport was Stansted in Essex. This, as anyone at all 
familiar  with  London  will  know,  was  indeed  chosen  and  is  now a  thriving  commercial 
airport. Just how much influence the elaborate study conducted by the Board of Trade had on 
the choice I shall probably never know.

This contract revealed a general problem that has become endemic throughout the computer 
industry.  The  problem  is  that  of  eliciting  the  requirements  of  a  computing  task  before 
embarking upon it. If the two men from the Board of Trade had stipulated an interpolation 
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method themselves, that would have been fine for ULACS and me, but they would have the 
danger of finding out that the computed results were, after all the expense of performing the 
calculation, not accurate enough. In the event, we at ULACS chose the interpolation method, 
but the contract could have turned out to be a great problem if the BoT discovered that, when 
applied to the actual data, the method of calculation was again not accurate enough; it would 
have been ULACS’s “fault” since we had made the choice. Neither we nor the BoT knew 
enough about the characteristics of the data to predict  with confidence what interpolation 
method  would  be  sufficient.  We were  lucky that  the  method  I  devised  turned  out  to  be 
acceptable.

In retrospect, with the benefit of forty years’ hindsight, what I should have done was to try to 
explain that the difficulty of making the technical choice was a mutual one, and to propose an 
initial contract in which we applied several methods to a small but representative subset of 
the noise data. Then the accuracy produced by the different methods could be measured and 
estimates made of the cost of applying each method to the whole data. After this pilot study, 
the BoT could select which method to use and then we could enter into a second, bigger 
contract to produce the results they wanted.

In other words, we should have approached the problem progressively and incrementally, 
rather than in a “big bang”, revolutionary way. I did not learn that lesson then, and have only 
relatively  recently  come  to  realise  that  it  applies  to  many  situations.  To this  day,  many 
expensive  computing  disasters  occur,  usually  when  a  particularly  large  system  is  being 
procured, and usually by a government agency. The difficulty always arises when the precise 
nature of the environment in which the required software is to operate is not fully known or 
understood.

Elliott’s did not have photocopiers. Although they were not available as practical commercial 
machines, the process had been invented. I first came across a photocopy in my last year at 
university  in  1961  or  1962.  A  local  small  enterprise  offered  a  photocopying  service  to 
produce the programmes of a university society that I was running. The process was called 
“offset xerography”. However, the results were so speckled and distorted that I did not take 
the  offer  up.  By 1966  though,  reasonably  successful,  commercial  machines  had  become 
available, and ULACS had one. All photocopying machines at that stage were manufactured 
by Rank-Xerox, presumably because they held the patent, which had not yet expired. The 
Xerox part of the company produced the photocopiers, so the machines were called “Xerox 
machines” and the word became a verb: “I’ll just go and Xerox this document”. The company 
were temporally in the happy position of their name standing for the type of product, like 
Hoover  for  vacuum cleaners  and  Biro  for  ball-point  pens.  Photocopying  machines  were 
certainly  something  of  a  novelty  at  ULACS,  and  the  same  was  true  in  most  office 
environments. I remember a cartoon in which a secretary is painting her nails and an angry 
boss says to her “Don’t just sit there – go and Xerox something!”. It was some time before 
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they became indispensable, simply because, not having had them for generations of office 
life, it took time for practices to mutate to become dependent on them. If you are used to not 
expecting to have copies of documents, you don’t start using a copying machine in a routine 
fashion as soon as it becomes available. The single photocopier at ULACS was often idle for 
long periods, despite serving the needs of over 100 people.

The staff common room, which the Institute and ULACS shared, was equipped not only with 
comfortable arm chairs and coffee and tea, but all the journals on computer science. In those 
days  there weren’t many of these. The British Computer Society published the Computer 
Journal and the Computer Bulletin, and the American ACM, the Association of Computing 
Machinery, published several titles, the Journal of the ACM, Communications of the ACM, 
and a few other specialist  magazines.  The ACM Journal had an Algorithms Supplement, 
which described new algorithms for performing particular calculations or solving well known 
problems.  An  algorithm is  a  step  by  step  mechanical  process,  exactly  what  a  computer 
program performs. These algorithms were usually published in Algol60 or Fortran or, more 
frequently  as  time  went  on,  in  pseudo-code,  which  is  an  idealised  high  level  computer 
language,  understandable  by  a  human  reader  and  easily  translated  by  hand  into  a  real 
computer language. Devising new algorithms and numerical analysis in general, which is the 
study of computational  methods of  mathematical  operations,  were very much a  principal 
occupation of computer science in the 1960s. At the same time, the Institute used to hold 
seminars  and  these  were  often  about  new  methods  in  numerical  analysis.  Methods  of 
numerical  integration  and differentiation  were  a  popular  topic.  I  found these  topics  very 
interesting and often attended the seminars.

One of  the  ways  of  solving  differential  equations  using  a  computer  is  to  turn  them into 
integral equations and use a variation of a method of Isaac Newton, doing calculations of the 
function  at  discrete  intervals  and  interpolating  between  them,  either  linearly  or  using  a 
quadratic  or higher order polynomial.  Second order,  i.e.  quadratic,  and fourth order were 
popular approaches. Going to higher orders is not usually cost effective. The interval between 
calculations of the function determines the accuracy of the process. A frequent difficulty is 
that the function’s regularity may vary a great deal from one point to another. A technique 
which fascinated me was a variation on a second order technique, called Runge-Kutta. The 
original method was devised by two German mathematicians, C. Runge and M. W. Kutta in 
1901, before the age of computers. A crater on the moon is named after Runge. The variation 
on the Runge-Kutta method was invented by Merson, so this variable interval method was 
called Runge-Kutta-Merson. After each calculation, an estimate would be made of the error. 
If this error exceeded a certain value, the interval would be halved and the operation repeated. 
If the error was less than a certain smaller amount, the interval would be doubled. In this way 
the integration process would stride ahead with big intervals over the regular features of the 
function  and crawl  meticulously over  the more  difficult  terrain.  Since  then several  other 
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adaptive  step  size  methods  have  been  devised  by  Richardson  and  Fehlberg.  1   Further 
developments have been named Cash-Karp and Dormand-Prince. I was eager to program the 
Runge-Kutta-Merson algorithm and apply it to a real problem.W

In 1967 the Admiralty approached ULACS and asked us if we could solve a set of differential 
equations. Some of the constant factors in the equations would be presented as parameters, 
that  is  as  data.  So  would  the  limits  over  which  the  variable  was  to  range,  and  other 
information such as tables to be printed out and graphs of results to be plotted. The Admiralty 
would keep  the actual  data  to  themselves  and only run it  on the  program when we had 
finished  writing  it.  They  were  careful  not  to  tell  us  anything  about  the  purpose  of  the 
program, something that concerned me a little; I hoped that it was not associated with any too 
malicious weaponry, but I have to admit I never discovered to what use my program was put.

We arranged a meeting with the Admiralty representative, a pleasant, retiring, red-bearded 
man who sat back in his chair and listened while I described the principles of Runge-Kutta-
Merson and its advantages. We agreed to proceed. I wrote the program in Fortran, which was 
a most suitable language for the job. The solving of a set of differential or integral equations 
required  repetitious  arithmetic  calculations,  for  which  Fortran  was  ideal.  Algol60  could 
handle  processes  with  a  complex  structure  better  than  Fortran,  but  the  structure  of  this 
program was straightforward,  and for repetitive  calculations,  Fortran would be faster  and 
therefore  use  less  computer  time,  which  was  an  important  criterion,  given  the  cost  of 
computing. Also, the Fortran compiler was better geared to printing out results in a prescribed 
layout.

Because I did not have any of the customer’s real data to test the program, I had to make up 
my own. I had no idea at all of what would be typical values, so I just invented them out of 
the blue. I also plucked a value for the maximum permitted error out of the air. I got the 
program working, but I decided that I had better consult the customer about the maximum 
error value. I wrote him a letter explaining the issue and suggesting that I included it as a 
final  parameter in the data. He wrote back agreeing that this seemed a “very reasonable” 
approach. We had a last meeting in which I demonstrated the results of running the program, 
with data that I had invented off the top of my head. I explained to the customer how I had to 
make a guess at this, and how I had no idea of whether the data values were realistic. He 
assured me that they were quite realistic, indeed he was surprised that I had hit upon quite 
typical values of his “secret” information!

So, one more happy customer. I wonder what he used my program for. I shall most probably 
never know. Since graduating from university five years earlier I had come increasingly to 
the view that I did not want my work to be used for military purposes or for contributing to 
the manufacture or design of weapons. The popular perception is that one is full of ideals 

1See Fehlberg 1969.
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when young, but these fade away as one gets older and wiser or more cynical. In my case, the 
reverse has happened. Before university I had spent a year working at Texas Instruments in 
electronic  semiconductor  circuit  design,  and  had  unquestioningly  worked  on  the  control 
system for an anti-tank missile.  My mentor  on that  project,  Bhiku Unvala,  discussed the 
ethics of such work, and was marginally willing to do it, since it was a defensive weapon 
rather than an offensive one. A debatable point perhaps, but such questions were quite novel 
to me at the time, and I regarded them as perhaps rather eccentric and quaint.  Later in a 
vacation job with ICT I worked on the logic design of a military computer, again without too 
many qualms about the desirability of such work. But when I joined Elliott’s I stipulated that 
I did not want to work on anything military.  There was no problem about this. Although 
Elliott’s had divisions doing work for the military, there was plenty of opportunity in the civil 
sector. Previously, while an undergraduate, I had supported CND and had helped to campaign 
for the abolition of capital punishment. My interest in philosophical and ethical questions has 
continued ever since.

The 1960s were not just a time of individual liberation, but a decade in which the public 
conscience was awakening, and stirred to ask ethical questions of many civic practices. The 
Wolfenden  Report  had  been  published  in  1957  but  only  ten  years  later  in  1967  was 
homosexuality between consenting adult  males  finally decriminalised.  Capital  punishment 
was formally abolished, although no-one had been executed for several years, in anticipation 
of its end. In the UK, it was still legal to discriminate against someone on the grounds of race 
or colour, and advertisements for accommodation and jobs still often bore the stipulation “no 
coloureds”, which would seem shocking today; also, equally often, “no Irish”, which would 
simply be perplexing now. In the mid sixties, a considerable movement was afoot to get rid of 
racial  discrimination,  and a  colleague  at  ULACS, Gurmukh  Singh,  introduced me  to  the 
Camden Committee for Community Relations. We would test night clubs and other places to 
see if they practised discrimination, and bring them to the notice of the authorities if so. The 
war in Vietnam was taking place, and it prompted a lot of moral debate, including in the 
Gordon Square common room; there were several staff from the USA in both institutions, 
most of them against the war but just a few for it.

There were some interesting and eccentric individuals working at ULACS and the Institute. 
One of our programmers, brilliant but highly strung, would become extremely frustrated if 
his programs failed to work as they should. At one time he began to believe that unseen 
blackguards were creeping into the premises at the dead of night and altering his results. We 
were  always  advocating  that  programmers  should  document  their  programs,  which  then 
meant  mainly writing a document  explaining how the program worked. This was for the 
benefit of any other programmers who might take over the work, especially important in a 
time of high staff turnover. Another of our programmers was soon to leave and she was urged 
to document her recent work. She did so, but after she had left, we found that she had written 
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her documentation in Hebrew. In years to come, firms would have “quality systems”, sets of 
rules which ensured that work was reviewed and signed off as being of adequate quality. 
Such procedures would have prevented this, admittedly humorous, caprice. One day David 
Powell-Evans,  an  urbane,  senior  and  perhaps  the  most  competent  of  the  applications 
programmers,  arrived  at  work  carrying  a  climbing  rope  and  rucksack  festooned  with 
karabiners and other equipment,  in preparation for a weekend of rock climbing. After his 
colleagues  had  asked  him  several  questions  about  climbing  techniques,  he  demonstrated 
abseiling by doing so from the top floor down the front of the building. Passers by found this 
mildly intriguing.

In the ambience of the sixties, an era of new music, art and ideas, computer programmers 
were still  ambivalent  about  whether  they were artists  or engineers,  individuals  practising 
individual skills and expressing elegance in their creations, or followers of disciplines aimed 
at reliability and safety. There was to be a great movement towards repeatable quality, “ego-
less” programming and the maturing of software programming as an engineering discipline.

But enough of philosophy and personalities, for the present at any rate. More differential and 
integral calculus was to beckon me. Before digital computers came on the scene, analogue 
computers were used for solving mathematical problems, especially for solving equations and 
calculus. Amplifiers, essentially the same as you find in hi-fi and radio circuits, can multiply 
voltages  together  and  the  use  of  ohm’s  law  can  be  arranged  to  add  them.  Two  simple 
electronic components, capacitors and inductances, give the building blocks of calculus; the 
voltage across a capacitor is the integral of the current flowing into it over time, and across an 
inductance  it  is  the  rate  of  change  or  differential  of  the  current.  Engineers  could  patch 
together basic electronic units that added, multiplied, differentiated etc., so as to solve a set of 
differential  or  integral  equations.  These would be used to  simulate  mechanical  and other 
systems. They had been used a great deal in engineering, especially the aircraft industry. But 
now they were  becoming  obsolete  and engineers  were turning  their  eyes  towards  digital 
computers, which were potentially more accurate and perhaps easier to program. It would 
certainly be easier to repeat calculations.

Elliott’s,  another  branch of  the firm I had worked for previously,  wanted to  simulate  an 
analogue computer on the Atlas. We had a number of meetings with them in which they 
showed  us  the  kinds  of  “program”  they  would  write  for  an  analogue  computer.  These 
programs  consisted  of  sets  of  very  short  simultaneous  equations,  something  like  the 
following:

x=ab
a=∫ yd t

y= x /a
b=3.4∫ x d t
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On an analogue computer these equations would be programmed by plugging together an 
adder, a divider, a multiplier and two integrators. Any of the terminals of the units, which 
would represent one of the variables, could be attached to an oscilloscope and the voltage on 
it examined.
<block diagram of adder, divider, 2 integrators with connectors labelled with variables, and 
maybe an oscilloscope connected by a trailing line to one variable.>

So our task was to take the whole repertoire of these analogue computer instructions and 
write a compiler for them. The compiler would have to turn the instructions into an Atlas 
machine code program that would carry out calculations equivalent to the analogue program. 
One  interesting  and  unusual  feature  was  that  these  equations  are  much  more  like 
mathematical equations. They are declarative in that they declare what the definitions of the

x , y , a ,b are. It does not matter in what order they are written down, or in what order the 
engineer connects the analogue units together. They will become active only when they are 
all  connected  and  the  circuit  switched  on.  This  is  totally  different  from  a  conventional 
computer program, where the calculations are in principle done in the order they are written 
down. So, having translated the equations into machine code, the compiler has to sort them. 
Some  equations,  like  the  one  defining x ,  require  other  variables, a and b ,  to  be 
calculated first. All the variables are in fact, functions of time and have values which vary as 
time proceeds. The results of integrals do not have to be calculated in advance, so the little 
program above would need to be sorted as follows:

a=∫ yd t
b=3.4∫ x d t

x=ab
y= x /a

These  equations  then  have  to  be  calculated  repetitively  in  a  loop,  with  “time”  being 
incremented in steps in each repetition. The task therefore required compiler writing skills, 
and numerical analysis to perform the solution of simultaneous integral equations: a task for 
the systems group, especially for the compiler design. Also, with possibly several hundred 
instructions  being presented to the compiler,  the task of sorting them into an appropriate 
order was not as simple as it might seem. It required a technique called precedence analysis.

x depends on a and b ,  and y depends on x and a .  This  dependency forms  a 
directed graph, a number of nodes (the variables) connected by lines with a direction, the 
dependencies.  This graph can be represented in the computer  and there are programming 
techniques for “walking” through the graph and finding its “leaves”, the nodes or variables on 
which nothing depends, and tracking through the nodes in order of precedence. From this 
directed graph, the instructions could be arranged into an order of precedence.
There mustn’t  be any circular  dependencies  amongst  the variables,  which means that  the 
graph must be acyclic, without cycles or loops. Otherwise the equations could not be sorted 
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into order, but more importantly, they could not be successfully programmed. One can find 
the same requirement in a spreadsheet today. If you make a set of cells contain expressions 
which are circularly dependent, the spreadsheet package will object.

Conventional computer programs can look insidiously like mathematical equations, but they 
are substantially different. It is quite in order in a program to write something like:

x= x1

meaning add 1 to the existing value of x and write it back to x . x is not a variable in 
the mathematical sense but a name that is associated with a value. The equations in analogue 
programs look even more like mathematics, but are still not the same, even though their order 
is not significant. The equations

x= y –1
y=3 x

have a mathematical solution (0.5 and 1.5) but if you connected the units of an analogue 
computer  following  those  formulas  they  might  well  oscillate  wildly.  (Try  putting  these 
formulas into two cells of a spreadsheet and see what happens.) So our compiler could have 
the additional advantage over an analogue computer; it could catch erroneous programs and 
report on them.

Peter Hughes and I joined forces in producing this compiler. Peter let me run the project, 
which was generous of him, seeing that he was my manager. Peter wrote the front end of the 
compiler using Brooker and Morris’s Compiler-Compiler. I designed the object code that is 
generated on translating the instructions, the algorithms for sorting them and for doing the 
integration.  I  estimated  four  months  for  completing  the  project.  PERT  charts,  Project 
Evaluation and Review Technique, had recently been invented, and I made a simple one of 
these to plan the project and estimate the time we would take. We completed the program and 
delivered it ten days before the deadline. I have to admit that I never repeated this, delivering 
a  project  so early,  although I  have completed plenty on time.  In years  to come software 
projects were to gain some notoriety for being late and over budget, although not, to my 
mind, in reality any worse than in other industries like civil engineering.

When we were part way through the project we were asked to go to Elliott’s  and give a 
presentation about the program and what it would be able to do. The Elliott’s works was in 
Farnborough, not the Borehamwood location where I had worked before. When we arrived I 
was perturbed to see that there were a number of soldiers in uniform on the site. I had not 
realised that Elliott’s was so hand in hand with the army. Peter and I went to the office of a 
manager, David Morgan. His office was large, with a conference table and a cabinet beside it. 
Our  presentation  was quite  informal,  with occasional  writing  on a  whiteboard.  Overhead 
projectors were not in common use yet. I found myself working with David Morgan more 
than twenty years later and got to know him very well. On this occasion he was fascinated 
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when we described the principles  of the Compiler-Compiler.  At lunchtime he opened the 
cabinet beside the conference table and revealed an array of bottles, gin, vodka, mixers and 
glasses. We had gin and tonic before lunch. I was most impressed. A cocktail cabinet in his 
office, supplied by his company for business entertaining! I thought: this man has arrived! 

The compiler we wrote, which was called SLANG, for “simulation language”,  seemed to 
work and produce believable  results.  Again,  supplying it  with test  data and checking the 
results  was  a  somewhat  tricky  and  uncertain  process,  but  the  solutions  to  some  sample 
equations that we invented ourselves showed the expected pattern of values. The time came 
for Elliott’s to use SLANG for real. They tried a sample of their own data and were satisfied 
with the results, and then presented the full range of values. This was to take an overnight run 
of the Atlas at £950 per hour. My salary at the time was £2,000 per year, so Elliott’s were 
spending the equivalent of a couple of years of my salary on a single computer run, using the 
software I had designed. I was more than a little apprehensive. When running the Atlas, the 
operators would perform a “restart” every couple of hours, usually in order to do some minor 
hardware maintenance. The operating system would automatically back up the state of the 
machine,  memory,  registers and so on, to a special  magnetic tape every few minutes and 
when the operators did a restart, the computer would resume from the last recorded state. A 
couple  of  restarts  occurred  during  the  long  run  of  the  SLANG program that  took  place 
overnight.  Since the huge long tables of results  of the program’s calculations were being 
produced continuously throughout the run of the program, this meant that over the restarts, a 
few results  were  repeated.  I  was  horrified to  see the  next  morning  that  these “repeated” 
results  were  very  slightly  different,  in  the  third  or  fourth  decimal  place.  The  repeated 
calculations should have given identical results. Something was wrong. I discovered that I 
had not initialised one of the variables in my program properly. If one fails to do this, the 
variable can have any random value at the start of the program, so the program can produce 
different results each time it is run. Usually, if there is a fault in a program, the results are 
haywire and it  is easy to spot that  something has gone wrong. It is highly unusual for a 
program to produce errors that are out by a fraction of a percent because of a fault like this.

We explained the difficulty to the customer. The error was easy for me to put right, but my 
heart was in my mouth while we waited for Elliott’s reaction. They could demand a rerun 
free of charge. I was most relieved when they said that such a small deviation was not going 
to affect their subsequent analysis of the results to any significant degree. I breathed a sigh of 
relief.

Although  we had  written  the  SLANG compiler  for  a  specific  customer  on  contract,  the 
compiler remained the property of ULACS. The reason for this was a pragmatic one: Elliott’s 
could only use the program on an Atlas machine and the London Atlas was the only one 
which was regularly used for commercial hire. Even then, the SLANG compiler would have 
required  some  minor  modifications  before  it  could  run  on  the  Manchester  Atlas  or  the 
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Cambridge Titan. Quite simply,  there was no point in Elliott’s,  so to speak, removing the 
compiler from us, because they would not be able to use it anywhere else. Today, and for the 
last twenty years or more, everyone is much more commercially conscious. A customer in 
that situation would insist on royalties if we used the program, which they had paid for to be 
developed, for profit with another client. But then, in 1968, we were free to look for more 
users and customers for SLANG.

I was fascinated by SLANG. Here was a program, that I had designed, that in effect could 
solve any reasonably well  behaved set of differential  or integral  equations that you could 
throw at it.  I felt that it  would be more satisfying if one could write fuller,  more general 
expressions on the right hand sides of the equations,  instead of the very short  forms that 
reflected the old analogue computer elements. Then, instead of the four little equations for

x , y , a , and b  shown previously, one could for example write:

x=∫ y d t3.4∫ x d t
y=x /∫ y d t

This would look much more like conventional mathematics and be less irksome to write out. I 
could see how to write a compiler to do this, using quite standard compiler techniques for 
analysing expressions.
I suggested this enhancement to Elliott’s.  They weren’t particularly enthusiastic.  Probably 
they were accustomed to the form of the analogue computer programs and so did not see 
much advantage in the change. However, they agreed to a further contract. The cost to them 
would  be  very  small  compared  to  the  amount  they  were  spending  on  computer  time  to 
actually  solve  their  equations;  it  was  “just”  a  piece  of  software  development.  Today the 
economics are quite the reverse. Hardware is cheap, and so computer time is very cheap, but 
skilled labour is expensive.

I  produced the more advanced version of SLANG, again with Peter  Hughes’s assistance. 
After  the  success  with  the  first  version,  I  must  have  been  suffering  from  a  bit  of 
overconfidence. The enhancements turned out to be a little more difficult to do than I had 
anticipated. But we delivered, a little late this time. The customer was not bothered about the 
two or three weeks delay, presumably because they had no immediate plans to use the “Mark 
II”.

Together with one of the salesmen, Bill Musker, I tried to find other customers for SLANG. 
Bill was probably the best salesman we had. The others used not to do much more than issue 
an advertisement from time to time and sit at their desks waiting for the telephone to ring. 
Bill was much more proactive. At his instigation several potential customers came to visit 
ULACS and talked  to me about  their  application.  One was a  doctor  who was having to 
calculate the irradiation dosages for a cancer patient. He described how he had to make these 
long  calculations  which  determined  the  intensity  of  radiation  in  the  diseased  part  of  the 
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patient’s body, and to make sure that the intensity in nearby sensitive areas were low enough 
to be safe. I was alarmed to think that the use of the SLANG compiler could result in such a 
life critical procedure. But when he heard how much it would cost to solve his equations, he 
sorrowfully said that it would be way beyond any budget he had. I felt a mixture of relief and 
disappointment.

Other potential customers arrived from time to time. They all had military applications. I was 
saddened by this. I began to think that perhaps differential equations were not the neutral, 
intellectual concept that I had thought them to be, but had an inevitable, aggressive character. 
In the event, no further contracts arrived for the use of SLANG.

A friend of mine from my undergraduate days, Michael Digby, had started working for the 
computer manufacturer English Electric, which later merged with Leo and Marconi. English 
Electric  produced  a  physically  large  mainframe  computer,  the  KDF9,  and  this  was  the 
mainstay of its computer business. Mike worked on a vehicle scheduling program for them. 
The general vehicle scheduling problem is a classical and practically important problem in 
computing.  If  you  have  a  fleet  of  vehicles  which  have,  between  them,  to  visit  a  list  of 
locations, shops for example, assigning suitable routes to the vehicles so that they cover the 
least distance and therefore use the minimum amount of fuel, is a highly useful problem to 
solve. A computer can be programmed to solve this. The difficulty is that as you add more 
destinations for the vehicles to visit,  the amount  of computing time required to solve the 
problem increases disproportionately, indeed, exponentially, and soon becomes impracticably 
long, even with today’s central processor speeds. So various techniques have over the years 
been devised to work round this difficulty, most of them being to find reasonably efficient but 
sub-optimal solutions that require less computing time. IBM had a proprietary program for 
doing this, but Mike had some ideas of his own. He left English Electric and set up his own 
company, for a long time at first working on his own. He developed a program for vehicle 
scheduling that out-performed the IBM product by a few percent. This was sufficient to prove 
attractive  to  very  large  organisations  that  had  equally  large  fleets  of  vehicles.  He  won 
contracts to supply firms like Unilever and Whitbread.

Licensing his program to a software house was not initially what Mike planned to do, but 
there came a point when he thought that doing so could be to his commercial advantage. 
Knowing that I worked for ULACS, he approached Fred Gordon. Fred later called me to his 
office.  “This man Digby:  is he reliable?” he almost barked. Well,  yes,  I assured him, he 
operates perfectly ethically but he is not a charity. He has a business to run. Fred Gordon 
entirely understood this, being very much of a commercial turn of mind himself.  So they 
reached  an  agreement  and  Mike  leased  his  program to  ULACS for  customers  who  had 
vehicle applications to use. Fred and Mike decided to market his program under the name of 
“RouteMaster”.  A  new fleet  of  double-decker  buses  had  been  introduced  into  London’s 
transport  system and these were called “RouteMaster”.  These buses were new, shiny and 
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popular, and in some ways the latest thing on the London scene. So the name was evocative 
and upbeat. The buses had very rounded lines and a large open platform on to which one 
could jump after running for a moving bus. Safety was less of an issue then: trains and buses 
now have doors electrically operated so that no-one can accidentally fall out while in motion. 
I sometimes think that we have become a bit too safety-conscious these days. Citizens should 
be allowed to take risks, and on their own heads should it be. Nonetheless, there are still a 
few RouteMaster buses operating today, venerable, almost vintage vehicles and reminiscent 
of the sixties.

Another  new appearance  on  the  London scene  was  the  Post  Office  Tower,  now the  BT 
Tower. The PO Tower had a revolving restaurant near its summit, closed now for many years 
because of a bomb planted there many years ago by the IRA. One food critic of the time 
described it, damning with faint praise, as “by far the best 650 foot high revolving restaurant 
in London”. However, its novelty value was also very high and to my delight, Mike invited 
me and a few others whom he wanted to thank, to lunch in the revolving restaurant. The 
views were magnificent and the floor in sections revolved slowly. The engines driving the 
revolutions vibrated slightly through the floor and each time I looked up after a conversation 
with  my  dining  neighbour,  a  different  scene  presented  itself.  After  a  time  I  began  to 
experience mild travel sickness, but not enough to spoil my meal. The waiters were a little 
pretentious,  addressing  one  as  “Monsieur”  in  a  London  accent.  But  the  experience  was 
unique and memorable, never to be repeated. Thank you Mike.

The Atlas was becoming rather aged and expensive to run. Technology was moving on, as it 
does, and the Institute had for some time been thinking that it should get itself a more up to 
date  machine.  CDC,  the  Computer  Development  Corporation,  was  in  the  business  of 
producing  large  main-frame  computers,  as  were  IBM  and  other  manufacturers.  Various 
changes  in  organisation  began to  take  place.  The  Institute  of  Computer  Science  became 
absorbed into Birkbeck College and bought a CDC 6600 machine. Many of the staff from 
ULACS and the Institute, including Peter Hughes, moved to the new organisation and its 
computer.  I  remained  behind  and was made Chief  Systems  Programmer.  After  some six 
months, the technical staff within ULACS and the original Institute had become considerably 
depleted. The intellectual environment was not what it had been and I began to get itchy feet.

Chapter 3 Workers in Control
I was disappointed that the original ULACS was, so to speak, evaporating into thin air around 
me. It had been an organisation of great character. One effort in the neighbouring Institute 
looked especially appealing. David Hendry had an idea for a more efficient way of writing 
compilers. Compilers had fascinated me for some years, ever since I had worked right next to 
the Algol60 development at Elliott’s. Yet more fascinating was the notion of Brooker and 
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Morris’s  Compiler-Compiler,  which  was  used  in  several  projects  in  the  Institute  and  in 
ULACS.

A compiler translates the “source” language, that is the language in which the programmer 
composes  a  program  on  a  coding  sheet,  into  a  “target”  language,  which  is  usually  the 
machine code of the machine on which the translated program is to run. David Hendry’s idea 
was to divide every compiler into two sections, the front end and the back end. The front end 
would translate the source language into a standard intermediate code. The back end would 
translate the intermediate code into the target language, that is the target machine code. Then, 
by bolting the two together, one has a compiler for the source language producing code for 
the target machine.  The intermediate language would be simple,  rather like the code of a 
typical machine, so the back end would not have too much work to do and would, one hopes, 
be relatively straightforward to write. Now, if one has to write compilers for Algol60 and 
Fortran, say, to produce code on three different machines, then one has simply to write two 
front  ends  and  three  back  ends,  obtaining  six  compilers.  If  a  requirement  comes  for  a 
compiler for either of these languages for yet another machine, all one has to do is to write 
another back end.

This technique is commonplace now, but in 1968 it was new. The idea of an independent firm 
writing compilers for another manufacturer’s computer was in any case certainly unusual at 
that time too. There were few independent software firms, so computer manufacturers would 
nearly  always  write  their  own language  compilers  and other  systems  software.  And they 
certainly would not be writing software for their rivals’ machines, so until then there had 
been little call for software to run on different machines, that is, to be “portable”. But things 
were  changing.  Computers  were  becoming  smaller  and  more  affordable.  The  first 
minicomputers were beginning to arrive on the scene and independent software houses, fairly 
small  organisations  that  could  afford  to  buy  such  machines  for  themselves,  were  also 
springing up. Furthermore, the industry was coming increasingly to recognise the value of 
high level  languages  like Algol60,  with their  greater  portability  across  machines  and the 
improved ease of understanding programs.

Because  of  the  limited  storage  size  of  minicomputers  such  as  the  Digico  Micro-16,  the 
intermediate  code often had to be output from the front end onto a temporary medium – 
usually paper tape – and read back in by the back end. We take it for granted now that the 
binary representations of characters, letters of the alphabet and numerical digits especially, 
are  universally  the same in  every computer,  whether  as  stored internally  or  on magnetic 
media like floppy disks and CD ROMs. But it has not always been the case. At first almost 
every manufacturer defined its own way of representing a character on paper tape. Standards 
began to be defined, but there were still several different paper tape formats defined by rival 
standards institutions. Eventually the representation known as ASCII became the accepted 
standard, but in 1969 different machines still used various representations.
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Radics  wanted  their  compilers  to  be  as  portable  across  different  machines  as  possible. 
Fortunately, all the paper tape codes agreed about the representation of the decimal digits 0 – 
9. So the intermediate language for the compilers was coded into decimal digits and the tapes 
that conveyed the intermediate code from front end to back end were called decimal coded 
tapes. We probably would have been able to use alphabetic characters too, but we decided 
that a decimal code was safer just in case we encountered a really obscure paper tape code 
that had different alphabetic coding.

Another twist to David’s idea was that the front and back ends would be written in a special 
language  of  his  own  invention,  called  BCL.  There  was  already  a  language  ACL,  Atlas 
Commercial Language, which was used on Atlas for commercial applications. It was a neat 
straightforward language using some of the better ideas from Cobol and Fortran. The first 
incarnation of BCL ran on Atlas, and so it was called BCL as a kind of successor to ACL, 
although having a very different purpose. Since the compiler for BCL was itself written using 
the front end – back end technique,  any compiler written in BCL could be transported to 
another machine simply by writing a new back end for the BCL compiler.

The first compiler for BCL was written using the Brooker and Morris Compiler-Compiler 
and ran on Atlas. A second version was written in BCL itself, which could be translated using 
the first version. From that point on the first compiler could be thrown away and the second 
one used. Then, by writing a back end for another machine, the whole technology could be 
transported. David’s ambition was to start an independent software house, but he began with 
a small group within the Institute. We had a few discussions and I was keen to join him. 
There was one small difficulty: ULACS and the Institute had a mutual non-poaching policy. 
This was sensible enough, since the two organisations were housed in the same building. 
Without such a policy, there could be some chaos. So, to avoid this difficulty, I had to apply 
for a job elsewhere. Then, David could come to the rescue and offer me a job, with ULACS’ 
agreement. That way, since I was likely to leave anyway, I would be kept within the fold, so 
to speak. This ploy was and is used frequently when different divisions within one company 
have a mutual no-poaching policy.  So I had to go through the hoop of applying to CAP, 
Computer Analysts and Programmers, in answer to one of their advertisements. Programmers 
were in short supply, and software houses like CAP had recruitment advertisements in press 
almost  continuously.  CAP  was  one  of  the  first  independent  software  houses,  and  had 
established a high reputation for itself. They put particular emphasis on maintaining strong 
business ethics, especially in the area of client confidentiality.

I had an interview with the managing director and founder of CAP, Alex d’Agapeyeff. He 
told me how they pursued their confidentiality policy. The team working for one particular 
client would be separated from teams working for others, especially if they were engaged on 
similar projects. Compilers were becoming a frequent task, with high level languages like 
Fortran, Cobol and Algol60 becoming used more widely. I asked him what would happen if 
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there were two contracts to supply an Algol60 compiler, for example. Wouldn’t it save a lot 
of time and be less prone to error if the two projects shared design ideas at least? He replied 
that, on the contrary, in that situation the two teams would not be allowed to speak to each 
other, to preserve confidentiality. We had quite a discussion on that topic, and he admitted 
that it was a question that was being debated quite strongly within his firm. CAP offered me a 
job at an increase in salary, and after talking to the ULACS managing director, Fred Gordon, 
David Hendry offered me a job in his team. Fred and I had a talk about this and he said that 
he would prefer to see me in the Institute rather than with a rival software house. So I joined 
the Institute of Computer Science, working in David’s group. After a few weeks David set up 
his new company. All of us in his group changed employers, once again in my case, to the 
new company, RADICS – Research and Development In Computer Systems.

I feel I should now, thirty eight years later, apologise to Alex d’Agapeyeff for taking up his 
time  at  an  interview  under  rather  false  pretences.  My apology  is  belated,  because  Alex 
d’Agapeyeff died in 2003, having achieved considerable distinction in the commercial world 
of  software engineering,  including  being President  of  the British Computer  Society from 
1970 to 1971. I did, however, find the interview an instructive experience and even that brief 
hour’s  encounter  has  added  some  more  to  my  perspective  on  the  evolution  of  software 
organisations and the work they carry out. CAP thrived for many years and later underwent 
various  splits  and  mergers.  CAP-Gemini  is  a  successful  international  organisation  today. 
Many  organisations  had  and  continue  to  have  non-poaching  agreements  between  their 
divisions,  and  similar  agreements  are  routinely  made  between  a  supplier,  especially  a 
consultancy house, and its clients. Obtaining an offer of another job elsewhere was a frequent 
and widespread means of overcoming these barriers, especially when the demand for staff far 
exceeded the supply.

RADICS moved out of Gordon Square into premises of their own in Drayton House, Euston 
Road. This building was let to us by the Society of Friends and one term of the lease was that 
we should not use the building for the manufacture of arms, alcohol or tobacco. We found 
this mildly amusing, rather quaint perhaps, and thought that these terms were most unlikely to 
restrict us. About ten of us occupied the lofty and rather gloomy rooms. David had radical 
socialist ideas about how an industrial organisation should run itself. He wanted RADICS to 
operate under a system of workers’ control. Every member of staff, administrative, technical 
and managerial, had an equal £1 share in the company. Share-holders’ meetings tended to be 
indistinguishable from staff meetings. Policy decisions were taken democratically, everyone 
having an equal vote. I remember one decision that was rapid and unanimous: Christmas Eve 
should be a company holiday! But most of the decisions were reached only after a lengthy 
debate. Looking back on RADICS, I think we spent rather long periods in staff/share-holders’ 
meetings, time not very productively spent from a commercial point of view. It was quite a 
large overhead and could not have improved the company’s productivity.
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The first contract was with Digico, who manufactured one of the first minicomputers, the 
Micro-16. Fortran and Algol60 compilers were required. A bi-product of this contract was 
that we acquired one of these computers and it stood as a general work-horse in the corridor 
beside the offices.  It  was fun working in a company that  had just  started up. We had to 
acquire  everything  from  scratch  –  coffee  spoons,  kettle,  stationery,  typewriters  for  the 
secretaries, desks and chairs, you name it. I have to say that the office premises were a bit 
dismal, but our enthusiasm and excitement for the new enterprise was enough to compensate 
for many environmental disadvantages.

We numbered about twelve.  One team worked on the front end for the Fortran compiler, 
another for that of the Algol60 compiler, and a third team for the back end for the Digico 
Micro-16. David Hendry was the managing director and Marshall Harris, also a director, was 
marketing manager, with the important task of finding further work. High level languages, 
like Algol60 and Fortran, were becoming more and more important in the industry’s eyes. A 
language is “high level” if it is designed to express the solution to a typical problem, instead 
of  being a  more  or  less  convenient  way of  writing  instructions  for  a  machine.  With  the 
increasing popularity of high level languages, David believed that Radics’ flexible compiler 
technique would lead to prosperity for the firm and the workers who owned it. “Those who 
control  the  languages  control  the  world!”  he  would  say,  with  some  hyperbole.  David’s 
charisma and the combined sense of new enterprise and new technology fired us all with 
enthusiasm.

David had done a little initial work on the Algol60 front end, and I was given the task of 
completing  it,  helped  by  an  able  assistant,  Pat  Whalley.  When  I  was  at  Elliott’s,  I  had 
witnessed the team there produce the first commercial Algol60 compiler, in the next room, so 
to speak, something that made me both excited and envious. Now at last I was to design and 
produce my own. I was both delighted and a little overawed by this prospect. Algol60 was a 
language which had many features that were difficult to implement. The language was “block 
structured”,  which  meant  that  new areas  of  data  could  be  defined  while  a  program was 
running. The allocation of a program’s working space was therefore dynamic. It could not be 
decided  in  advance  by the compiler.  Pieces  of  code  could  be  designed as  procedures  or 
functions, which could be called from other parts of the program, much like subroutines in a 
low level language program. But Algol60 procedures and functions could be recursive, that 
is,  they could call  themselves or call each other mutually.  For some problems this was a 
superb feature. The usual example is that of a factorial function:

integer procedure factorial(n); integer n;
factorial := if n = 0 then 1 else n * factorial(n-1)

In mathematics the factorial function is written n! For all positive values of n the factorial is 
the product of all the numbers up to and including n multiplied together. 0! is defined as 1. In 
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fact this example of recursion is not a particularly good one because it is perfectly easy to 
program an efficient factorial function without using recursion, but it illustrates the principle 
neatly. Compiling recursive procedures and functions is a bit tricky because each time the 
procedure or function is called, new working space has to be allocated for it, and de-allocated 
after each call is finished.

Recursion on its own is nonetheless reasonably easy to cater for in a compiler. In Algol60 the 
whole feature becomes much more complicated because one is allowed to jump out of the 
body of a procedure using a “Go To” instruction. In high level languages Go To instructions 
are  really  relics  of  machine  code  programming.  In  all  machine  codes,  there  are  jump 
instructions,  which  alter  the  path  of  control.  Instead  of  the  computer  obeying  the  next 
instruction  in  sequence,  it  obeys  the  instruction  whose  address  is  given  in  the  jump 
instruction. Furthermore, in Algol60 and some other high level languages, labels, which are 
attached to instructions and can be the destination of Go To instructions, can be passed as 
parameters to procedures and functions. So working out just how much recursive unwinding 
is  required  when jumping out  of  a  recursively called  procedure or function is  a  bit  of  a 
nightmare.

Using Go To statements in Algol60 and other high level languages often led to programs 
being  very  difficult  to  understand  and  analyse  by  a  human  reader.  In  fact,  in  1968  the 
renowned computer scientist Edsger Dijkstra published a letter to the Communications of the 
ACM with the title “Go To Statement Considered Harmful”1. This two page letter caused 
immense controversy at  the time and led to  a whole discipline  of how to write  software 
clearly and effectively. This discipline was called “Structured Programming”. To this day the 
Go To statement is notable by its absence in modern programming languages such as Java.

Partly because of the difficulties  of combining recursion,  Go To statements  and dynamic 
storage  allocation,  several  different  “levels”  of  Algol60  were  defined  by  ECMA,  the 
European  Computer  Manufacturers’  Association.  Each  level  of  the  language  contained 
different features. The highest level contained all the features of Algol60. The lowest level, 
level 0, did not contain recursion or dynamic storage allocation. Because the Digico micro-16 
was a small machine, we were only asked to provide a level 0 compiler for it, but for two 
other contracts, with ICL and Honeywell, we were asked to produce a level 2 compiler. Level 
2 contained virtually all the principal features of Algol60, including recursion and dynamic 
storage allocation.

So Pat and I set about designing and writing the compiler for Algol60 level 2. I thought we 
could do most of the work for the level 2 compiler and then produce a new version, removing 
some features to obtain the level 0 version for the Micro-16. But I found that the level 0 

1See Dijkstra 1968.
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compiler was so much simpler in requirements that producing it was in reality a separate 
project, albeit a much easier one.

The Digico micro-16 computer had a mere 32 kilobytes of main store. A modern PC with its 
two-level  store  shared  between  random  access  memory  and  hard  disc  has,  by  contrast, 
typically 160 gigabytes of which 512 megabytes are in RAM. So today’s RAM is sixteen 
thousand times the size and the whole main store is five million times the size of the main 
store of the Micro-16. Furthermore, by the time this book is published, these figures will no 
doubt be out of date; the factors will be even greater compared to what is available as you 
read this. The Elliott 803 had a main store of a similar size to that of the Digico micro-16, so I 
recalled the strategy used by the Elliott’s Algol60 team to shoehorn the compiler into such a 
limited space, and followed their example.

The Algol60  language  is  full  of  opportunities  for  “forward  referencing”.  As  you,  or  the 
computer, read the program, there can be references to elements of the program which have 
not yet been fully defined. The compilation of these references cannot be completed until the 
definitions  have  been  found,  later  on  in  the  script  of  the  program.  This  means  that  the 
compiler has to remember a great deal during the input of the program script. With a small 
amount of main storage, only very small programs can be compiled.

The way round this problem was to compile a program in two passes. The traditional method 
was for the compiler to read the program two, or maybe more, times. On the first pass the 
definitions  would be read and stored in some codified form. On the second pass the full 
compilation would be carried out, with the knowledge, so to speak, of all the definitions. In 
this  way,  the compiler  had much less to “remember” during the compilation process and 
much larger programs could be compiled.

This was a rather crude approach and had another disadvantage. Programs were still mostly 
prepared on paper tape. After reading the program the first time, the tape will have been 
dumped out of the tape reader into a tape bin. To read the program a second time, the tape has 
to  be rewound from the  bin  on  to  a  spool  and fed  into  the  tape  reader  again.  For  long 
programs this takes some time, during which the computer would be idle, unless it was a 
sophisticated time sharing system like Atlas. The Elliott’s team had another idea. Instead of 
rereading the program, during the first pass the compiler would output a partially compiled 
version of the program on to secondary storage, typically paper tape. By the end of the first 
pass, all definitions would have been found and output on to the intermediate tape. This tape 
would be read back in on the second pass, in reverse direction. This has two advantages. The 
tape does not have to be rewound, and the definitions, which would be completed at the end 
of the first pass, could now be read in front of all the rest of the partially compiled program. 
The compiler has to remember even less than with the crude and simple two pass approach 
and so even larger programs can be compiled.
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I followed this same approach with the Micro-16 and other Algol60 compilers that we were 
commissioned  to  produce.  However,  I  added  an  extra,  simple  feature.  The  intermediate 
information would be written into a main store area until it was filled up. Only then would it 
be sent out to paper tape. This meant that programs could be compiled in one pass if they 
were small  enough. If  they were too large for one pass compilation,  the compiler  would 
detect this and automatically move into two pass mode. Our compiler could compile small 
programs in one pass on the 32 kilobyte Digico Micro-16 and respectable sized ones in two 
passes.

Our  other  two  Algol60  projects  were  for  Honeywell  and  ICL  Dataskill.  Honeywell 
manufactured  their  own range  of  computers  and  Dataskill  was  a  software  house  wholly 
owned by the computer manufacturer ICL. Many of Dataskill’s contracts were for writing 
software  for  their  parent  company,  ICL.  For  the  first  of  these  projects,  RADICS had to 
produce a back end for a Honeywell machine. For the later stages of development and testing 
we needed access  to  the Honeywell  and ICL machines.  So four  of  us,  Mary Lee,  Clive 
Jenkins, Pat Whalley and I had to commute to Honeywell in Hemel Hempstead, some thirty 
miles outside London. For the ICL Dataskill contract, the machine was the Cambridge Titan, 
similar in design to the Atlas, for which a back end had already been produced. The commute 
to Hemel Hempstead was tedious, given that we had to travel to our starting-point first, which 
was Highgate underground station. But the offices at Honeywell were pleasant and modern. 
We all sat in an open plan office and had easy access to the computer. We mainly needed this 
for the back end work, but the Micro-16 at RADICS was beginning to be in demand for other 
projects,  which  were  approaching  their  final  stages.  The  style  at  Honeywell  was  a  little 
different from anything most of us had been used to. Managers were held in high regard and 
used to act accordingly. One of them once asked one of us to do some menial task for him, 
without realising that we were visiting consultants and not one of his own subordinates. I 
remember a secretary telling Clive: “You mustn’t hang your coat there; that’s my boss’s coat 
stand!” But by and large we carried on without difficulty.

To carry out the same task for Dataskill was much less of a chore. The customer set up a 
telephone link from the Institute’s premises in Gordon Square to the Cambridge Titan, and 
we could access it directly using a Flexowriter and the equivalent of a modem. Programs still 
had to be run as batch jobs just as on Atlas, but the turn round time was far more rapid. I 
found I could edit, recompile and run a program in half an hour, often getting eight or nine 
revisions done in a day, instead of just one or two, which was the limit on the London Atlas. 
This  felt  like  a  breakthrough  in  productivity.  Progress  was  rapid  and,  because  we  were 
producing the same front end for the two projects, the work for both the Honeywell and ICL 
contracts benefited. This was a very early experience of using a computer by means of a 
remote terminal, which, furthermore, in this case, was 48 miles distant. It was to be some 
twenty years later before I used such a system again, when working at Praxis in 1987.
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Algol60 compilers were complex pieces of software and several books and many papers had 
been written on techniques for writing them. Sample test programs had been published which 
would  stretch  the  capabilities  of  compilers  and  help  to  distinguish  those  that  behaved 
correctly and those that did not. I read many of these texts and thought long and hard about 
the details of solutions. Our premises were a mile or so from the embankment by the river 
Thames. I found that walking down to the river and letting my eyes rest on the water-borne 
traffic was an aid to thought, and spent extended lunchtimes working out solutions to some of 
the problems on these perambulations.

Then came a disaster. The other early contracts that Radics had won were completed and no 
new business had come our way. The commercial climate at that time had taken a dive and 
small computer firms started going into liquidation at an ever increasing rate. The periodical 
“Computer Weekly” published a lengthening list of the latest casualties every week. At one 
point  it  was  actually  easier  for  less  experienced  staff  to  find  work  and people  began to 
conceal  their  qualifications  when applying  for  jobs.  In  a  time  of  commercial  depression 
organisations cut back on using services, especially the relatively sophisticated services of 
computer consultancies. Radics had to look for a buyer to survive. Negotiations were well 
under way with SDL, Systems Designers Limited. They interviewed all the staff and gave us 
presentations about themselves and their company. In the end SDL decided not to buy Radics 
after all, but offered individual jobs to six of the personnel they liked the look of most and 
small redundancy packages to the rest. This caused some resentment, as one might imagine. 
Radics the company had to go rapidly into liquidation,  and the six,  of whom I was one, 
considered whether to accept their offers.

I was a little torn. My wife and I had recently bought a house, our second child had just been 
born, we were making ends meet on one salary and our personal finances were very tight. But 
none of  the members  of my Algol60 team had been offered a job by SDL and the two 
contracts for compilers were not complete. They needed about another six weeks’ work and 
the other members of the team did not feel confident about completing them without me. So I 
spoke to SDL and declined their offer, asking if I could have the redundancy package, which 
was equivalent to about one month’s pay, instead. They agreed. I then set about trying to 
negotiate new contracts between both Honeywell and Dataskill and us as a small group of 
individuals.

The next day we travelled to Honeywell in Hemel Hempstead as usual, although, with Radics 
terminated as a company,  we would not be paid. Once arrived we had a short discussion 
between ourselves to agree our position, and then I went to see the Honeywell manager. This 
negotiation did not go well. To my surprise, Honeywell did not seem to be all that interested 
in preserving the results of the work. I would have thought that having invested in the project 
so far, a small extra sum to see the finished product would have been worth their while. But 
Honeywell calculated solely on the basis of their own budget that they had set aside for the 
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original contract. The amount they offered us would have effectively reduced us to less than 
half pay for the remaining few weeks of the work. I returned to my colleagues and told them 
the news, recommending that we reject Honeywell’s terms. There was still the contract with 
Dataskill  to  renegotiate,  which  if  successful  would  still  leave  us  with  the  satisfaction  of 
having  produced  a  final  version  of  the  compiler,  completed  the  work  and  delivered  the 
product. Also, we were all eminently employable despite the temporary minor recession in 
the computer industry.  My team were disappointed and a little dejected. There was some 
considerable feeling of wanting to complete the Honeywell compiler despite the miserable 
conditions,  but  after  further  reflection  all  agreed that  we should terminate.  I  went  to the 
manager once again to relay the news. “All right then” he said, almost with a smile. He did 
not  show any concern that  having invested in the project,  they were left  with nothing.  I 
wondered just how much they really wanted the compiler. There could easily have been some 
internal difference of opinion about the value of equipping their machines with Algol60. If 
so, it had been concealed from me. I returned to my colleagues and we straight away packed 
up all our possessions and left. There seemed a heavy finality about this action. Lunchtime 
was not yet even upon us.

The next day I visited John Chilvers, the technical manager at Dataskill who had let Radics 
the contract. This meeting was a great contrast to that with Honeywell. John Chilvers was 
enthusiastic from the start and determined to find a way to complete the work. We worked 
out  the  financial  package  first  and  then  talked  about  the  logistics.  Radics’  premises  in 
Drayton House were no longer available, since the contract to rent them had terminated along 
with Radics. John had contacts at Imperial College in London and after a few days we were 
able to use a basement room in a building that belonged to Imperial in Exhibition Road. A 
telephone line was sorted out and a link to the Cambridge Titan machine installed.  Once 
again we were in business, this time as a group of individuals. The front end of the compiler 
was virtually complete; there was just some testing to be done, some last work on the back 
end,  and testing the integration  between the front  and back ends.  Pat  Whalley,  who had 
worked with me on the front end, had found herself another job, and left soon after Radics’ 
liquidation.  In a quiet  and unassuming way,  she had done splendid,  sterling work on the 
compiler,  often  in  spite  of  my  own lack  of  lucidity  in  explaining  some  of  the  difficult 
technicalities to her. After SDL did not buy Radics out, Radics’ management persuaded Pat 
to take SDL to the Industrial Tribunal, something of a David and Goliath situation, especially 
as Pat was almost the most junior member of Radics. The result was that SDL was deemed 
not to have done anything illegal, but we were told that the tribunal gave them some strongly 
worded advice.

The remainder of us progressed with completing and testing the compiler in that little white-
painted basement room. It was a short walk from the Science Museum in Exhibition Road 
and I  spent  several  lunchtimes  visiting there,  seeing again  the mechanical  and electronic 
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exhibits. There were no entrance charges to national museums then, a freedom that has since 
come, gone and come back again more than once. I soon finished the front end work, and 
oversaw the final testing and integration of the complete compiler. After some ten days there 
was only the final work to be done on the back end and I reckoned I was no longer needed. 
With their consent, I left the others to it, continuing for another ten days or so without a 
project leader. My absence enabled the limited budget to fund the pay of the others a bit more 
equitably. They subsequently delivered the compiler in working order.

Many suites of test programs were available in Algol60. John Chilvers presented some of 
these to us, along with the results that a compiler on another ICL machine had produced. We 
could run the tests on our compiler and simply compare results. I felt some satisfaction that 
there was only one discrepancy, and it was the ICL compiler that behaved incorrectly.

In writing the Algol60 compiler, there was one thing I would now have to do differently. 
There are two kinds of division operator in the language, written  / and  ÷. The  / operator 
always produces a result of type real, such as 5.32 or 1.0. The ÷ operator produces an integer 
result, that is a whole number like 5 or 1. If the context expected an integer, I allowed the / 
operator  to  deliver  an  integer  result.  This  would  allow  some  programs  to  be  compiled 
successfully with an expected meaning, whereas the Algol60 language rules would reject the 
program as faulty.  Thus our compiler was very slightly more lenient, as it were, than one 
which was strictly according to the book. I felt we were giving the customer more value for 
their money this way. But, in due course of time, such a policy would have been regarded as 
erroneous. A good compiler should accept and compile correctly exactly those programs that 
are allowed by the language definition. It should reject programs that the definition does not 
allow, even if the intention of the program is obvious. The reason for this is standardisation, 
universality  and  portability.  Someone  who  wrote  a  program that  made  use  of  this  extra 
feature  that  I  provided  would  not  have  been  able  to  compile  their  program on  another 
accurate  compiler.  But  recognising  the  importance  of  standards  was  in  its  early  years, 
although growing.

Algol60 was by this time, over ten years old. A few years before, in 1968, a new language, a 
successor to Algol60 called Algol68, had been devised, again by a committee. This had many 
interesting features and treated a greater variety of programming concepts as manipulable 
data, for example. But it never really gained popularity in the same way. It had gone up a 
technical cul-de-sac. Many new programming languages were being devised at that time, but 
the  ones  which  took  off  and  persisted  for  the  next  decade  were  more  notable  for  their 
simplicity rather than their advanced intellectual features.

But, it was 1979, I was out of a job and had a family and a mortgage to support.
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Chapter 4 Running through Treacle
Just as I gathered the Sunday newspapers together, where most of the professional jobs were 
advertised,  there  was a  postal  strike,  which  lasted  for  some weeks.  I  could  not  reply to 
advertisements by post. However, the strike gave me a perfect excuse for telephoning instead, 
and receiving perhaps a faster response. I actually set out on one or two days and cold called 
a few firms in person, and was received because of the postal strike. In other circumstances I 
would have been sent away and told to apply in writing. I telephoned Univac, Burroughs and 
ICL, all computer manufacturers. Univac were situated by Euston station in central London, 
in a tall office block covered in tinted glass. It had long been a noticeable landmark on my 
daily commute to work, both to Radics and to ULACS. Burroughs had offices on the Thames 
embankment. ICL were in Bracknell, a new town forty miles to the west of London. All three 
agreed to give me an interview.

When I arrived at Univac, directed to an office on an upper floor, I found that my interviewer 
was another  mathematician  I  had known at  Cambridge  University,  John Marsden,  a year 
ahead  of  me  at  Trinity  college.  We had  a  relaxed  conversation,  and  I  was  left  with  an 
optimistic assurance that the personnel department would be in touch with me.

Next I went to Burroughs’ offices on the embankment: another tall modern building, with a 
sunny outlook over the river. The concierge directed me to an office on an upper floor once 
again. In the lift I encountered another man, who greeted me heartily: “Are you a Burroughs 
man?” My heart sank a little. This began to seem like a firm with an over-strong sense of 
corporate loyalty. No, I replied, not yet at any rate, I was here for an interview. My fellow 
traveller in the lift wished me well and left. I continued upwards and met my interviewer, a 
fairly young man with a slight northern accent. He was enthusiastic from the start, not so 
much interviewing me as trying to persuade me to accept the job offer, which he well nigh 
took for granted. He quickly described the company, which was American owned, something 
he frankly described as a disadvantage, without going into details. Burroughs were designing 
a new machine, a minicomputer, and the post they wanted to fill was manager of the systems 
software team. This team would operate from the factory where the machines were to be 
manufactured.  The factory was in Cumbernauld,  in Scotland,  a new town to the north of 
Edinburgh and Glasgow. I was rather taken aback, because no mention had been made of this 
in the job advert. My job would be to lead the team producing the systems software for the 
new machine. This sounded a very exciting and challenging task. Their conception of the 
systems software sounded very pared down: an operating system and just two compilers, for 
Fortran and Cobol. Still, I pointed out, the OS would have to include items like an editor, 
because programmers would need to write and produce their programs, loaders to load code 
in and out of store, and device drivers for whatever devices they proposed to attach to the 
machine. The next shock was that they were planning on a team of just six people to do all 
this. I was rather amazed: even for a small machine, I was thinking in terms of twenty to 
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thirty or more. I said six people did not seem to be enough to me, and he asked me, well, we 
would welcome your advice, how many do you think would be required? I thought rapidly. I 
began to see that my interviewer probably did not know much about software production. But 
if I said thirty, he might be put right off, thinking that it was I who was being unrealistic and 
extravagant. Maybe it could just be done with twelve: two on the front ends of each compiler, 
two on the shared back end, two working on the core of the operating system, which would 
have to manage the interrupt system, two people working on device drivers, one more for 
utilities  and  myself  managing  and  coordinating  the  whole  thing  and  helping  out  in  the 
individual  programming  tasks  where  necessary.  So  I  said  it  might  be  done  with  twelve 
people.  I was expecting him to look shocked at my doubling his estimate,  but he looked 
unperturbed. Well, we’d certainly listen to your advice on the matter, he said.

This first interview was fairly brief. My interviewer said I should come to the factory in 
Cumbernauld  and meet  the  managers  there,  and  I  should  bring  my family  with  me.  He 
appreciated that it would be an upheaval moving up to that part of Scotland. It was important 
that we should see the environment and get some idea of what would be involved in moving 
there. We should all spend the weekend in Cumbernauld, hire a car and look around. The 
company would pay.

This was a completely different proposition. The only addresses for Burroughs mentioned in 
the advertisement were in London, in particular the one on the Thames embankment, one of 
the pleasanter parts of the city. A new town in Scotland would mean a change in lifestyle. I 
went home and talked to my wife Hazel about it. We thought about the change, being 450 
miles away from our friends in London and probably losing touch with many of them, and all 
the other implications. But, although there were more jobs available in and around London, 
those in computing and engineering in general were spread over the whole country, precisely 
because many were associated with manufacturing facilities, which were deliberately placed 
in areas of low employment and cheaper land for building. We accepted the invitation for all 
of us to go to Cumbernauld for my interview and the weekend following.

Burroughs was perhaps my first encounter with big-company largesse. I had only flown a few 
times before, once to a job interview at CERN in Geneva, and the other couple of times on 
short holidays in Paris. A cut-price flight left from Lympne on the south coast of England and 
landed in Beauvais on the north coast of France. The rest of the journeys were done by coach, 
so the flights were alternatives to ferry crossings across the Channel. This time we left from 
Heathrow, flew the 400 miles to Glasgow and were accommodated in a hotel in the centre of 
Cumbernauld. The town centre was laid out with all the facilities, shops, pubs and so on, in a 
three-dimensional  concrete  construction  with  several  levels.  There  was  a  green  area 
surrounding this,  laced  with  footpaths,  and  surrounding that  the  residential  area.  All  the 
houses were of a uniform pale grey pebbledash, with small rectangular windows giving the 
appearance of slots. My two children were under four years old and we all slept in the same 
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hotel room. In the morning I was collected to go to my interview. I left my family to explore 
the town.

I had put on a suit and wore my best shoes for this interview. We arrived at the works and 
walked through the shop floor on the way to the offices. This interior was more like a heavy 
engineering workshop than an electronics manufacturing plant. The floor was screed concrete 
and the area peopled by men in blue overalls.  I  felt  self-conscious in my suit.  The blue-
overalled men seemed to look at my shoes especially, as we walked across the concrete floor. 
We arrived in a conference room and met several other managers, including Ed Henderson, 
who  would  be  my  immediate  manager  if  I  accepted  the  job  offer.  The  other  two  were 
American. The conference room was decorated in hideous taste, with dark orange and green 
vertical striped walls. They told me that the room had just been decorated and they were very 
proud of it. We talked again of the estimate for the number of staff required to produce the 
systems  software  for  the  new  machine.  The  most  vociferous  American  was  a  bit  more 
cautious about my proposal that a minimum of twelve would be necessary, but he didn’t rule 
it out. He left the proceedings quite soon, saying – Well I sure hope you come on board, 
Brian. That is my first name but everybody calls me by my second name, Tim. This man had 
read  my  application  form  and  gone  straight  into  first  name  terms  without  the  usual 
preliminary negotiation. Today, indeed for a long time now, this has been the way, but in the 
UK in the 1970s, we were all a little more formal. His attempt at familiarity annoyed me 
slightly.

My escort,  who had originally interviewed me at  the Burroughs premises on the Thames 
embankment, had proposed that he showed us all the rural sights over the weekend. I was 
impressed by this offer, but now he seemed less enthusiastic. He mentioned a girl friend, and 
I realised that he would, understandably, rather spend his time with her. I assured him that I 
could hire a car and we would drive around ourselves, especially if he could give us some 
indicators as to where to go. This made him very happy! So I returned to our hotel.

Hazel had spent the day with our children in Cumbernauld. She told me how she had talked 
to a lot of residents there, and how all of them seemed to have said words to the effect: Oh!, 
you don’t want to live here!. I thought maybe towns need to grow of their own accord rather 
than be planned and planted in the middle of somewhere where it would be useful to have a 
habitation. We spent the weekend driving around the beautiful Trossachs, an area where now, 
by strange circular circumstance, I have chosen to live. But then we were townies and the 
rural charms did not impress us so much.

A few days later I took the train to Bracknell and made my way to ICL’s offices in Lily Hill 
House. I realised I had been there before. I had had an interview there on the “milk round” 
series of interviews in my last year as an undergraduate. On that occasion I had missed the 
stop on the train, not realising how close the stations were together and how short a time the 

51



train paused at each one. That first interview had been a bit of a disaster; the person who was 
supposed to interview me was not available and no-one else knew that I was arriving. I was 
not offered a job, but I was not too concerned. I had plenty of other offers to choose from. 
This time, nine years later in 1971, I was seen by a senior manager, Mr. Pearson. ICL were 
embarking on the design of a new computer, the “new range”, later to be named the 2900 
series. They were also having a modern new building constructed, and all the programming 
teams would be moving into it when completed.

Mr. Pearson described the various teams and projects associated with the production of the 
systems software for the new range. There would be about twelve hundred people involved 
altogether. I remarked to Mr. Pearson that Burroughs were also embarking on the production 
of a new machine and were proposing a team of six people to achieve essentially the same 
task. Pearson calmly remarked that with a paired down group of that size, they might well be 
successful.  As  well  as  the  various  software  construction  teams,  the  ICL structure  had  a 
number of “technology centres”, which carried out a coordinating and advisory role. With my 
experience and enthusiasm for compilers, the Language Systems Technology Centre seemed 
a good choice for me. It turned out that this group was led by John Buckle, another Trinity 
mathematician and contemporary of mine. I was offered a job there and then and told that I 
would receive a formal offer in writing as soon as the postal strike permitted.

I still had not received any communication from Univac. I was out of work, but had received 
two good job offers. Burroughs were pressing me for a reply to theirs, saying that if I was 
going to reject it, they would like to know as soon as possible so that they could interview 
other candidates. On the principle of striking while the iron is hot, I accepted the job with 
ICL.

I still wonder whether I should have pursued the possible opportunity with Univac. I took 
their lack of a reply as a lack of interest, but my papers could easily have been sitting in some 
administrator’s ‘pending’ tray. I have since had much more experience of large corporations 
and have learned that their large administrations, especially personnel departments, can be 
detached from the units that do the real work. They can sometimes seem more of a hindrance 
than a support. If I had telephoned my colleague from Cambridge who had interviewed me, 
who seemed quite keen to employ me, things might have turned out differently. We would 
not  have  moved  house;  we  would  probably  have  stayed  in  south  London  and  had  a 
completely different set of friends, our children going to different schools later  on. Lives 
close to me would have been different. I wonder this, especially since I was not happy at ICL 
and we moved back to London just a year later. But I did not have this foreknowledge at the 
time.

ICL had many offices, most of them in the Reading area. I was to work in Bracknell, at first 
in Lily Hill House. This building was a rather rambling early twentieth century country house 
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set in grounds densely planted with trees, giving a faintly claustrophobic effect. Much of this 
part of Berkshire had this feeling of being crowded by trees. One can rarely see a distant 
horizon.  But ICL were fitting out a brand new purpose-built  building at the other end of 
Bracknell, and we were to transfer to that when it was ready. The move was welcomed by 
everybody in the Language Systems Technology Centre, called LSCT for short. Our offices 
in Lily Hill House were cramped, old and poorly decorated. John Buckle, whom I knew from 
former times, was in charge of the group, but he was soon to move on and his number two, 
Peter Dove,  would take over as leader.  I  spoke to John about my joining the LSTC and 
discovered to my surprise that he had not seen my job application, CV or any details. So I 
gave him a rapid run down on my career to date. At ULACS it would have been unheard of 
for even a junior manager to have staff assigned to them without complete consultation. I was 
slightly shocked that I had been assigned to John's group without his knowing more about my 
experience,  but  I  was  to  learn  continuously  over  the  next  twenty  years  how  different 
organisations  behave  very  differently  from  each  other  in  these  manners  of  people  and 
organisational relations.

There  were many highly skilled  and gifted people working at  ICL.  But  their  reputations 
remained mostly  confined  to  ICL: they produced relatively few publications  and did not 
display their technical work very much in the forums of the professional institutions like the 
British Computer Society or the Association of Computing Machinery. With my experience 
of compilers,  I  was given the task of trying to unify the design of the different language 
compilers across the New Range machine.

For  all  the  languages  that  ICL  regularly  provided  with  their  computers,  Cobol,  Fortran, 
Algol60 etc., there was a separate team of programmers developing a compiler. I found a 
great deal of resistance among the teams to any change. They had developed their designs 
over  the  years  for  previous  machines.  The  compilers  worked  and  I  can  understand  the 
reluctance to introduce even unifying changes. Transporting a design of a program to work 
on another machine was relatively straightforward. There were always claimed to be special 
reasons unique to each language why the design had to be as it was. The opportunities for 
unifying the designs were great. I had visions of a common intermediate language into which 
the front ends of every compiler could translate the source code, and then a single common 
code generator for the new range machine,  a standard parser generator system for all the 
languages with the syntax expressed in a common language based on BNF, and more. These 
unifying approaches to design would have presented the users of the compilers, that is those 
programming in the various user languages, a similar feel and response to the compilers. But 
I soon began to realise that these were vain hopes. And the compiler teams indeed had some 
justification along the lines of “if it ain’t broke, don’t fix it”. Their compilers had worked 
well over several generations of ICL computers.
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I decided to take it all a small step at a time. I thought that if the LSTC could build a parser 
generator and demonstrate it, this may be a way forward. A first step in building one is to 
produce a macro generator,  a program that substitutes short pieces of computer  text with 
longer sequences, possibly with parameters, like a form letter only more elaborate. Such a 
facility is also of general use in building compilers and other items of systems software. The 
language used for developing the systems programs for the New Range had been decided. It 
was  “S3”,  a  fairly  simple  subset  of  Algol68 devised  by ICL.  So it  would  be natural  to 
program my proposed macro generator in S3. I put forward the proposal to do this as a first 
step at several meetings and it was agreed to go ahead.

I produced a design for the macro generator and it was implemented by a young programmer 
in the LSTC team. Meanwhile I had other regular duties: reviewing documents from other 
departments, helping to outline principles of development policy, and so forth. I began to find 
most  of  this  work intensely frustrating.  There  seemed  to  be a  great  weight  of  inept  and 
stubborn opinion to overcome in order to get anything done, despite the fact that there were 
many extremely capable people in the company.. People have likened ICL to a section of the 
UK scientific civil service, and I can see why. There was a vast amount of internal discussion 
and debate, with people taking stances and striking poses.

ICL was the result of several mergers, the most recent between ICT, with whom I had worked 
on a vacation job while at university, and English Electric Leo Marconi. Different divisions 
still retained some inheritance of the company cultures from which they were descended, and 
some isolating barriers remained. I felt I was not achieving very much and began to look 
elsewhere once more.

Chapter 5 The Country Club
In the Sunday Times an advertisement  appeared asking for a leader of a “basic software 
control centre”. I assumed that “basic” software meant systems software, operating systems, 
compilers and so on, and tentatively replied. I was invited to attend an interview at STL, 
Standard Telecommunications Laboratories in Harlow, a new town in Essex to the north-east 
of London. The letter, from the personnel officer, Martin Jenner, said I was to meet “Mr. 
Flowers  from Antwerp”.  I  was  a  little  puzzled,  because  the  job  advertisement  made  no 
mention of any connection with Antwerp. However, I drove with my family to Harlow, partly 
to let my wife and family have a look at the town and surrounding area, and arrived at the 
laboratories. I met security guards in the entrance foyer and checked myself in. I asked them 
if they had any idea how long I would be required. “Oh, you will be hours, hours!” they said. 
I returned to my wife waiting in the car and suggested she returned in an hour and a half.

I was soon summoned and walked along a ground floor corridor to the personnel department. 
A younger man with fair hair introduced himself as Martin Jenner, and the older of the two, a 
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friendly bear of a man from Florida, shook hands with me “I’m Lou Flowers” he said. I had a 
lot of questions to ask, and learned that STL was a telecommunications research laboratory 
belonging to STC, Standard Telephones and Cables, a well known British firm that supplied 
much equipment to British Telecom, which then was part of the Post Office. What I did not 
know  was  that  STC  was  part  of  an  American  multinational  conglomerate  called  ITT, 
International  Telephones  and  Telecommunications.  STL  was  one  of  three  research 
laboratories  in  ITT,  the others  being in Versailles  to  the south of Paris,  and the third in 
Madrid. STL did much research into materials and physical devices, but not a lot in the area 
of computers and software.

In the earlier days of telephony, exchanges were manual, operated by many operators who 
would answer when you picked up your phone and manually route your call through to its 
destination, relaying instructions along the line to other operators if necessary. I remember 
the first telephone in my parents house. It had no dial, just a handle to turn which generated a 
calling signal to the operator. The mouthpiece was mounted on the wall too high for me to 
reach and speak into as a seven year old. The first automated exchanges were operated by 
pulses generated by dials which caused relays to switch the call to its destination. The next 
generation were electronic, replacing the relays by electronic switching circuits. In 1972 these 
electronic switching circuits had begun to be replaced by computers and software. ITT had 
developed two computers for this purpose, the 1600 and the more powerful 3200. The 3200 
was a development of a previous STC machine, the Stantec Zebra.

Teams of programmers in many ITT companies developed software for telephone exchanges, 
and also for telex “store and forward” exchanges. Younger or future readers may not know 
what a telex is. Almost from the beginning of telephony, it has been possible to send typed 
messages across the public telephone network. Telegrams would be dictated to an operator 
who typed them out on a teleprinter in the exchange. The message would be printed on a strip 
in the destination exchange, glued to a sheet of paper and carried in haste by hand to the 
recipient, usually by a telegraph boy on a bicycle. Telexes had begun to supersede telegrams. 
Any firm could have a teleprinter and a telex line, just as they could have a telephone line and 
handset. The message could be typed out onto paper tape, the number of the receiving telex 
machine dialled,  and the text sent via a paper tape reader.  Telexes  were a cheap way of 
sending messages internationally and had the advantage that you did not have to wait for a 
mutually convenient time of day. If the message arrived in the middle of the night, it would 
not disturb the recipient; it would be waiting ready to be collected in the morning. Telex 
exchanges would store these messages electronically on magnetic tapes and forward them to 
their  destination when a route was free.  These telephone and telex exchanges were often 
called “switches”. Fifteen years later, telexes would be overtaken by email.

In  this  first  brief  interview,  I  asked  many  questions  about  the  software  development 
technology that was being used. In fact, I think Lou Flowers probably learned all he needed 
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to  know  about  me  from  the  questions  I  asked.  I  began  to  realise  that  this  part  of  the 
telecommunications  industry was way behind the sectors I  had worked in before in their 
software development techniques. The applications software, that which drove the telephone 
and telex switches, was mostly written in assembly code rather than in a high level language. 
The  3200  and  1600  machines  were  small  minicomputers  designed  to  be  embedded  in 
telephone and telex exchanges,  so the best way at  the time to develop software for them 
would have been to use a standard workhorse, a mainframe like the IBM 360, with specific 
compilers producing code for the target machines. A mainframe machine would bring many 
advantages like editors and the ability to produce test programs, analysers and so on. But the 
company’s attitude was against buying “unnecessary” computers. There was always a target 
machine awaiting delivery to a customer, so at first the development teams had to use that 
target machine for developing the software. This policy had moved on a little bit. At STC in 
Cockfosters and STL there were computer centres containing a 3200 machine, as there were 
in other ITT production factories, some fourteen altogether situated around the world from 
Des Plaines in Illinois, USA to Sydney in Australia, but most of them in Europe. The mission 
of  the 3200 Basic  Software Control  Centre  was to  keep these fourteen computer  centres 
supplied with a simple operating system, test programs and various other facilities including 
an  assembler  for  the  3200  assembler  language.  But  the  machine  at  the  centre  of  these 
computer centres was still a typical target machine, that is a machine of the type that would 
be found in the centre of a telephone exchange.

The  3200  Basic  Software  Control  Centre,  or  BSCC,  was  being  moved  from  STC  in 
Cockfosters to STL in Harlow. Cockfosters was on the north-east edge of London, and its 
underground station is noted for being the end of the Piccadilly line. Harlow was some thirty 
miles further out of London and not that easy to reach by public transport. Part of the team 
would  be  transferring  to  Harlow,  others  would  stay  in  Cockfosters  and  move  to  other 
departments there, including its current manager. A few new people would be recruited to 
replace those that remained behind. STL would become the BSCC’s new home and, if I got 
the  job,  I  would  be  its  new  manager.  I  realised  that  this  would  pose  interesting  and 
challenging problems. I would have to overcome possible resentment that the promotion was 
not from within; the current team members would be wary about the character of their new 
boss;  it  was  clear  that  the  host  organisation,  STL,  knew little  of  the  BSCC’s  operation, 
providing only administrative support. I would be reporting directly to Lou Flowers, who 
worked in an ITT company in Antwerp.

After  a  surprisingly  short  forty  minutes  I  was  refunded  my  travelling  expenses  and 
discharged through the entrance hall. So much for the security guards telling me I would be 
hours. I  had another three-quarters of an hour to kick my heels waiting for my wife and 
family to return. Mobile phones were twenty five years away in the future, so I could not get 
in touch with them. I was, however, to have two more interviews.
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Lou Flowers  worked in  a  part  of  the ITT organisation  called  the Computer  Engineering 
Centre  in  Antwerp.  His  manager,  the  director  of  the  Centre,  was  Gerry Jacob.  My next 
interview was to  be with him,  in central  London at  the hotel  where he was staying,  the 
Cavendish in Jermyn Street, over dinner in the evening. I arrived at the appointed time and 
we  went  straight  into  the  dining  room.  The  Cavendish  was  one  of  the  higher  rank  of 
fashionable London hotels.  We were shown to a table  and, as I surveyed the row of six 
waiters literally waiting on our bidding, I saw that we were the only diners in the room. I 
rapidly realised that Gerry liked the good things in life, was, indeed, a man who valued “good 
taste”. After we had chosen our dishes, Gerry accepted the wine list. He said, “well, as you’re 
eating fish and I’m eating meat, we’d better have half a bottle of red and half a bottle of 
white. Would you like to choose some white wine for yourself?” and handed me the wine list. 
I looked through the long list of white wines and felt that my choice was perhaps going to be 
the first test in my interview. I decided not to go for anything at the high end of the range, 
which would obviously be greedy, but also not to go for the cheapest ones either, for that 
would  display  nervousness,  lack  of  an  ability  to  fight  my  own  corner  and  possibly  an 
unsophisticated palate.  I  chose something about a third of the way up. I believe it was a 
Pouilly Fuissé.

I must say that this meal was not easy to enjoy. We were the only diners in the restaurant 
throughout. The line of waiters on the other side of the room unnerved me, watching us with 
some disdain, or so I imagined. Unlike Lou Flowers, Gerry asked me many questions, most 
of them about what I would do in various hypothetical management situations. How I would 
respond to unjustified complaints from customers, how I would handle various examples of 
inter-group rivalry,  even how I would react to overbearing interference from my manager 
while I was away from my office. Gerry’s questions came quite frequently, several of them 
while I had a forkful of food on its way to my mouth. At one point he had to give me time to 
catch up with eating my dinner. However, I believed I answered his questions well enough. 
They also indicated that the job was going to require quite a bit of diplomacy and tact, and 
that there were a lot of conflicts and pressures to deal with.

I received a telephone call from Lou Flowers at home in the evening. I had “passed” the 
second interview, and there was to be a third one with Mr. Don Combelic. “I want you to 
remember this name carefully” said Lou. “Don Combelic has a lot of influence”. A date was 
arranged for us to meet over a meal once again, at the Excelsior hotel close to Heathrow 
airport. I was a little puzzled as to why I was being dragged along to a third interview. My 
wife, Hazel, reckoned that Lou Flowers and Gerry Jacob had decided they wanted to give me 
the job, and that they now had to convince this third man, who had some controlling say in 
the matter. This indeed turned out to be the case.

I walked into the entrance foyer of the Excelsior hotel. Lou Flowers was there, slightly to my 
surprise. I was expecting just to meet Don Combelic. “I felt I should come along too” said 
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Lou. “Mr. Combelic should be with us in a few minutes”. We chatted for a short while and 
then a tall  grey haired, rather gaunt man came in. “Well,  good evening gentlemen”.  Don 
spoke in a relaxed, gravelly drawl. Lou introduced us and we made our way to the dining 
room.  Two waiters  laconically  sauntered  to  our  table  pushing  a  trolley bearing  a  hinged 
covered dish. “Would you like the roast of this evening gentlemen? It is a honey-roasted 
ham”. He rolled back the silver cover and revealed a very large, steaming joint of ham glazed 
and studded with cloves. A section had already been carved off it and the flesh beneath was 
attractive and succulent. “Wow, that looks pretty good” said Don and we all agreed to have it.

This meal cum interview was in some ways a little less uncomfortable than the one I had with 
Gerry Jacob, and in some ways more. Gerry asked me more searching questions, but I felt 
much more strongly that I was on the same wavelength as him. Don’s questions were more 
oblique and he was more conversational, but I felt less sure of his priorities. He seemed to 
want to know if I could be “tough” if the circumstances demanded it. “Why did it take so 
long to fire him?” he asked when I recounted some previous event. I explained a bit about 
industrial relations legislation in Britain and he took it that my hands were tied by the rules. 
Afterwards I gave him and Lou a lift in my car back to the airport and then drove Lou to the 
nearest  underground  station,  which  then  was  Hounslow West.  Lou  was  visiting  STC in 
Cockfosters the next day, but I realised with some amazement that Don Combelic had flown 
from Paris to London for the sole purpose of interviewing me. With just the two of us in the 
car now Lou Flowers became much more forthcoming. “I thought about it and decided there 
was no way I was going to let Don interview you on his own” he said. Don was in what Lou 
called a “staff” position, and worked in the ITT laboratories in Versailles, on the outskirts of 
Paris. “I think he’s agreed that we can take you on” he said. It occurred to me that in all three 
interviews I had not mentioned that people seemed to like working for me, so I said words to 
that effect, adding “I’m not quite sure why”. “Well I think I know why” said Lou, and began 
to eulogise my character and generally extol what he thought were my good points. I was 
surprised and slightly embarrassed. “How does he know?” I thought. We parted and a few 
days later I received a letter from the personnel department at STL formally offering me the 
job at a salary of £4,250. I felt pleased with this offer. It was twice what I was earning some 
five years earlier.  I accepted, although I was a bit apprehensive, since the job at ICL had 
turned out within a year not to be to my liking. Could the same thing happen again? We had 
worked hard establishing ourselves socially in Bracknell while I was at ICL, setting out to 
make friends and join local groups. Suppose I found that the job in Harlow was likewise not 
what I wanted? So we decided it would be safer to move to north London, near a train route 
so that I could commute against the flow by rail to Harlow. That way if I moved jobs again at 
least I would have all the London opportunities to choose from without moving house yet 
again. We also had friends in London already, from the time before I worked at ICL. We 
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weren’t to know that I would stay at STL for the next thirteen years, the longest I was ever to 
work anywhere.

Because so many, widespread, companies comprised ITT, they made great use of telexes to 
communicate between each other. Indeed, a couple of weeks before I started at my new job, 
Gerry Jacob sent a few telexes to me at ICL. I was a bit alarmed, and hurried down to ICL’s 
telex room to collect these messages from the operator before too many people saw them. I 
did not want my managers to think I was starting work on my new job while still on ICL’s 
payroll and premises. Few people at ICL ever used telexes and the operator began to treat me 
with great  respect,  thinking  that  I  must  be very important  to receive  all  these messages! 
Gerry’s first message said that unfortunately Lou Flowers would be on holiday for the first 
two weeks after my arrival, and that he was afraid they had arranged a heavy travel schedule 
for me. I was to go to STL for the first two days, where I would make the acquaintance of 
Hunter Mitchell who headed the documentation group. He would arrange travel tickets for 
me  and  I  should  visit  Gerry  at  the  Computer  Engineering  Centre  in  Antwerp  on  the 
Wednesday, continue on to the LCT laboratories in Versailles to visit Don Combelic on the 
Thursday,  and finally visit the ITT company STR in Zurich on the Friday,  all in my first 
week.  I  realised  that  my  passport  needed  renewing!  Fortunately  I  could  get  a  visitor’s 
passport over the counter at a post office as a temporary measure.

My first two days at STL were interesting. A large research laboratory, set in the countryside 
just  outside Harlow,  STL had a  sports  and social  club on the premises,  including  tennis 
courts, and employed about a thousand people. Its immediate surroundings were agricultural 
land. The staff at ITT headquarters in New York gave STL the nickname of “The Country 
Club”. Hunter Mitchell explained a little of the arrangement that had been agreed between 
STL and the Computer Engineering Centre in Antwerp. STL were to provide my group with 
offices, administrative support, the services of the personnel and accounts departments, in 
other words all the infrastructure required to run an office within a big organisation. But I 
would report to the Computer Engineering Centre. So my group, the BSCC, were a bit like 
lodgers at STL, and they would be our hosts. Hunter himself ran a group of technical writers 
which likewise reported to the CEC, under the same kind of arrangement. Gerry Jacob was 
his manager too.

STL had a travel department which used the services of a commercial travel agent. About a 
year after I had been working there, both firms realised that this travel agent had a single 
person dedicated to all of STL’s needs, and so they made the very sensible decision to place 
him actually  in  STL while  still  keeping  him on the  travel  agent’s  payroll.  This  reduced 
telephone calls and speeded up obtaining air tickets and so on. The agent was also more than 
happy to arrange holiday travel for employees. Don Combelic’s trip from Paris to London 
just to interview me, and my schedule of three destinations within my first week were typical 
of the casual attitude in ITT to air travel. As soon as anyone at STL went on a trip, they 
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would be given an expense account. Hunter guided me through the procedures for filling in 
claims  and  gave  me  some  useful  advice  about  the  conduct  expected  while  on  company 
business. Staying in three or four-star hotels and eating in decent restaurants was the order of 
the day.  There were some specific rules about supporting one’s claims with receipts. The 
Computer Engineering Centre itself was a small office in Antwerp, but similarly hosted by a 
Belgian ITT company called the Bell Telephone Manufacturing Company. I was to discover 
that Gerry and his staff had to contend with a much fiercer bureaucracy within this company 
than Hunter and I did in STL.

I spoke to the STL site manager and he showed me the offices earmarked for my group, who 
were still  at  that  point  working at  STC in  Cockfosters.  There  were a  number  of  rooms, 
equipped  with  new  desks  and  chairs,  and  a  couple  of  cabinets  designed  to  hold  large 
engineering or architectural drawings. STL did not have very much idea of what computer 
programming  really  was,  except  that  it  was  some  kind  of  engineering  activity.  The  site 
manager and his assistant said that they were not sure what we would require. I explained that 
we did not need the drawing cabinets, but that we would need telephones in each office with 
outside,  international  lines,  and a  few filing  cabinets.  Altogether  the admin at  STL were 
extremely helpful at this early stage of setting up the new group.

I flew to Antwerp and stayed in a rather drab hotel. I was to learn that this was “scarcely 
adequate”, but it had been booked for me by the Computer Engineering Centre. The CEC was 
organisationally  part  of  ITT Europe  but  was  on  its  own,  occupying  a  floor  of  an office 
building on the edge of the red light district in Antwerp. At the beginning of a working day in 
the CEC one could see from the office windows sleepy sailors emerging from houses of ill-
repute and young women continuing to seek custom from the last of the all-night revellers. 
Our software staff were always bemused by a seedy pornographic cinema across the road 
from the office, bearing a sign in Flemish-English “Sexy Programmers”. ITT Europe itself 
was  in  a  large  tower  in  Brussels.  Antwerp and Brussels  are  a  short  train  ride apart,  but 
Antwerp is in the Flemish speaking part of Belgium and Brussels in the French part. Gerry 
explained in more detail the relationship between the BSCC, which was my group, and STL. 
STL were our hosts, and so we had to conduct ourselves like well behaved guests, obeying 
their admin rules to the letter, not making any exceptions for ourselves compared to other 
staff and so on. He also explained a bit about inter-company rivalry between the European 
companies within ITTE, especially between the French and British companies. There were 
indeed two rival operating systems for the ITT 3200 machine, one produced by the BSCC 
currently in Cockfosters and the other by LCT, Laboratoire Centrale de Télécommunications 
in Versailles. All the French ITT companies used the LCT operating system, all the British, 
Australian,  South African and USA companies used the BSCC system, and companies in 
other European countries varied but mostly used the BSCC software.
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ITT  was  a  company  with  an  engineering  tradition,  manufacturing  telecommunications 
equipment. But it was also a multinational conglomerate, owning many companies some of 
which had nothing to do with telecommunications.  It owned Sheraton hotels, Maws baby 
bottles, a company that made bacon slicers, and many more. From time to time the USA anti-
monopoly laws required ITT to sell  off some of its companies.  The grand total  of ITT’s 
employees  world wide was a staggering eight million,  more than the total  populations of 
many  significant  countries  such  as  Austria,  Denmark,  Norway,  Finland,  Israel  and  New 
Zealand. ITT’s headquarters were in New York, with a European headquarters in Brussels. 
The managers and staff from headquarters used to spend much of their time in aeroplanes, 
flying  from  one  ITT  company  to  another,  debriefing  local  managers  and  handing  out 
decisions  on  funding.  The  European  headquarters,  ITTE,  was  cynically  known  as 
“International  Talking,  Travelling and Eating”.  I was entering this  very different working 
world  where  business  relationships  were  across  national  boundaries  and  one  had  to  be 
sensitive to cultural differences.

The Computer Engineering Centre controlled the standards and practices for the manufacture 
of computers that  formed part of the telecommunications equipment  produced by ITT, in 
other  words,  the  computers  that  were  embedded  inside  computer  controlled  telephone 
exchanges. The company had a strong engineering tradition and had a large set of standards 
for  engineering  equipment.  Great  store  was  set  by  engineering  quality,  and  there  were 
standards for manufacture, testing and documentation of all products produced in ITT. Every 
product  had  a  product  number,  with  a  structure  to  it  to  cater  for  different  versions  and 
variations.  ITT’s  expertise  was  in  electrical  and  electronic  engineering.  There  was  little 
understanding of computer software, and it was a challenging change for me to work in a 
company that  had little  tradition  in  my own expertise.  The intangible  nature of  software 
puzzled my managers. Because it did not use any significant materials, had no weight so to 
speak, many managers could not understand why it was expensive and time consuming to 
produce. So they regarded software as being something a bit like the standards documentation 
for hardware products. Everything was recorded, documented, but did not add anything you 
could physically measure  when loaded into a computer.  There was a story of an aircraft 
manufacturer  demanding to know how much extra  weight the software would add to the 
aircraft when loaded into the on-board computer. They thought it might make a difference to 
the handling and fuel consumption!

Gerry told me something about the fragile relations between the BSCC, which was part of the 
CEC, and the French laboratory LCT in particular, who had built a rival operating system to 
the BSCC one, and who therefore had a suspicion of, not to say an antagonism towards, both 
the CEC and the BSCC. And my next visit the following day was indeed to LCT, where I 
would meet Don Combelic. Don was employed by ITT headquarters, and was assigned to 
oversee the software production in ITTE. It was perhaps an odd choice for Don to work in 
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LCT, which was a slightly maverick member of ITT and did not make life particularly easy 
for him. He could have easily worked in ITTE itself, in Brussels, which would have been a 
much more friendly working environment for him. But Don preferred to live and work in 
Paris because he had grown to like it there, although he complained often and loud about 
French customs. He had, however, taken on board the French attitude to food, hook, line and 
sinker.  He did  not  have  Gerry’s  gastronomic  discernment,  but  if  anything  he  was  more 
fastidious. Don had learned to speak French slowly, with an accent that barely acknowledged 
French pronunciation, but on the other hand with complete and, to me, enviable fluency. The 
result was that French people would always pay attention to him and appear to respect him. 
When I met Gerry he was gallantly trying to learn French and was having intensive lessons. 
For that reason he chose to live in Brussels, where French was spoken, and commuted to 
Antwerp.

Don had a small enclave of staff working at his direction in LCT, all of them imported from 
elsewhere.  This  group  was  called  the  ASG,  Advanced  Software  Group,  to  the  slight 
embarrassment of some of its members. Don introduced me to the leader of the ASG, Bob 
Parenti, an American, who had initiated a language for the 3200 machine called ESPL1. I had 
not been told about this language until this moment, so I was slightly surprised. A compiler 
had been developed for the language and was working and used, although by only a few 
projects, I was to discover later. On introducing Bob Parenti, Don told me that he was “Mr. 
ESPL1”. This was the first of many Americanisms that were to escape me in my early times 
in ITT, so he had to explain to me what it meant. I had scarcely met anyone from the USA 
until then, and there was much less American influence on British television. This language 
difficulty was two-way at first. I had to curb my use of specifically British English terms, 
after discovering which, indeed, these were. Some weeks into the job I sent a report to Lou 
Flowers, my boss, which contained the phrase “can be found overleaf”. Lou later told me he 
had turned to a colleague in Antwerp and asked “What in hell’s name is an overleaf?”. At 
ICL  people  competed  to  use  expressive  language  in  their  documents;  anthropomorphic 
metaphors being a favourite. With employees of many nationalities, the stylistic imperative in 
ITT was clarity and simplicity.

Bob Parenti told me that ESPL1 stood for Electronic Switching PL/1. IBM had developed 
PL/1,  a high level language,  in the mid 1960s, and had promoted it  energetically.  It  was 
originally called NPL, for New Programming Language, but the name was changed to avoid 
confusion with the National Physical Laboratory in Teddington to the south of London. PL/1 
had many advanced facilities, so my ears pricked up when Bob told me of ESPL1’s claimed 
provenance. I asked him if it had some of the more interesting features of PL/1 – recursion? 
Block structure?  Union and Structure  data  types?  Bob shook his  head:  “Nope”,  “Nope”, 
“Nope”. I stopped my questions to avoid embarrassment. In fact ESPL1 was a fairly simple 
autocode, a kind of programming language that is a step or two above machine code and 
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assembler languages, but at the low end of the range of high level languages. Instructions in 
an  autocode  begin  to  look  much  more  like  simple  mathematical  formulae  rather  than 
instructions  to  a  computer.  ESPL1  was  a  very  considerable  advance  over  the  symbolic 
assembly language used for all the basic software and most of the telephony applications 
programs, but scarcely bore comparison with PL/1. In writing a few experimental programs 
of my own, I found it far preferable to use ESPL1 than the 3200 assembly language. Don 
introduced me to several other people in LCT, including John Devoil, an Englishman who 
worked on the ESPL1 compiler along with a small group in STC Cockfosters.

At Gerry Jacob’s prior request I also met Peter Liou, who worked for Hunter Mitchell but 
was located at LCT. He was working on several projects producing documents associated 
with some of the electronic designs that LCT were devising. One of the LCT projects was a 
new version of the ITT 3200 machine, the 3202, compatible with the present one so that 
existing programs would still work on it, but using more up to date technology, which would 
make it faster and cheaper. Peter Liou was producing some of the documentation for this new 
upgraded 3200, following ITT’s in-house documentation standards. I had had some contact 
with  big  company  document  standards  already  at  ICL  but  ITT’s  were  much  more 
comprehensive and part, so to speak, of the company ethic. The ITT standards manual ran to 
several volumes and was continually being updated.

So this was why the BSCC was called a “control centre”. The software for the 3200 was a 
standardised  ITT product  and  the  BSCC “controlled”  it.  This  meant  that  we allocated  a 
product  number  to  the  separate  items  of  software  and  ensured  that  their  documentation 
conformed to  ITT standards.  The documents  themselves  also had numbers,  with suffixes 
indicating the version and variant,  and for the software itself,  a further part  of the suffix 
indicating on what medium, paper tape, magnetic tape and so on, the software was recorded. 
The structure of these numbers was arranged so that the number for a piece of software and 
the documents describing it had a common stem, with standard segments indicating that this 
was the software itself, or the user manual, or the design description, and so on. The BSCC 
had a  range  of  numbers  at  our  disposal  and  we allocated  numbers  not  only to  our  own 
software but also to software produced by other groups. These included one or two in STC 
Cockfosters and in LCT itself.

A great  bone  of  contention  for  LCT was  that  the  BSCC operating  system for  the  3200 
machine was recognised as an ITT product and given numbers, but the system produced by 
LCT was not. So although LCT’s operating system was distributed and used by a number of 
companies,  mostly  French  ones,  for  producing  telecommunications  software,  it  was  not 
recognised as an ITT product which conformed to standards. And this was not because of any 
particular  lack  of  technical  or  even  bureaucratic  criteria,  but  on  principle,  because  Don 
Combelic had instructed the BSCC not to grant it the ITT status of a standardised product. 
This was the source of great resentment for LCT. Yet Don Combelic worked from an office 
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within the LCT laboratories, establishing his own clique of programmers there and, to add 
insult to injury, given them the title of “advanced”. It was as if the strategic officer from one 
side  of  a  battle  had  pitched  his  tent  with  some  chosen  officers  in  the  middle  of  the 
encampment of the other side, furthermore by choice, not by necessity. I never ceased to be 
amazed by this choice of Don’s, but it indicated the impregnable character of the man; he had 
a persona constructed of granite.

I returned to England with my head brimming with information. I had made notes throughout 
my trip and prepared to compose a report on my observations. I had found the conversation 
with Peter Liou confusing and could not work out what his rôle was or why he appeared to be 
working alone at LCT. It was some time before I learned that he worked for Hunter Mitchell. 
I felt glad that shortly before I had set off for Antwerp, I heard from my contact at STR in 
Zurich that it was not convenient for me to visit him. He had told the CEC in advance, but the 
message had not reached me.  I was very unclear about the significance of ESPL1 in the 
company.  ITT was  an  advanced,  complex  organisation,  which  nonetheless  used software 
technology ten years behind the times. ESPL1 was the only glimmer of a high level language 
in sight in the organisation. By contrast, ICL for its systems programming was using a subset 
of Algol68, believed to be the most advanced language at the time, whereas ITT was using 
assembly language. Who actually used ESPL1?

Until the BSCC people at Cockfosters were actually moved, I alternated my time between 
them and STL. The offices in Cockfosters were a miserable environment to work in. The 
views  from  the  windows  were  dominated  by  the  shunting  yards  of  the  Piccadilly  line 
terminus and plenty of noise from the trains found their way indoors, the screeching of metal 
wheels without differentials as they were slowly pushed along curved track interconnections. 
The building itself was tall, narrow and cramped, with grey metal partition interior walls. If I 
had been working there I would have welcomed the change to the buildings and environs of 
STL.

Nonetheless, I still had a considerable management hurdle to overcome. I was a newcomer 
from outside, taking command of this group that might have had a manager promoted from 
its own ranks. There was bound to be some initial wariness, if not possible resentment, and I 
had some reassuring to do. Ten years had passed now since I had graduated, and I had spent 
those ten years working in software engineering. I was somewhat older than the rest of the 
group,  with  one  exception,  Alan  Jones.  He,  like  me,  had  graduated  from  Cambridge 
University ten years before, and we were the same age, within a month or two. He therefore 
was a potential candidate for the job I had stepped into. I needed to give him some special 
attention.

Over the next couple of weeks I invited each member of the BSCC to come and talk to me. I 
had taken over the office of my predecessor, EK, who had been moved sideways. From the 
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various  conversations  I  had  had  with  Lou  Flowers,  Gerry  Jacob  and,  especially,  Don 
Combelic, I had learned that they had not been satisfied with him. Indeed, Don referred to EK 
as having been “fired”. So I wondered if any of the BSCC staff thought he had been unfairly 
dismissed  and  felt  a  defensive  loyalty  to  their  previous  manager.  But  I  found  no  such 
concerns.  Indeed,  when I told Alan that Don had said that EK had been fired, Alan was 
surprised. “Fired? Oh no! He was promoted”, he said. I wondered if the Peter Principle had 
been at work here. In my chats with the members of the group I encouraged them to tell me 
what their rôle was and to talk freely about how they felt about the work they were doing and 
their  job  in  general.  Every  single  one  of  them complained  that  EK had  been  extremely 
secretive,  not  letting  anybody know what  was  going on,  revealing  only the minimum of 
information to let them do their work. They all would like to know more about the context 
and organisational  situation of their jobs, and all  of them felt rather isolated.  A few also 
complained about their salaries.

I  thought,  this  is  going to be fairly  easy to  deal  with.  All  I  have to do is  to  take  every 
complaint they have made about EK and do the opposite, in spades if possible. He was tight-
fisted with management information; I will be generous with it. He operated a closed door; 
my door will be open. I looked at the personnel files of all the staff and found that their 
salaries were quite haphazard. People with the same experience and doing very similar work 
were paid remarkably differing amounts. I suspect that EK or his managers had paid the staff 
individually as little as possible without losing them. I thought there would be an opportunity 
to  put  this  right  once  everyone  was  at  STL  and  working  under  a  new  personnel 
administration.

After I had spoken to everybody, I invited Alan to share my office in Cockfosters. “I’m only 
going to be here for half the time. I shall be working at STL two or three days a week”, I said. 
“And it will relieve the pressure of space in the open plan office”. He was grateful for this, 
and I thought it might make him feel slightly better just in case he was resentful at not having 
got my job himself, for in some ways he was the obvious choice for it, especially if it was 
going  to  be  filled  by  promotion  from within.  Furthermore,  sharing  my office  would  be 
temporary. When we were all permanently at STL in a couple of months’ time I would have 
my own room there and the offices for the rest of the group would be more spacious.

So, for these first few weeks I worked half the week at Cockfosters and half the week at STL. 
There was much to be done at STL. I had to arrange for the facilities for the group, interview 
and recruit a secretary, and get to know the infrastructure there. STL was quite a big site. It 
had  its  own medical  department  and  even  its  own company  fire  brigade.  The  accounts 
department  provided  comprehensive  support,  not  just  payroll  accounting  but  project 
accounting too. I had to divide the activities of the BSCC into different projects and set up 
accounts and budgets for each of them. The staff would record their time on time sheets as 
spent  on  the  different  projects  and  the  accounts  department  would  give  me  reports  of 
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expenditure against budget. The total would be reported against our total budget for the year. 
All this had to be set up from scratch in discussions with the accounts department. Part of this 
was straightforward, as each year one had to make a case for the next year’s expenditure 
under various headings. The “case” would identify and cost a number of activities. So it was 
sensible to match the projects and budgets for accounting with the activities in the case for 
that year. This was how the ITT research and development system worked: every year a R&D 
case  had  to  be  made  for  the  following  year’s  work,  and  the  case  presented  in  ITTE 
headquarters in Brussels. There was some uncertainty about this process. It was in theory 
possible for a piece of work to be abruptly stopped if the case for it was not accepted one 
year. In the following years I was to become very involved in the preparation of these all 
important R&D cases.

During my first two weeks my manager, Lou Flowers, was still on holiday. When I returned 
to STL after my trip and first visit to Cockfosters to meet the staff, I met John McEwan. He 
had been recruited and was doing some background reading on the 3200 machine at STL, 
sitting in one of the BSCC offices. We had several relaxed lunchtime discussions in the sports 
and social club, which was an amenable place to have a snack and a drink. With Lou Flowers 
being absent  at  this  early stage,  I  had not been told of the names of any of my staff  at 
Cockfosters; I had had to find them out for myself. I had heard that one or two new staff had 
been recruited into the group directly into STL, but I hadn’t been told the names of any of 
these either. I thought maybe John McEwan was one of them. At one point over lunch, he 
said to me: “Are you my manager?”. “Well, I think I must be”, I replied. This was correct, 
but I did not have the matter confirmed until Lou returned from holiday a couple of weeks 
later. Looking back, I am horrified by the lack of organisation and communication that forced 
me to work so in the dark, but it all made for interesting times.

I  invited all  the BSCC staff  at  Cockfosters to come and view our new offices in STL. I 
arranged this as early as possible, for I felt that the foreboding prospect of the change of 
location would seem less daunting for the staff when they saw the new place with their own 
eyes,  especially the far pleasanter  environment,  the better  standard of offices with higher 
ceilings, fresher paint and more solid building. But I lost two of the staff before this visit and 
a third afterwards. Each of them told me they had decided to accept an offer of a post in 
another department at STC Cockfosters. There was something exciting about looking at these 
empty offices in STL that were going to be our home, and making decisions about placing of 
desks and so on. I made sure that everyone chose which of the three or four rooms they were 
going to be in. Then, as soon as they were gone, I arranged for nameplates to be put on the 
doors of the rooms. This had been done for me when I had arrived at ICL and I was very 
struck by it at the time. It had made me feel welcome and accepted. So again, a ploy if you 
like, but I thought it would add one more touch to smooth the path of the change of location 
and office for these staff. And indeed, when they arrived, there were several exclamations: 
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“Oh, look; they’ve put our names on the doors!”. I did not let on that I had gone to some 
lengths to make it happen. I thought that it  would do no harm for them to think that the 
establishment itself had somehow recognised and named them. The BSCC staff had not had 
any attention given to their periodical technical training, so after a few weeks I arranged for 
them  all  to  attend  Data-Fair,  a  regular  software  event  held  in  the  UK,  where  latest 
developments were given an airing. One significant design method, JSP, was presented there 
by its author, Michael Jackson. This was to become something of a ground breaking method, 
but I am not sure how many of the BSCC staff appreciated its elegance at that early stage. 
But I think it must have had some impact on them.

Lou Flowers flew from Antwerp to visit me soon after he arrived back from holiday. Several 
more people were lined up for interviews to join the BSCC, most of them having responded 
to  the  same  advertisement  as  I  had.  These  trips  between Harlow and Antwerp  were  the 
beginning of a pattern that was to continue for some years. Once a month Lou would come to 
see me and once a month I would fly to Antwerp to see him. That way we were in face to 
face contact every fortnight or so, and we would be on the telephone to each other several 
times a week. Lou liked to keep track of what was happening in detail and would give me 
specific instructions, but he left the day to day running of the group to me. I had to write a 
monthly report for Lou. To do this I asked for reports on their activities from most of my staff 
and combined them into the required form, for even monthly reports were subject to an ITT 
standard, with particular headings – Achievements, Problems, Red Flags, and so on. Another 
group, the 1600 BSCC, also reported to Lou, and he would incorporate our two reports into 
his own monthly report to Gerry Jacob. Gerry in turn took information from Lou’s report, 
composed  it  with  reports  from his  other  staff  and  sent  his  own  monthly  report  up  the 
hierarchy to his manager – and so it went on up the management pyramid. Since every report 
had to be completed by the end of the month, they were all always done in great haste, but 
somewhere along the line some slippage must have occurred. Much later it struck me that 
ITT top management would in this way make decisions of massive consequence, starting or 
halting  projects,  even  occasionally  closing  companies,  based  on  misunderstood  and 
misrepresented accounts of the work being done by the lowliest members of the organisation 
several  months  earlier.  I  am not  sure  whether  this  is  really  true,  but  it  seems  to  be  an 
inevitable consequence of the process.

Gerry did not actually write his own monthly report. He used to delegate the task to one of 
his junior managers, often to Lou Flowers or, later, to me. Delegation was something of a 
watchword in management practice at the time. A manager who could not delegate was by 
definition a poor manager. Gerry therefore used to delegate as much as possible. He once 
advised me, with a bit of a twinkle in his eye, “Never do anything yourself!”. So a few years 
later  I  would  find  myself  flying  to  Antwerp  for  the  express  purpose  of  taking  all  the 
contributing reports that had arrived on Gerry’s desk, including my own, and composing his 
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report, which he would then review, ask for alterations, and so on. I have to say, I did wonder 
if this was a cost-effective way of going about things, but that was part of his management 
style.

I had learned from Hunter Mitchell the process of filling in and submitting my expense claim 
to the STL accounts after a trip away. After about my second trip, Lou asked me if I could 
show him my claim. When I did so, he asked me why I had included receipts for a couple of 
items. “You only have to attach receipts if the meal costs over £5”, he said. “Well”, I said, “I 
thought I would show willing”. “No”, he said. “That’s not the thing to do. Let me tell you a 
story.

“There was this group of engineers working on site in Arizona. They were far from 
their main offices and were out there, isolated and working in a temporary hut with 
poor air conditioning. With the hot weather, they kept the windows open, but flies 
used to come in. So they bought a fly-paper and renewed it every month.

In fact, they did not have much to do and spent a lot of the time hanging around doing 
nothing very much. Each month when the time came for them to write their monthly 
report, they had to scratch their heads to think of some thing to put in it. One day one 
of them had a bright idea: ‘Let’s write a fly-paper report’, he said. So they counted the 
flies on the fly-paper and included a brief item in their monthly report:

Fly-paper Report

This month’s total was 119.

They wondered if they would receive some castigation from their management for 
this piece of mischief, but they heard nothing. So the next month they counted the 
flies again and included another “Fly-paper Report” in their monthly narrative, and 
continued.

After about four months they decided that perhaps the joke was wearing a bit thin, and 
they decided  to  stop  including  the  fly-paper  report.  Besides,  more  real  work was 
coming their way for them to report on, and the weather was getting cooler; the flies 
were getting fewer and they soon would not need the fly-paper any more.

Very soon after  they submitted  this  latest  monthly report  they received  an urgent 
telex:

Where is this month’s fly-paper report?

Please telex the total by return.

The  Area  Division  Manager  needs  the  figures  for  his  report  to  World 
Headquarters.”
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“The moral of this story”, said Lou “is: never give the bureaucracy more information than 
they absolutely require. They’ll only start insisting on having it!”

Well, this was an interesting change. Here was my manager telling me to treat The System as 
an opponent, rather than an authority.

Chapter 6 Service as Usual
All but three of the group moved from Cockfosters to STL in Harlow, a distance of some 25 
miles by road, but not served at all well by public transport. Most of the staff stayed in their 
existing homes and commuted by car. Meanwhile I was interviewing and recruiting more 
new people. STL had a good canteen, used by all the staff including the directors. There was 
no divisive separate management canteen, as there was in some large companies. Most of us 
used to have lunch there, and the food was good value, the main courses being subsidised. A 
favourite  dessert  was  “golden sponge pudding with  golden  syrup  sauce”.  Campaigns  for 
healthy eating were yet to arrive on the scene.

The ITT 3200 was the embedded computer in two new telephone exchange systems that were 
being designed.  STC in Cockfosters was developing System X and LCT was developing 
Metaconta  L.  Other  ITT  companies  tailored  these  systems  in  specific  contracts  for  new 
exchanges, and all these companies needed computing facilities to develop and customise the 
embedded  software.  These  computing  facilities  consisted  of  centres  containing  3200 
computers again, with peripheral devices, paper tape readers, punches, magnetic tape drives, 
line  printers  and  so  on.  The  BSCC  and  LCT  provided  the  operating  systems  for  these 
computer  centres,  the  BSCC  for  those  used  in  developing  System  X  and  LCT  for  the 
Metaconta L.

In this way, the BSCC was serving the needs of fourteen computer centres scattered in many 
different places in several different countries. We supplied the operating system, compiler for 
the  symbolic  assembly  language,  which  was  called  SYMBAL,  and  a  collection  of  test 
programs for testing the computer and its peripherals. One might think that having supplied 
this software once to a centre, there would be little need for further visits, but for two reasons 
frequent  visits  were  often  necessary.  The  first  was  that  the  3200  machine  itself  was 
extraordinarily variable. With a computer today, if a peripheral such as a scanner is attached, 
there is usually just one way to attach it, a single device handler can be supplied on a disk, 
and with a few adjustments secured by a dialogue (the “installation wizard”) it will work. 
With  the  3200  machine,  there  were  an  astounding  number  of  choices  to  be  made.  A 
peripheral  could  be  attached  to  a  choice  of  channels,  interrupt  lines  and  priority  levels, 
addresses for information exchange and so on. Every computer had a different arrangement 
and the operating  system and test  programs had to  be prepared  in  advance and,  usually, 
installed  on a  visit  to  the  centre.  Very often the  BSCC programmer  would  find that  the 
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information given did not quite reflect the reality and last minute adjustments had to be made 
on site and the whole lot tested out. The second reason was that most of the centres seemed to 
change their computer configurations with remarkable frequency.

Some of the centres were a bit more stable and needed only occasional visits. These were 
mostly the more distant ones, particularly in Des Plaines, Illinois and Sydney, Australia. I 
suspect that the distance and cost of visits concentrated the minds of the computer centres to 
keep their configurations in a stable state.

Another reason for personal visits was that the operating system and software itself was not 
all  that  well  geared to  facilitate  these changes.  The parameters  controlling  the peripheral 
information like channels and interrupt lines were strongly embedded into the code of the 
operating system. The same information was not even shared between the operating system 
and the test programs: it was duplicated in each. If all this peripheral-related information had 
been put together in tables and referred to by the software, then the tables could be altered by 
a  dialogue  program (a  wizard  in  today’s  terminology),  possibly  even by the  staff  in  the 
computer centres. About a year into my job I suggested this to members of the BSCC, and 
they mostly thought it was a good idea. However, we could never get it done because always 
the priority was to fix the next installation urgently and, more to the point, my management 
could not be persuaded to agree funding for what they saw as an improvement to our software 
that was not strictly necessary.  In a way, if we had been able to make these changes, we 
would have been doing ourselves out of a job; amendments following reconfigurations would 
be much faster and simpler to make, and could even be done by the user. But I was and am 
sure that other work, perhaps of a more progressive kind, would have been found for us. We 
were rather like medical practitioners, who strive to improve the health of the population 
under their care. Even with the best preventative medicine, there will always be a need for 
doctors.

So the lives of the BSCC members were dominated by requests for software installations 
from our computer centre customers, and were consequently filled with visits to Antwerp, 
Paris, Madrid, Munich,  Zurich,  Cockfosters and,  less often, Des Plaines and Sydney.  We 
needed 3200 computer time ourselves to check out the modifications to software that we 
prepared for these installations. Being away from Cockfosters now, the group made use of a 
small computer centre at STL, which until then had been mainly used by another group. At 
first this centre could not provide all the time we needed, and Gerry Jacob suggested that we 
used some spare time in a similar computer centre in Zurich, which was currently under-used. 
Even the much travelled members of my group were a little startled by this suggestion. Today 
one can hire computer time in a public library or a cyber-café, and the process and nature of 
the transaction is essentially the same: one is paying money to use time on useful equipment 
owned by another party. But the idea of flying from the south-east of England to Zurich in 
order to do so seemed a trifle extravagant. Nonetheless, we arranged a few visits to STR in 
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Zurich and several of my group flew there and used their computer. I remember visiting STR 
myself, partly to set up this arrangement, but also on a kind of diplomatic mission to establish 
good working relations with the company. My management encouraged me to do quite a lot 
of oiling such wheels in order to keep everything running smoothly. I remember STR being 
situated in extremely pleasant surroundings, with views of a Swiss lake and mountains and 
my hosts there being very relaxed. I think they did not have much to do at that stage and 
seemed not to be under much pressure of work.

The bureaucratic procedures of STL required me to fill in a purchase order for this computer 
time, which I duly did. Then the BSCC programmers flew out taking with them the software 
they wanted to test. They simply carried these as rolls of punched paper tape in their hand 
luggage. They spent time on the Zurich computer, made any amendments necessary after the 
tests  they  carried  out,  and  came  back  home  bringing  a  possibly  updated  version  of  the 
software and the confidence that it now worked successfully. Then I received an invoice from 
STR for the computer time we had used, and I sent this to the STL accounts department, 
authorising it for payment.

Here the trouble began. At that time there had been quite a large number of scams in which 
rogue traders sent spurious invoices to big companies for services and goods that had never 
been provided. The fraudsters relied on companies processing such large numbers of invoices 
that they would not spot the mendacious nature of these demands, and these invoices were 
frequently  paid.  Most  big  companies  were  getting  wise  to  this  kind  of  fraud  and  took 
precautions against it. They required that invoices quoted a purchase order number originated 
by  themselves,  and  verification  was  required  that  the  goods  had  been  delivered.  STL 
demanded  that  goods  were  received  through  Goods  Inwards,  a  physical  door  to  the 
laboratories,  and a Green Ticket  would be written out, which would find its way via the 
originator  of  the  order  to  the  accounts  department.  In  the  case  of  a  service,  a  visiting 
representative from the supplying company would normally provide this. The visitor would 
have to fill in a lot of paperwork on entering and leaving the building, and these pieces of 
paper would similarly be correlated with the purchase order. But when we used computer 
time in Zurich, nothing passed through the doors of the STL Goods Inwards, nor did any 
visiting  rep  come in  and out.  I  started  receiving  puzzled  phone calls  from clerks  in  the 
accounts department telling me they could not pay the invoice I had authorised. “We haven’t 
received a Green Ticket!” they said.

I ended up going to see Dennis Gray, the purchasing manage, a cheery good-humoured man I 
had dealt with several times already. I tried to explain the nature of the transaction. At some 
point Dennis said to me, “I think I’ve got it, Tim. Do they ship their computer to STL so you 
can use it, and then you ship it back to them?” Oh, no, not quite. The computer is far too big 
and heavy to do that. It is much simpler for Mohammed to go to the mountain so to speak: for 
my guy to go to Zurich taking the software with him and use the STR machine. “Suppose you 
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have a cat”, I said. “You decide to take your cat to the vet’s to give it its annual health check. 
The vet has a big X-ray machine, bolted to the floor for safety and costing £50,000. You put 
your cat under the machine and see that, happily, all is well. You can be confident that your 
cat will probably be fine for the next year. So you pay the vet for the use of his expensive X-
ray machine and go home happy”. We ended up agreeing that I could keep a small stack of 
Green Tickets in my office and, when I was satisfied that we had received computer time 
which corresponded to that on the invoice, I could send the Green Ticket to the accounts 
department. But Dennis still looked a bit uncertain about the whole business.

This did indeed make me ponder exactly what we were paying for. If, as was moderately 
likely, no change was made to the software being tested, if all the tests were successful, what 
had we bought with our money? An increase in confidence that the software would work? 
That was a pretty intangible kind of commodity. Had the software increased in value after we 
had tested it, even if no change had been made to it? Perhaps it had. Our own knowledge had 
increased, knowledge about the reliability of the software, but it was intriguing to think that 
its value had increased even though the software itself was physically exactly the same as 
when it set out on its journey to Zurich.

Many years later, when working for Praxis, once again I came across this question of how 
much a piece of software is worth. The value will depend very much on how much we know 
about it, whether we know how to use it, and whether we can understand it well enough to 
maintain it, that is to find faults in it and mend them, and well enough to alter and extend it. 
Almost all software is going to be working in a changing context, a changing world, and so it 
has to be adaptable. Software can only be understandable and adaptable if it is well designed 
and well engineered, and if it is documented with descriptions of how it can be used and how 
it has been designed. Without these documents, even if it is well designed and put together, 
software can be virtually worthless. When members of the BSCC had tested their software in 
Zurich, they understood it better, knew of errors that had to be put right, and could write the 
documents that certified the passing of tests.

So started a routine. We would receive requests for installations of software on new or altered 
machines and their peripheral devices. New versions of peripherals were often being attached 
to the central processors, and we would have to write handlers for them, which would go into 
the operating  system,  and we would write  new test  programs for them.  We would often 
receive fault reports relating to our software. We had a procedure for processing these, which 
was the subject  of yet  another  ITT standard.  The procedure consisted of  passing several 
documents back and forth, Change Requests, Change Notes and so on. Sometimes a fault was 
reported,  but  the  faulty  behaviour  could  not  be  reproduced.  This  was  often  caused  by 
unreliable hardware, in other words by electronics inside the computer that misbehaved from 
time to time. Some sites, who had less rigorous maintenance practices, were more prone to 
this happening than others. BTMC, the Bell Telephone Manufacturing Company, in Antwerp, 
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was the administrative host for the Computer Engineering Centre where Lou Flowers and 
Gerry Jacob, my managers, worked. In BTMC there was another systems software group, the 
1600 BSCC. This group, smaller than mine, served the needs of computer centres that used 
the 1600 machine. There were only a few of these, and all of them were in Belgium, within 
BTMC. But BTMC also had a 3200 centre, and its maintenance and general administrative 
procedures were very haphazard. Many times they would report a fault, and we would find 
that they were not actually using the most recent versions of the software we had already 
supplied. One of the programmers in my group, Cliff Lamb, described how he saw with some 
despair the “software administrator” open a cupboard which was full of boxes of programs on 
paper tape, jumbled together and without any filing or reference system. He would just reach 
for  the  nearest  one,  without  checking  that  it  was  the  most  recent  issue.  All  computer 
memories  had  an  error  checking  feature  called  parity  checking.  Each  word  of  memory, 
usually 32 or 64 bits (4 or 8 bytes) had an extra bit, called the parity bit. This was always set 
so that the total number of bits in the word which were set to a 1 was even. The parity of the 
bits in a word, that is whether the total of 1s were even or odd, was checked on every access. 
If the parity was ever odd, an error had occurred, the machine had misread or miswritten 
information, and the machine would stop. The parity checking could be switched off, but this 
was most unwise as it meant that the machine could behave in an aberrant fashion, and not 
follow the instructions that the software in it was telling it to do. Cliff discovered that the 
BTMC programmers were routinely running their  3200 machine with the parity checking 
switched off. “It keeps on stopping of we don’t”, they said. Cliff was horrified, and explained 
to  them why they  needed  to  keep  the  checking  switched  on.  Because  of  the  unreliable 
machine, they had to restart it often, but at least it would not make it spuriously look as if the 
software was at fault. He felt a lot of sympathy for the programmers having to work with 
such unreliable hardware.

There were two other ITT research laboratories in Europe. As well as LCT in Versaille, there 
was the ITTE laboratory in Madrid. Felix Vidondo, a man of some charisma, managed the 
software research there. He recruited programming staff fairly regularly and a tradition had 
grown up that he would send a couple of his trainees to the 3200 BSCC to gain experience. 
So two of my staff were in fact from Spain and took part in the regular activities and duties of 
the group. I must say that I would not have called these individuals “trainees”. They had had 
two or three years post-graduate experience and were doing the same job in principle as the 
rest of the group. The two of them, Paco Lopez and Manuel Varela, were to spend several 
years in my group. Indeed, Manuel married and brought up a young family in England.

My manager, Lou Flowers, frequently asked me to accompany him on a trip abroad, or to go 
and investigate some situation myself, at a few days’ notice. Within a week or two I realised 
that my social life had henceforth to be confined to the weekends. Making a theatre or cinema 
booking midweek in advance was no longer possible. The problem of the two rival operating 
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systems for the 3200 machine was a continual bugbear, which engaged the attentions of many 
figures in ITTE and even some in the headquarters in New York. It was clearly wasteful to 
have two software systems doing exactly the same thing, being continually upgraded and 
maintained. Yet there seemed no way out of it. The issue became the subject of discussion in 
numerous meetings. Don Combelic took a fairly uncompromising stance, not allowing LCT 
to register their operating system software as ITT products and generally denouncing it as a 
kind  of  rogue  artefact  that  shouldn’t  be  there.  Other  ITTE staff  recognised  the  de  facto 
situation that many organisations used the LCT software as part of their essential work, but 
no-one could see a way out of the unsatisfactory situation of there being two rival co-existing 
systems. Many managers kept trying to persuade Don to relent about granting ITT product 
status, thinking that at least it might help LCT to become a bit more cooperative in general, 
But Don remained adamant for some years.

It occurs to me that this wasteful but rival situation of competing software reflects that which 
prevails  today in personal  computers.  The Microsoft  Windows range and Unix are rivals 
offering  the  same  function,  as  does  the  Mac  OS on  Macintosh  machines.  The  different 
versions  of  MS  Windows  to  all  intents  and  purposes  compete  amongst  each  other,  for 
upgrading becomes difficult,  often requiring hardware upgrades to support them, and then 
elderly but entirely functioning application software has to be replaced to be compatible with 
the later  versions of Windows. But  if  one stays  with an old system,  new facilities,  even 
replacement  hardware,  become  unavailable  through  obsolescence.  There  are  almost  no 
recently produced pieces of hardware or software packages that will run even on Windows 95 
any more.

Don Combelic  was  in  a  high ranking position.  He had reached this  partly as a result  of 
making an extremely valuable technological contribution. Telephone exchanges used to be all 
electromechanical.  When  you  dialled  a  number  from your  domestic  handset,  as  the  dial 
rotated it sent electric pulses down the line to the exchange. The bigger the digit, the further 
the dial had to rotate, and the more pulses were sent. Dialling a 1 sent one pulse, a 9 sent nine 
pulses and a zero sent ten.  These pulses operated electromagnetic  relays  in the exchange 
which switched the connection through to the telephone belonging to the number you dialled. 
So telephone exchanges consisted of many relays and vast arrays of interconnecting wires. 
When an electromagnetic exchange was replaced by a computer controlled one, the incoming 
and outgoing wires were cut, the old exchange removed, the new one put in its place and the 
wires reconnected. This process was called “cut-over” and would have to be done as quickly 
as possible to minimise the suspension of the service. After that there would usually be many 
teething problems: would the new exchange work properly, would it handle the pattern of 
telephone traffic in its environment of incoming and outgoing calls?

Combelic devised a test rig called “environmental simulation”. Another computer would be 
programmed to simulate the demands for connections produced by the telephone traffic that 
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was typical of the environment of the old exchange. Then the performance of the new system 
could be tested as exhaustively as desired before cut-over. Programming the environmental 
simulation could be as extensive a task as programming the exchange software, but the effort 
and expense was worthwhile and turned out to be an extremely effective way of enabling the 
technological  upgrade  from electromechanical  to  computer  controlled  exchanges.  By  the 
1970s Combelic had become something of a software grandfather figure in ITT.

Computers had been used for simulation of one sort or another for many years already. At 
ULACS Chris Hobson had been writing an Algol60 program to simulate the Atlantic ocean 
for the Meteorological Office and the language Simula67 was devised in the first place for 
various simulation tasks. Simula67 had the first features of Object Orientation, which are the 
principal properties of the present-day Java language. Computers were beginning to be used 
to  simulate  financial  economic  trends,  performance  of  stock  markets,  seismic  activities, 
weather  and  much  else.  So  using  computers  to  simulate  technological  phenomena  like 
telephony traffic was in a sense a natural course to take. This use of computers for simulation 
has since blossomed. In the 1980s the University of Oxford developed the ELIZA program to 
simulate the interaction of a psychotherapist with a client. This was sufficiently successful 
that trial users wanted complete privacy while they were communicating with the program, 
despite  its  relatively  primitive,  textual  interface.  Every  computer  game  today  involves 
simulation of visual scenes, events and a narrative.

Don Combelic had his own proposal to resolve the problem of the dual operating systems for 
the 3200 machine. He proposed that both should be replaced by a much superior system, 
which he called DPSS. He believed that this new system would show such superiority over 
the BSCC and LCT systems that all users would want to migrate to it. He arranged for the 
ASG, headed by Bob Parenti, to start developing DPSS. Don had not been able to secure any 
funding for this activity, mainly because many other managers were very sceptical about his 
plan. They thought that introducing a third rival operating system might well make matters 
worse, not better. So Don managed to get the work done by stealth, so to speak. I was due to 
have  two  more  trainees  for  the  BSCC  from  the  ITTE  laboratories  in  Madrid,  but  Don 
arranged for them to stop on the way at LCT for a “temporary period”, and assist with the 
DPSS development. This became something of a logistic struggle between me, my managers 
and Don, especially since the two trainees were funded from my BSCC budget, and indeed 
rather later Don referred to his having “stolen” these staff from me.

There  were  numerous  discussions  and  arguments  about  the  wisdom  or  otherwise  of 
developing DPSS. I had been thinking about a different strategy to replace the two existing 
systems.  I  had worked out  a series of piece by piece modifications  to the two operating 
systems in which sections of each software would be replaced. The two replacements would 
be identical, so over the course of the strategy, the two systems would merge together, until 
they were the same. The progressive work on modification could even be carried out jointly 
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by the two teams. The scheme would require the cooperation of the two groups, something I 
knew would be very tricky.  I put this idea first to Lou Flowers, then to Gerry Jacob, and 
finally at a meeting with both of them, their manager and Don Combelic. Don was strangely 
quiet during this meeting and at one point left the room. I wondered if he felt unwell or even 
angry. My proposal did not receive his blessing and so did not move forward.

Some few months later Don, Bob Parenti, Gerry Jacob, Lou Flowers and I met once more and 
yet again spent some hours discussing the problem of the rival systems. We had reached an 
impasse. Then Gerry suggested that we hired a consultant to consider the problem and report 
back to us. Here was a possible way forward. We all eagerly agreed that this seemed a good 
idea. Getting a fresh view on the dilemma from someone outside the company, who could 
take a detached look at it and see the wood for the trees could add just the insight we needed. 
We started trying to find a name we all knew, someone whose experience and judgement we 
could all respect enough to have confidence in them. Don and Bob suggested a couple of 
names I had not heard of. Gerry, not having a software background, was relying on me to vet 
any suggestions from the other two, so I demurred. I suggested Tony Hoare who had been my 
manager at Elliott’s,  where he was responsible for the first commercial Algol60 compiler, 
and who now in 1974 was Professor of Computing Science at Queens University Belfast. 
Parenti in turn demurred and, after a few moments thought said “How about John Buxton?” 
Apparently they had both worked together at IBM laboratories. I had known John Buxton 
slightly when I worked at ULACS. He had been at ULICS, the Institute of Computer Science 
at London University, and ULACS and ULICS had shared computing and other facilities in 
the  same  building  in  Gordon  Square.  John  had  worked  on  significant  systems  software 
projects, parts of the Atlas system and the CPL compiler1. I also remembered him as being a 
man of solid good sense and judgement,  and he certainly had the right kind of technical 
background. I said I would be happy for John Buxton to perform the rôle. So the ambience of 
the meeting became more relaxed once again: we had reached at least some kind of interim 
agreement. I was asked to contact him and make the necessary arrangements. It seemed that I 
was  the  only one  with a  budget  that  could  reasonably easily  absorb a  short  consultancy 
contract, so I was to handle the contract with him too.

I had no idea where John Buxton was working at this point but, back in my office in Harlow 
after a few telephone calls I managed to find him. I explained the situation and that we were 
looking for a consultant to give us advice on a problem of technical strategy. The task should 
require about four days’ work. It turned out that John had been on an assignment in Hungary 
for several years and had just returned home. He was between employments, prior to taking 
up a chair at the University of Warwick the next academic year. So a piece of consultancy 
work was, it seemed, most welcome. We arranged to meet and John came to STL. I gave him 
more background about the rival operating systems and Combelic’s proposal for DPSS, and 

1See Barron et al 1963.
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told him a bit about the factions involved. John took it all in and I made arrangements for him 
to visit LCT and find out about the LCT operating system and DPSS.

John Buxton studied the documents describing the two rival systems and the work done on 
DPSS to date. Then we had a last meeting at LCT. This time quite a lot of the players were 
present: Gerry Jacob, Don Combelic, Don’s assistant John Devoil, Bob Parenti, Lou Flowers, 
myself  and, I think, several others. John Buxton ably and in a relaxed way presented his 
findings. His view was that the work on DPSS should never have been started. The best way 
to achieve technological advance is by incremental development, not by sudden revolutionary 
change. He strongly stressed “incremental development”. But having come as far as this on 
the DPSS path,  it  would probably be best  now to continue.  He found that  the individual 
programming staff involved whom he had met seemed well competent enough for the task. In 
a nutshell, that was the gist of his findings. It was as if we had travelled on a mountain trail 
and asked an experienced stranger if we were on the right track. The stranger advised us that 
this was not the best way to go at all, but now we were here, we might as well continue; bear 
round that way and we would reach our destination.  I felt a small  private glow of pride, 
because  my  idea  of  merging  the  two  operating  systems  would  have  precisely  been  an 
“incremental development”. But I knew that that idea was no longer up for grabs.

Everyone  became lively and started talking  about  the consequences  of  this,  effectively a 
cautious recommendation that DPSS should proceed. Gerry asked John, “This is probably an 
unfair question, but do you have any recommendation about who should head the team to 
develop DPSS?”. The others all declared that this was indeed not a fair question, that John 
should not feel obliged to answer it, but John said, “Oh, I rather like unfair questions, and 
yes, I have come to a view about who would be the best person to lead the work”. Everyone 
became a bit startled, I think. Here was an external consultant who was about to recommend a 
personnel  matter,  not  something  he  was  asked  to  do,  and  possibly  liable  to  cause 
embarrassment. “That person” said John Buxton, “is John Devoil”. John Devoil could not 
help looking flattered. At one point a little later, he was enlarging on some detail, and Gerry 
said to him, “Hey, you haven’t got the job yet!”. “I know, I know” said John.

After some time the meeting broke up, with everyone looking reasonably content. I mused 
that John Buxton had been rather clever. By saying that we should never have gone along the 
DPSS path, but that the best thing to do now was nonetheless to continue along it, he had at 
least partially satisfied all the factions. Those who had opposed DPSS had had their views 
confirmed, but Don and his allies were given the go-ahead to proceed with it.  All round, 
honour had been satisfied. Furthermore, whatever the outcome if DPSS was completed, if it 
came to be accepted or not, John Buxton would be proved right, at least in substantial part.

In  fact,  what  happened  was  that  DPSS  always  struggled  to  receive  ITT  funding.  Don 
continued to try to appropriate effort from my staff, and succeeded in doing so from time to 
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time. DPSS was eventually completed, was used to a limited extent by one company, but 
never came into widespread service.

Meanwhile, most of the business was continuing as usual. Like all except the very smallest 
companies,  STL,  being  part  of  STC,  had  personnel  procedures,  including  annual  salary 
reviews. STC had a company wide scheme of appraisals. I used to review the performance 
and salaries of my own staff, and mine was reviewed in turn, but in my case no face to face 
interview took place. I assume this was because my managers were not actually employed by 
the company, but by BTMC. The personnel department at STL would send a letter to each 
individual, informing them of their salary increase for January each year. These letters were 
of standard form, starting with the words “Thank you for your contribution to STL in the last 
year”, and were sent to everyone’s manager to sign and pass on to the employee. Gerry Jacob 
did not feel he could sign a letter thanking me for my contribution to STL, because he did not 
represent STL. So I never received my annual letter. Each year I discovered what my salary 
increase was by examining my pay slip at the end of January.

Staff turnover was fairly average for a software team. I recruited more people fairly regularly, 
including the first female member of the team. Software was an industry that was in some 
areas a mainly male preserve, but in others the reverse. At ULACS and RADICS there was a 
small majority of women in the teams, but in STC there were very few. Firms which had a 
mainly engineering tradition would in general be dominated by men, but where the emphasis 
was principally that of computers and programming, women graduates in mathematics and 
computer science felt more welcome. Computer Science degrees, non-existent when I was an 
undergraduate, were now offered by many universities. Denise Brown had a first class degree 
from City University and showed a great deal of alertness and intelligence at her interview. I 
instructed the personnel department to offer her a job. She had mentioned that her husband, 
David Brown, a computer engineer, was also considering a job at STL in another department. 
Only later did I fully realise that they were applying to STL as a kind of package deal – they 
would either both come or neither would. I met David from time to time. He was a man of 
considerable ambitions and later joined Motorola UK, eventually becoming chairman, and 
was  made  president  of  the  IEE in  2003.  Several  other  new members  joined  the  BSCC, 
including Tani Haque. When interviewing him, I was finally convinced when he mentioned 
in passing, right at the end of the interview, that he had sold encyclopaedias during a summer 
vacation when at university. He had been so successful that the firm wanted to make him area 
manager. “But I had to go back to finish my degree!”, he said. I thought we could use some 
sales skills.

As  well  as  technical  staff,  the  group needed  administrative  staff.  At  first  we engaged  a 
secretary from an agency. Some of these were excellent, and I asked several if they were 
interested in a permanent position, but they always had some reason not to. Others were very 
temporary indeed, leaving of their own volition after two or three days. One actually left at 
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lunchtime, leaving a half typed sheet of paper in the typewriter, with no explanation. I could 
tell that the personnel department began to eye me suspiciously, wondering if I was making 
unwelcome advances to these mostly young women. I had always behaved with decorum, but 
I felt quite uncomfortable under the gaze of the personnel department for a while. Eventually 
one of the temporary secretaries asked if she could become permanent, and I agreed, against 
the advice of some of my staff. She was not the most efficient secretary, but I was beginning 
to feel she would be better than a continual string of temporaries. A year or two later we 
engaged a second “clerk”, as Lou Flowers called them, for our need for typing documents, 
filing them and arranging travel was considerable. I also believed that it was a good, cost 
effective policy to use clerical staff to do as much as possible for the programmers, leaving 
them to spend more of their time on technical work. Other managers thought that the more 
they spent on secretaries’ salaries, the less they could spend on technical staff, and would 
minimise their administrative budget. I have always thought that this was a mistaken policy, 
which led, among other things, to a more tedious working style for the technical people.

I continued to experiment with my policy of matching the work required from my staff to 
their abilities. Project leaders found it a chore to deal with project accounting. So I engaged a 
business  studies  sandwich  student  for  a  year,  and  got  him  to  do  the  project  and  other 
accounting for the group. I encouraged everyone to give him tasks where possible, and kept 
an  eye  myself  on  his  workload  to  make  sure he  wasn’t  overwhelmed.  I  hoped that  this 
arrangement would relieve the programmers from the aspects of work that they found less 
interesting, but the experiment had only limited success and I did not repeat it. Delegation 
itself  takes  time,  and  it  does  not  necessarily  save  effort.  A few years  earlier  I  had  had 
difficulties persuading the programmers to fill in their time sheets on time, until one day I sat 
back and thought to myself, “why do I need their time sheets anyway?”. I needed them to 
supply  the  accounts  department  with  the  information  necessary  to  calculate  the  project 
accounts, which I in turn included in my monthly report to Gerry Jacob. So I decided to hand 
the problem to the project leaders: I explained to them the need for project accounting and 
delegated to them the preparation of the project information and asked them to send it to the 
accounts department each month and report on their project accounts to me each month. For 
this they needed their own and their project members’ time sheets. I no longer needed to ask 
for  anyone’s  timesheets,  except  those of  the  admin staff.  The  project  leaders  were  quite 
pleased to accept  this  extra responsibility;  it  elevated their  status, giving them more of a 
management rôle. The time-sheet problem disappeared overnight. Even I was surprised.

We started to engage a computer science sandwich student each year, following a campaign 
from the  personnel  department.  STL had an  institutional  vocation  to  foster  research  and 
education,  and their  liaisons with universities  gave a  motive  to provide meaningful  work 
experience to sandwich students. I had myself spent a year at Texas Instruments between 
school and university, and had deliberately done vacation jobs in the electronic and computer 
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industries, to gain work experience. I was quite enthusiastic to engage a sandwich student for 
these reasons, and because I thought it could also enable the more experienced programmers 
to concentrate on the more advanced aspects of their work, if only to a limited extent. So 
Nick, an undergraduate from Nottingham Polytechnic, as it then was, joined us. He rapidly 
learned how to prepare software installations for the 3200 BSCC and other very useful tasks. 
One day we had  a  request  for  an  installation  at  LCT in Paris  and  none of  the full-time 
programmers was available to do it for some time. I asked Tani Haque, whom I had come to 
nominate as my deputy when I was away, if he thought Nick could do it. Tani thought he 
could, and so I went to consult the personnel department. I was not sure whether we were 
allowed to send a sandwich student abroad on business, or whether the personnel department 
might advise against it. But they saw no objection at all; indeed, they thought that it was a 
good thing to give the student a challenging task if I thought he was up to it.

So I asked Nick into my office. “Nick”, I said, “have you got a passport?” His jaw dropped 
visibly and I went on carefully to explain what we wanted from him and gave him advice 
about the hotel to stay in and how to reach LCT, the people he should speak to and so on. He 
was willing to go on the trip and carried it out without any apparent difficulty.

After I had been in the job for some three years, Lou Flowers, my manager, left. I got the 
impression that he was made redundant, for I and one or two other staff who had reported to 
him now simply reported directly to Gerry Jacob. I engineered a meeting to go to in Antwerp 
so that I could be at his office on his last day. He was rather surprised, and pleased, to see me 
there.  It  was  the  first  time  I  had had  the  temerity  to  organise  a  trip  for  myself  without 
consulting him first. With Lou’s departure, I was now in charge of the 1600 Basic Software 
Control  Centre,  as  well  as  the  3200.  The  1600  BSCC’s  manager  had  been  promoted 
elsewhere and so the group was temporally without a leader. Lou had been guiding it himself 
while working out his notice. But I could not do this effectively from STL, in a different 
country, never mind a different town. Lou advised me that none of the 1600 BSCC staff were 
competent  enough for  the  job.  One  member  had  the  technical  ability  for  it,  but  not  the 
diplomatic skills needed to interact with other groups. I was asked to find a leader for the 
group, possibly from the ranks of the 3200 BSCC.

I wondered how to set about this. Taking on such a position would involve the aspirant’s 
moving  location  to  Belgium,  managing  and  inspiring  staff  of  a  different  nationality  and 
working in an environment with unfamiliar traditions of employment protocols and working 
practices. But in the multinational ITT these features of work were normal, one might almost 
say run of the mill, and taken in one’s stride. I decided to take the slightly risky but simple 
course of announcing the vacancy to all the BSCC staff and inviting them to see me if they 
were interested. I reckoned that in fact any of them could handle the job. After all, they had 
had me as an example of how to manage a group of programmers! I also wondered how I 
would choose the candidate if there was competition. But in the event, only one knocked on 
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my door and said he was interested – Cliff Lamb. So Cliff went to live in Antwerp and led the 
1600 BSCC, and proved to be a popular and successful leader of the group. Having worked 
for many years under the rigid approach of their former manager, the group found Cliff’s 
style of open, fair and relaxed leadership a welcome change.

About this time, when I opened my pay slip at the end of the month I found that my salary 
had taken a sudden and welcome leap upwards. I deduced that I had been promoted, but once 
again this step function in my pay was the only indication I received. Some six months later, 
after  Lou had been gone some time,  Gerry Jacob implicitly confirmed this.  Apropos my 
taking responsibility for some matter, he said: “You’re Lou Flowers now, remember?”

Now that I reported directly to Gerry Jacob, instead of Lou, he would visit me in Harlow and 
I  visited  him  equally  frequently  in  Antwerp,  sometimes  elsewhere.  Gerry  was  keen  on 
modern management  principles  such as “management  by objectives” and the principle  of 
delegation. Delegation was believed to motivate staff and give them a sense of self value and 
confidence. Gerry liked to delegate. Every task that could be done by someone else, he would 
choose one of his staff, often in rotation, and give them instructions on what he wanted done. 
So I would often go to his office in Antwerp just for the purpose of carrying out one of these 
delegated  missions.  It  certainly  gave  me  a  lot  of  insight  into  the  context  in  which  his 
organisation, the Computer Engineering Centre, worked. One regular task was the writing of 
his monthly report, which would be sent to his manager at ITT Headquarters in New York. 
When it was my turn to do this I would sit at a spare desk in the CEC and read through all the 
monthly reports of Gerry’s staff, and try to compose them into a unified whole. All these 
reports had a fixed format: Highlights, Achievements, Problems and Red Flags. A Red Flag 
was a serious problem. I would consult the authors if I had difficulty in interpreting their 
reports. I remember one occasion when two of Gerry’s staff had reported on the same event, 
one of them describing it as a “Problem” and the other as an “Achievement”.

Chapter 7 Reorganisation and Research
The Computer Engineering Centre moved from Antwerp to Velizy, just outside Paris, next to 
LCT. Gerry and most of his technical staff uprooted and found new homes in France and the 
Centre  detached itself  from BTMC and became administratively part  of LCT. Gerry was 
happy enough still to be in a French speaking country, after having spent a great deal of effort 
learning the language. Much of the CEC’s equipment was left behind, bequeathed to the 1600 
BSCC. I was to arrange payment for this to the CEC, so that they could in due course buy 
more. This was much more practical than physically shipping the machines from Belgium to 
France.  But  LCT refused to  accept  the payment;  as far  as they were concerned,  nothing 
belonging to LCT had been sold, so they could not accept payment for it. I went to see the 
Comptroller at STL about this. He was quite amazed. “If someone wanted to give me eight 
thousand pounds, I’d accept it and think of a way to make it legal afterwards!”, he said. I was 
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bemused to hear this from our respected chief accountant.  We all shrugged our collective 
shoulders and I kept the sum in my budget, with an understanding that we could repay the 
CEC in various ways as opportunities presented themselves.

Advances were being made in the software world. We were in the mid-seventies. I had been 
in the industry for about thirteen years. In the mid fifties Noam Chomsky had carried out 
canonical work in linguistics on defining the grammars of human language.  This was the 
starting  point  for  finding  ways  of  defining  the  syntax  of  computer  languages.  Writing  a 
compiler  for a programming language is far  easier  if  its  syntax can be precisely defined. 
Indeed,  people  have  written  “compiler  compilers”  which  input  a  syntax  definition  of  a 
computer language and produce the front end, that is the parser, of a compiler for it. I used 
Brooker and Morris’s Compiler-Compiler while I was at ULACS in the late sixties, and now 
there  are  numerous  such compiler-compilers.  YACC, Yet  Another  Compiler-Compiler,  is 
probably the most well known one today. The first generally accepted notation for defining 
syntax was developed by John Backus for the definition of Algol58 in 1958. This was called 
BNF, Backus Normal Form1. BNF was extended by Peter Naur for the definition of the better 
known Algol60, and the notation became Backus-Naur Form. Now there is an international 
standard for BNF developed by the British Standards Institution and adopted by ISO, the 
International  Standards  Organisation,  and  IEC,  the  International  Electro-technical 
Commission2.

A lot of theoretical research work followed the Algol60 development in the sixties. But the 
really interesting problem was the much more difficult  one of defining the meaning of a 
computer language, rather than its form or syntax. If that could be cracked, the writing of 
compilers could become a much more precisely defined task and the quality and correctness 
of compilers could be greatly improved. As it was, compilers for the same language varied 
one  from  another,  largely  because  there  were  vague  areas  in  the  definitions  of  all  the 
languages, open to interpretation, no matter how hard those defining the languages tried to 
make them exact and complete. Nonetheless, during the early sixties more and more intricate 
work was done on syntax definition. Somebody likened it to a joke: a policeman at night sees 
a man looking under street-lamp. He goes up to him and asks him what he is looking for. 
“I’m looking for a coin I dropped”, he replied. The policeman asks him, “Did you drop it 
under  this  lamp?” “No”,  replies  the  man,  “I  dropped it  over  there”.  “Then why are  you 
looking here?”, asks the policeman. “Well, I can see under this lamp, but I can’t see over 
there” is the reply. There seemed to be a reluctance to investigate the more difficult problem 
of the meaning of languages, so some researchers spent time on the largely solved problem of 
syntax.

1See Backus 1960.
2See ISO/IEC 14977 1996(E).
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However,  there  were  some  efforts  being  made  in  the  late  sixties  into  the  meaning,  or 
semantics, of computer languages. In 1963 John McCarthy outlined a theory of computation 
which, among other things, separated abstract syntax from the more cumbersome concrete 
syntax  of  a  language3.  Abstract  syntax  separated  out  the  essential  parts  of  a  grammar, 
ignoring the precise form of the components, the punctuation and spelling so to speak. This 
eventually made defining a language’s semantics a lot easier. In 1965 Peter Landin related 
the  actions  of  Algol60  programs  to  a  branch  of  mathematics  called  Lambda  Calculus4. 
(Lambda Calculus is a notation in mathematical logic, devised by Alonzo Church5). In 1966 
Christopher Strachey used an extended form of lambda calculus to help define the meaning of 
programs6. His approach subsequently became known as Denotational Semantics. In October 
1969  Tony  Hoare  published  a  seminal  paper  in  the  Communications  of  the  ACM 
(Association of Computing Machinery), “An Axiomatic Basis for Computer Programming”7. 
This paper laid out some principles for deducing whether or not a program was correct, that 
is, whether it achieved its desired result. But in so doing, the paper gave a means of defining 
the  semantics  of  the  individual  and  composite  instructions  that  lay  at  the  heart  of  most 
conventional programming languages of the time. Two lines of research sprang from these 
pieces of work. One led to being able to define the semantics of computer languages. The 
other led to a way of developing programs and proving them correct.

The word “semantics” just means “precise meaning”. In popular use it has come perhaps to 
have a negative association.  When someone says  “That’s just semantics”,  they mean that 
their disputant is responding to the literal precise meaning instead of the intention of their 
words. In normal discourse between people, responding to the semantics of someone’s words 
when the intended meaning is clearly different is deliberate misunderstanding, an act of social 
hostility.  But  in  most  scientific  disciplines  the  precise  meaning,  the  semantics,  of  one’s 
descriptions are very important. Precise description is much to be desired.

In 1975 Edsger Dijkstra, professor at the Technical University of Eindhoven, published a 
seminal paper, “Guarded Commands, Non-determinacy and the Formal Derivation of Programs”8. 
In many ways his ideas were similar to the Hoare axioms of computer programming, but 
there were important differences. In particular, his notation smoothly led to a way of proving 
that a program fulfilled a desired objective. Dijkstra wonderfully illustrated this method of 
proof in a small but classic book, “A Discipline of Programming”, a year later9. He took a 
number of elegant examples of problems and walked through his proof method, developing 
the program as he went along. Some of the problems had never been solved by computer 

3See McCarthy 1963.
4See Landin 1965.
5See Church 1941.
6See Strachey 1966.
7See Hoare 1969.
8See Dijkstra 1975.
9See Dijkstra 1976.

83



before, the most notable one being the convex hull in three dimensions. Suppose you are 
given a number of points in three dimensional space, no four of them lying in the same plane, 
like a scattering of stars in a galaxy. If you take a set of three of the points, they define a 
plane. If all the other points lie on the same side of this plane, define these as “boundary 
points”. Another way to think of the boundary points is to imagine a large balloon enclosing 
all the points. Then shrink the balloon until it is in contact with all the points on the extremity 
of  the  set.  Those  points  are  the  boundary  points.  The  result  will  look  rather  like  a 
Buckminster Fuller geodesic dome, but completely closed. The problem is to write a program 
to find all the boundary points. This is not an easy programming problem by any means, but 
Dijkstra used it to illustrate his method of developing programs, producing a proof that the 
program is correct as he went along.

I was fascinated by Dijkstra’s method of developing programs. In some ways, the technique 
seemed back to front. Instead of taking a program and stepping through it proving that it 
achieved the desired result, you take the last statement of the program and work out what are 
the minimum preconditions required so that after it is obeyed, the desired result is delivered. 
Then you step back progressively working out the minimum preconditions until you reach the 
program’s starting point. If then there are no preconditions at all, you have proved that the 
program is correct.

Dijkstra’s  method, his “discipline” of programming,  also involves separation of concerns, 
breaking up a problem into sub-problems, and other techniques of simplifying a complex 
problem. I tried it out on some programming problems of my own and became enthusiastic 
and convinced by it.

I was still in a management rôle, and had not done any real programming myself for a long 
time. I was missing the technical challenge and, at the same time, there was one programming 
task I longed to do. I have mentioned compiler-compilers, which are often and perhaps more 
accurately called parser generators, because they generate a parser for a language. I had used 
Brooker  and Morris’s  compiler-compiler  years  earlier  at  ULACS. I  had also used David 
Hendry’s  language,  BCL, when working for RADICS. BCL also performed the rôle of a 
parser-generator. The Brooker and Morris program was difficult and awkward to use, and 
BCL was considerably easier. It would be easier still if the input to a parser were a grammar 
written in BNF, the notation devised by Backus for the Algol60 definition and already the 
subject of a British BSI standard. I decided to write a compiler-compiler that would input 
standard  BNF. The only computer  I  had  access  to  was  the  3200 machine,  and  the  only 
languages available on it were the symbolic assembler language and ESPL1, the autocode 
developed by Bob Parenti’s team. I used ESPL1 and developed a parser generator that used 
BNF for its input. I used it to produce a couple of small utility programs and sent details of it 
round a number of programmers in the company. One programmer in BTMC in Antwerp, 

84



Rudi De Belie, used it to produce an editor, but the whole exercise was mostly for my own 
elucidation.

Amongst the community of software developers, as well as these rather theoretical advances, 
there  was  a  lot  of  effort  being  put  into  “software  engineering”.  Until  the  late  sixties, 
programming was seen as a somewhat individual task, carried out by loners sitting at their 
desks and producing inscrutable works of art,  programs that produced wonderful efficient 
results but which were comprehensible to no-one but their authors. There had been a lot of 
persuasion  to  move  away  from  this  attitude,  requiring  programmers  to  document  their 
programs, to explain how they worked and generally to be “public” about them. But in the 
1970s a much stronger push came to turn programming into an engineering discipline, with 
the writing of programs carried out by coordinated teams of people working together and to a 
budget.  Estimating  the  cost  of  developing  software  and  the  time  it  would  take  was 
notoriously  difficult,  and  software  managers  began  to  follow  a  variety  of  initiatives. 
Programmers were encouraged to stop thinking of their  programs as their  own individual 
pieces of cherished work. Programs would become team efforts, using peer reviews, walk-
throughs  and  other  ways  of  trying  to  ensure  that  the  end  result  would  be  delivered  to 
specification  and  on  time.  Cost  estimating  became  a  big  effort,  and  the  “software 
development life cycle” became a big topic. Too often programmers had embarked on writing 
the code for the program prematurely. Emphasis was now put on producing a design, which 
was an abstract, more general form of how the program was going to work. The very earliest 
of these were called flow diagrams and consisted of a diagram showing the program’s flow of 
control, with lines, arrows, boxes and decision points. But flow diagrams tended to describe 
the program at a low level of detail  and did not give a view of its  overall  design. More 
general and sophisticated design methods proliferated, all enthusiastically promoted by their 
originators. JSP, the Jackson Structured Programming method was one of the better of these. 
A movement called “structured programming” had emerged and was very strong. It was all 
started by a two-page note published by Dijkstra titled “Go To Considered Harmful”10. “Go 
To” instructions appear in the repertoire of every computer’s machine code and were present 
in almost every high level language. Dijkstra criticised the use of these instructions, claiming 
that  they  led  to  unstructured  and arcane  software.  To  quote  the  obituary  of  Dijkstra  by 
Krzysztof Apt11, the note “led to a huge uproar” of controversy.  But his view came to be 
accepted after a few years and, as Apt writes, “thirty years later the Go To statement shines 
by its absence” in the Java programming language. I recalled that coping with the Go To 
statement  in  the  Algol60  compilers  that  I  wrote  when  at  RADICS  occupied  a  truly 
disproportionate amount of effort and compiler code.

10See Dijkstra 1968.
11See Apt 2002.
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So Structured Programming, of which JSP was a particular flavour, became a watchword in 
programming  development.  But  structured  programming  was mainly  about  the  design  of 
programs. People began to talk of the “software development life cycle”. Before writing the 
code for a program, one should produce the design. The design may be produced at several 
stages  of  detail.  Before  producing  the  design,  one  should  however  write  a  functional 
specification. The specification defines what the program will do, without saying anything 
about how it is going to do it. The design, by contrast, defines how the program is going to 
work.  This  separation  of  focus  between  the  two  stages  was  an  example  of  the  Dijkstra 
principle of “separation of concerns”. After the code is written, a testing phase begins and can 
lead  to  repetitive  revisions  and  repetitions  of  the  previous  stages.  Many  models  of  this 
process were put forward, the first and simplest one being the Waterfall Model, because the 
picture of it resembles a fall of water dropping from one pool to another. All agreed that it 
was very important to get the early stages right before embarking on the later ones. It was no 
use producing a brilliant design if it did not do what the specification demanded, or if the 
specification was wrong. More attention to the design would lead to fewer errors and less 
time testing and retesting, which could be extremely time consuming. In the later part of the 
seventies  a  huge  amount  of  effort  was  spent  studying  this  syndrome.  It  was  found  that 
attention to the early part of the life cycle would save a great amount of time detecting and 
mending errors later.  One movement  encouraged programmers  to  read each other’s  code 
before committing it to testing. Doing this, typical error detection rates were 600 during code 
reading, 300 during unit tests, 200 during system tests and 15 detected when the software was 
in service. The amount of effort required to put these errors right would dramatically increase 
as the life cycle progressed. The correction of errors after the software had been delivered 
required orders of magnitude more effort than during the earlier phases.

Some years later an earlier stage was added to the life cycle, that of analysing requirements. 
Customers for software very often could not specify exactly what they wanted, so even if a 
customer  agreed  a  specification  for  some  software,  it  might  not  reflect  their  real-life 
requirements. This mismatch has resulted in some notorious and expensive disasters, such as 
the system for handling emergency calls for the London’s ambulances. *** more examples 
here, with dates. Look up on internet*** Requirements elicitation and requirements analysis 
were to become hot topics a decade later in the eighties. But in the nineteen seventies their 
significance was still not generally recognised. <More on the push to quality – look up some 
stuff>

Meanwhile,  my  own work  environment  was  changing.  ITT was  selling  off  STC –  they 
referred to this process as “divesting themselves” of a company. STC was to become an all-
British company. STL was traditionally the laboratories of STC, so STL was going to be an 
ITT company no longer. I breathed a private sigh of relief, for I had always felt a little uneasy 
at being employed by a multinational conglomerate. A company that employs eight million 
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employees has an uncomfortable and possibly dangerous amount of power. Unfortunately my 
relief was to be short -lived; we swapped a tolerant US management style, which rewarded 
initiative and listened to innovative ideas, for a rigid, rule-bound British one. But it took a 
couple of years for the change fully to take effect.

My group, the BSCC, used a 3200 computer centre at STL continuously. After a couple of 
years its chief operator left, to go into the Anglican church and study to become a priest. He 
was replaced by a new chief operator. We began to have many problems with the service 
from the computer centre, and I sent frequent memos of complaint to the manager whose 
department included the centre. After a while, he and I had several meetings with our mutual 
division manager, Dave Dagwell. Dave devised a brilliant solution, at least, brilliant from his 
and others’ point of view. He transferred responsibility for the computer centre to me, and 
congratulated me on this minor promotion. Now the chief operator reported to me, and I had 
no-one  to  complain  to  except  myself.  Indeed,  there  were a  few other  users  of  the  3200 
computer centre, and now I became the recipient of their complaints. At least I had a small 
promotion, with a modest extra increase in salary. I had to field many complaints about the 
service from the centre and the performance of its chief operator. In due course we had to go 
through the process of giving him official warnings, the later ones in writing. According to 
the rules of industrial relations, after three warnings, he could be sacked. He received two, 
and a short while later  one morning members of my group kept dropping into my office, 
saying, “Hey Tim, have you heard? He’s had a job offer. He’s going to show it to you!” So 
by the afternoon I was prepared. After what I suspect was a well lubricated lunch, the chief 
operator came into my office and placed an envelope on my desk, saying only, “Der-dum!”, 
an imitation drumbeat.  I  opened the letter  and read the offer of a job he had received,  a 
position for a chief operator of a substantially bigger and more modern computer centre in 
another  company.  “This  looks  like  a  really  good  career  opportunity  for  you”,  I  said. 
“Congratulations! I hope you’ll be happy in your new job!” I reached across my desk and 
shook him by the hand. He looked a little stunned, murmured “I see you’re not trying to 
persuade me to stay”, and left the room. Had he really expected me to persuade him to stay 
after  all  the complaints,  the meetings  and warnings? I  suspect  not,  not  seriously.  But  he 
probably did not expect me to show such brutally honest relief at his departure.

Nonetheless,  I  think  the  British  industrial  relations  rules  about  giving  people  clear 
unambiguous warnings is essentially fair. It is very easy for someone to have no idea that 
they are  under-performing  if  a  well-meaning  manager  is  too  polite  or  equivocates  about 
letting them know the true perception of their work. With clear messages the individual has 
some opportunity to improve.

The  activities  of  the  BSCC  began  to  shrink  and  some  of  its  staff  transferred  to  other 
departments in STC, most of them working on new telephony projects. I put Tani Haque in 
charge of the now reduced group. At the same time, a hardware research and development 
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group was put under my wing. I was wary about accepting this, because it was many years 
since  I  had  any  experience  of  electronic  circuit  design,  not  since  I  worked  at  Texas 
Instruments and Cambridge Instruments some eighteen years  previously.  I talked at  some 
length  to  the  section  leader  of  this  group,  and  he  was  confident  that  the  principles  of 
electronic design had not changed, only the technology supporting it. So I agreed to take it 
on,  but  I  never  truly  felt  I  could  understand  their  work  thoroughly  enough  to  make 
judgements about the wisdom of their development policies. I became more confirmed in a 
belief I have had for a long time, that you cannot properly manage an activity unless you have 
worked at it yourself.

I no longer reported to Gerry Jacob or the Computer Engineering Centre. Now I was part of 
the STL management hierarchy. After several further organisational changes, Frank Simpson 
became  my  Division  Manager.  The  Microprocessor  Research  group,  headed  by  David 
Wright, moved into my department. This group developed software to drive microprocessors, 
computers whose central processors were on a single integrated circuit or chip. Until then 
central processors, which carried out the extraction and execution of instructions stored in a 
computer’s memory, consisted of a substantial amount of electronics, transistors, chips and 
other components, on one or more circuit boards. Printing the entire central processor on a 
single chip was a very recent development and STL, being a leading research laboratory, 
were  keen  to  explore  the  potential  of  these  new  microprocessors.  David  Wright,  an 
extraordinarily energetic character,  led this research group. Its work was mainly software, 
intimately bound up with the hardware but also comprising operating system and basic utility 
functions. I was more than happy to have this group reporting to me. They talked the same 
language  as  I  did.  We  had  to  make  many  policy  decisions,  because  manufacturers  of 
microprocessors  began  to  proliferate.  The  company  had to  choose  which  manufacturer’s 
products to concentrate its efforts on. TI, Intel and others were contenders. Microprocessors 
were beginning to be used in telephony. They would need support for the development of 
their  application  software,  just  like the 3200 had.  David Wright’s  team had produced an 
autocode language for microprocessors, PLM. Other smaller languages for various purposes 
were in use.  We had to set up ground rules and sort  out questions about who uses these 
different languages, how can they be controlled, who should produce documents on style, 
usage and so on. Many small committees were set up to do these things and an STL language 
management group was set up. All this was a small reflection, a microcosm of what was 
happening in the industry at large.

More staff moved into the division and a software research team was formed, starting with 
Bernie Cohen. With all these groups, my department was beginning to become overweight, 
so to speak,  and more reorganisations  followed. Bernie and I  were made Chief Research 
Engineers.  There were just  a  few people with this  title  in STL. We were no longer line 
managers but were more like free floating gurus, with the same rank as Division Manager. I 
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got a company car as a result, and was attached to the software research group. I thought this 
was ideal for me. I did not relish the prospect of continuing up the STL management ladder, 
for the higher ranks concentrated too much on the financial and not enough on the technical 
side of the work for my taste.

Organisations and their management began to look upon computer programming as part of 
“engineering”.  Engineering products should not have faults,  should work properly and be 
genuinely useful. A drive for “software quality” became widespread. Many of the problems 
with  software  arose  because  it  was  easy  to  build.  It  did  not  require  components  to  be 
manufactured  and assembled  together.  It  “only”  required  a  programmer  sitting  at  a  desk 
writing code, which was then punched onto paper tape or cards and fed into a computer. The 
result was that pieces of software could be built which were extremely large and complex. 
This  inherent  complexity  was  the  source  of  errors.  Furthermore,  because  of  this  great 
complexity, even exhaustive testing could fail to uncover some errors. One such error in a 
Fortran program caused the destruction of the NASA Mariner 1 mission to Venus in 1962. A 
transcription error substituted a comma for a full stop, causing the navigation software to 
miscalculate, causing the rocket to lose control. It had be destroyed over the Atlantic ocean. 
There  is  a  long  list  of  other  disasters  resulting  from software  engineering  errors.  Many 
programmers and managers flocked to resonating halls to listen to conferences on software 
quality. Programming languages, methods for developing software, and “architectures”, ways 
of putting the large number of components of a piece of software together, were intensively 
discussed. The fact that massive programs consisted of many components, all with different 
versions and variations for slightly different customer requirements was a particular problem 
itself. It was called “configuration”, and configuration control became a discipline, with rules 
and computer support tools. These rules and support tools would try to prevent mismatching 
versions and variants of components being put together.

The USA Department of Defense and their bigger contractors and associates such as TRW 
and the Jet Propulsion Laboratory were among the largest ever customers for software. They 
could afford to do extensive research studies into causes and sources of errors, for they had 
the most to lose from them and the most to gain from learning how to avoid them. They 
carried out extensive statistical studies into the sources of errors, what part of the life cycle 
produced the most, which were the most expensive to repair, and so on. Removing an error 
early in the development process saved a great deal of effort, and therefore money, down the 
line. One of the first practices adopted was “code reading”. When a programmer had written 
a piece of code, another programmer had to read and understand it,  looking for mistakes, 
before  the  code  was  submitted  for  testing.  A typical  proportion  was  600 errors  detected 
during code reading, 300 during unit testing of that individual piece of software, 200 when it 
was consolidated with other pieces of code into a system and finally 15 when the software 
was in service. The latter, 15, were the most costly to repair, for in effect the software had to 
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be recalled, like a car with a part found defective after many examples of the model had been 
delivered. The 600 found during code reading were the cheapest to repair, because not much 
work had to be redone and recombined.

Code reading was just one form of “peer review”. Producing a piece of software was divided 
into  a  number  of  stages.  One  started  with  a  statement  of  general  requirements  that  the 
software had to meet.  Then someone produced a specification,  which described what the 
software would do, the functions it would carry out. Then came a design document, which 
described how the software was going to work, the layout of its internal and external data and 
the  step  by step processes,  the algorithms,  which  it  would use to  perform the  necessary 
calculations  and  manipulations  of  the  data.  Finally  would  come  the  code,  the  actual 
instructions which were fed to the computer and be automatically turned into a program by a 
compiler. The writer of one document would be the customer for the next one to be produced. 
So the writer of the requirements would be the customer for the specification, the writer and 
hence supplier of the specification would be the customer for the design document, and the 
supplier of the design document would be the customer for the code. This way of looking at 
the process was known as the contractual model. Each player in the process had a contract to 
fulfil, even if the same person was writing two or more successive documents. This simple 
model of the life cycle, with each document being a predecessor of the next in the chain, was 
one of the first models of the life cycle and was called the Waterfall Model. Many more were 
to follow. People soon realised that the waterfall model was too simple; it did not take into 
account the many revisions and backtracking that took place as mistakes and misconceptions 
came to light during the process. Often, even the requirements would be revised as the end 
customer realised that  their  needs were not quite as they had at  first  perceived.  The “V” 
model was a variation of the waterfall  model and showed the typical backtracking up the 
waterfall  and  down  again.  Numerous  lifecycle  models  have  subsequently  been 
enthusiastically put forward by their protagonists, and are so to this day,  Prototyping and 
Agile Computing being among the more recent ones.

Different styles of design reviews were advocated by different gurus. In a design review, 
which was on the whole a good practice borrowed from other engineering disciplines, the 
designer would explain the design to an audience of other designers, who would question and 
probe to in order to uncover any errors or shortcomings. There was an emphasis that this 
review was in no way a check on the competence of the designer and would have no effect on 
his or her pay or promotion prospects. For this reason the reviewers would be “peers” of the 
presenter. Design reviews were an example of “walkthroughs”, where the writer of any of the 
documents in the life cycle would walk through it and explain it to an audience.

ITT had established user groups for many of its products. This was a practice being adopted 
by many engineering suppliers and manufacturers. The supplier would gather representatives 
of its customers together into a kind of club and consult them about the acceptability of its 
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products. Doing this was considered to be a commercial advantage, spiking complaints before 
they became too annoying and also being in control of any customer antipathy. But it was 
also another way of improving quality of the products, ensuring they were fit for purpose. 
STL set up a user group for the internal and external customers of the microprocessor group’s 
software. This was one more mechanism typical in the industry for improving quality.

The studies done by the DoD and their contractors showed that more errors occurred during 
the  design  phase  than  during  the  coding  phase.  They also  showed that  using  high  level 
programming languages, as opposed to machine or assembly code, reduced the cost but not 
necessarily  the  error  rate.  The  reductions  in  cost  occurred  in  some  of  the  later  phases, 
including testing and maintenance. Some organisations found that it was difficult to motivate 
staff  to  do  software  maintenance  work.  This  is  not  altogether  surprising;  experience  in 
maintenance was not and is still not regarded as particularly valuable on someone’s CV. The 
activity  does  not  impart  design  experience  and  involves  little  creativity,  even  though 
ingenuity may often be required. Design has always been the more glamorous part of the 
process.  Yet  studies  showed  that  maintenance  costs  formed  60%  of  the  total.  Some 
organisations  seemed  to  employ  large  numbers  of  less  qualified  staff  instead  of  smaller 
numbers  of  graduates.  This  seemed to  have given rise  to  difficulties,  both technical  and 
organisational. Less qualified staff seemed to take much longer to learn a new programming 
language. It was as if they had to unlearn the language they previously learned and the whole 
relearning process would take several months.

The DoD used many different computer architectures, software development methods and 
programming languages. This increased the amount of effort they needed to maintain their 
systems, not least because many people had to relearn and adapt all the time. They decided to 
try and standardise on one new all purpose high level programming language. A document 
listing  the  requirements  for  this  new  language  was  published  in  1975.  It  was  called 
“Strawman”, after the fairground game in which a straw man is set up and knocked down by 
throwing balls at it.  The Strawman document was intended to be criticised and “knocked 
down”, following which it would be replaced by a more resilient version, a “Woodenman”. 
Strawman  was  published  in  1975,  and  Woodenman  and  its  successor  Tinman  in  1976. 
Proposals were then invited to design a language meeting the Tinman requirements. The new 
language would not be imposed on existing projects, but only introduced in new ones. The 
DoD believed that the reluctance of programmers to change languages would be a critical 
factor. The style of the language, quality of compilers and other tools, and user experiences 
would all  be critical.  Seventeen designs for the language were submitted  and these were 
reduced to a  short  list  of  four.  These four language designs were given code names,  the 
colours  Green  proposed  by  CII  Honeywell  Bull,  Blue  proposed  by  Softech,  Red  by 
Intermetrics and Yellow by SRI International. The short list was reduced further to two, Red 
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and Green,  in 1978. The contenders,  Intermetrics  and CII Honeywell  Bull,  were given a 
further year to refine their proposed language designs.

This initiative on the part of the DoD caused great excitement in the software community. 
The  DoD  was  a  huge  procurer  of  software  projects,  some  of  them  requiring  enormous 
amounts of effort, like 300 person years, to complete. The DoD was very influential and the 
technical features of the new language was going to have a lasting effect on the shape of 
software and programming for some years to come. The proposal chosen was Green and the 
final language called Ada after Ada Augusta Lovelace, the assistant of Charles Babbage who 
in the nineteenth century invented the mechanical calculating machines now in the London 
Science  Museum.  Ada  Lovelace  is  considered  to  be  the  world’s  first  ever  computer 
programmer, for she devised programs for Babbage’s calculating engines. The requirements 
were revised one more time as Steelman and the final version of the Ada language produced 
in 1980. However, in 1978 the process of procuring and designing the language was not yet 
complete but well on its way.

With  systems  getting  larger  and larger,  more  difficulties  came  along,  arising  more  from 
human limitations rather than technological ones. Software could often be written to meet the 
wrong  requirements.  Specifications  were  frequently  open  to  interpretation  by  the 
programmers  and analysts,  who did not  know the  details  of  the total  design.  Top-down, 
hierarchical  design could be the way to defeat the problems of size and complexity.  The 
industry began to look for methods of stating requirements that were unambiguous and that 
supported top-down design. Projects needed management tools providing automatic analysis 
and giving information on progress and other features. But there were many contenders. In 
one  software  management  conference  in  1978  a  speaker  from  the  Royal  Aircraft 
Establishment gave a list of 24 different software and system development methods. Project 
audits  became  popular  for  a  time.  An  independent,  specially  trained,  auditor  would  be 
requested  to  audit  a  project,  examining  it  following  specific  guidelines,  check-lists, 
procedures  and standards  for  measurements.  There  were  some apprehensions:  the  results 
could be misused and full time auditors could lose touch with the advancing technology they 
were supposed to assess. There was also a strong danger of equating progress with aspects of 
a project that were simply easy to measure, like lines of code, expenditure, or milestones that 
did not properly reflect a project’s advancement. The measurement of progress needed to be 
based on the planned structure of the work, the amount of work remaining to be done and the 
cost  to  completion.  Even today,  some projects  and  organisations  have yet  to  learn  these 
lessons.

Software  is  useless  if  it  does  not  work  to  a  certain  degree  of  correctness,  and  in  some 
situations, like on board a spacecraft where it is remote from human intervention, it needs to 
function well-nigh perfectly. But other properties of software began to acquire importance. 
Examples were its portability, that is, whether it could be transported to new hardware or a 
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new physical type of computer without too much rewriting; maintainability,  the ease with 
which it could be corrected and upgraded as requirements evolved – this could depend on 
many things, the documentation, the clarity of structure, and the simplicity of design; and 
usability or user friendliness, the phrase coined in later years.

ITT and the telephony industry in general shared the DoD interest in programming languages. 
In some ways, the available high level programming languages were unnecessarily general 
for many purposes. Specialised, “Problem Oriented” languages could have advantages. They 
would be smaller and hence easier to learn, and would avoid features that were not going to 
be used. People who were not programming specialists might be able to use them. On the 
other hand, use of problem oriented languages could lead to a proliferation of languages just 
at the time when most of the industry was try to reduce the number and investment in them. 
Along with  other  organisations  which  produce  computer  programs,  ITT devised  its  own 
guide to programming style. The overriding criterion was visual clarity,  but other motives 
were portability, the ability to transfer the program to other machines. The program should 
not make assumptions about the architecture of the machine, how many bits are in each word 
of store, for example. Procedures implementing related functions should be grouped together. 
Major  data  items  of  complex  structure  should  be  accessed  by a  few specific  procedures 
grouped together, rather than spread throughout the program. This assists later modifications 
and extensions to the program, and foreshadowed much later ideas of object-orientation. New 
programming languages were being developed and becoming available. The older languages 
had a fixed collection of data types:  variables  could be of a limited choice of types  like 
integers, character strings, Boolean or truth values (True or False), arrays of these and so on. 
More modern languages gave the programmer a much greater, unlimited choice, and there 
were consequent advantages. Arrays, that is linear or multi-dimensional collections of values 
of a simpler type, could be dynamic, that is their size need not be determined in advance. 
Different types of data could be grouped together ad lib into records. All these facilities made 
life easier for the programmer and could enable clearer programming, more closely related to 
the concepts of the application.  Researchers drew out some principles of language design 
which made programming languages easier to learn and use. The earlier high level languages 
were designed as convenient ways of driving the machine. As time went on, the impetus was 
to  design  languages  that  expressed  application  problems  well.  Hand  in  hand  with  this, 
computer architectures were considered that would facilitate the implementation of advanced 
languages, but less progress has been made on this front over the years.

One of the most advanced programming languages of the time, Algol68, was coming up for 
its tenth anniversary. I went to a conference on Algol68 in 1978, but it was becoming clear 
that the language was falling out of use, for no very obvious reason. ICL still used an in-
house subset, S3, for its systems programming, but there were few users outside academia. I 
was a little disappointed about this; I liked the language, but maybe its lack of popularity was 
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due to some difficulty in learning and implementing it. On the other hand, Ada, yet to be 
finally defined, was to be much more difficult both to learn and to implement. In fact, the 
acceptance  and popularity  of  languages  and methods  over  the years  seems  to  have been 
almost arbitrary at times.

So Algol68 was not for the telecommunications industry.  The CCITT is the international 
standardisation  authority  for  telecommunications.  It  is  an  influential  and  respected 
organisation,  probably  because,  without  strict  standardisation,  telephone  calls  and  other 
communications  between different  countries  and telephone systems  would be impossible. 
The CCITT observed the DoD initiative to standardise on a single high level language, with 
its series of requirements documents Strawman, Woodenman, Tinman, Ironman and so on, 
and decided that they should conduct a similar study themselves. CCITT set up a high level 
language committee to choose or design a language for telecommunications. The committee 
considered simply using Ada, the forthcoming DoD language, but decided this was a little too 
elaborate  for  telecoms  purposes.  So  the  committee  designed  a  new  high  level 
telecommunications programming language, CHILL. By mid-1978 the definition was in an 
advanced state and the US research laboratory of ITT prepared to write a compiler for it. 
There was even discussed the possibility of my division at STL being involved in writing the 
compiler.  A growing number of telecommunications organisations started to want CHILL 
compilers.  STC in the UK wanted one for developing code for the 8086 microprocessor. 
Philips expected to produce a compiler by October 1978. Donn Combelic arranged for me to 
join the CHILL implementers’ forum, a CCITT committee. This committee was next meeting 
in London in December 1978, and then scheduled to meet every quarter, February in Rome, 
June  in  Geneva,  and  September  in  Melbourne.  At  the  London  meeting  the  different 
participants shared brief news about their progress in producing compilers, putting on courses 
and so on. Somewhat to my surprise, no-one discussed compiler techniques or difficulties 
with implementing any features of the language. However, the act of implementing compilers 
for CHILL revealed ambiguities and some incompleteness in the language definition, so most 
of the discussions centred on resolving and agreeing details of the definition. At least this 
made sure that the compilers produced by different organisations were consistent.

In the computer industry at large, people were beginning to give some thought to methods of 
designing software, the stage in the development process that would naturally precede the 
writing of the programs, as well as to the languages in which they wrote the programs. The 
earliest  form of design was a flow diagram. These were not conducive to well structured 
programs, as they allowed unrestrained use of jumps, or transfers of control. For ten years 
now,  since  1968,  this  was  recognised  as  poor  practice  and  so  the  next  step  in  design 
techniques  was  to  devise  a  form  of  flow  diagram  that  would  tend  to  well  structured 
programming.  The  most  well  known form of  these  structured  flow diagrams  are  Nassi-
Shneiderman diagrams, but these did not gain great popularity, although they still have their 
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devotees, are the subject of a standard (DIN 66261) and have a body of support tools. The 
main problem with them was that they did not lend themselves to abstraction and the other 
principle of well structured programs, separation of concerns.

At the beginning of 1978 at STL we too began to think more seriously about methods – the 
ways we developed software and systems, looking at several pieces of academic and not so 
academic  research.  For  that  reason,  our  efforts  could  perhaps  genuinely  be  called 
“methodology”. Was a development method the same thing as devising a language in which 
to  express  different  steps  of  the  life  cycle,  requirements,  specifications  and  designs, 
languages which could perhaps be processed by computer in the same way that programming 
languages are compiled by computer? Much of our discussions conflated the concepts within 
methods with the languages they used. We made a case for internal ITT funding research into 
SW,  “investigating  techniques  which  will  move  the  programmer’s  task  nearer  to  a 
formulation of what the computer is required to do, rather than how it is to do it. Each step in 
this direction will reduce the costly, error prone activity of programmers reinventing ways of 
realising specifications of problems. This overall objective is to be attacked on three fronts: 
specification, program design and program implementation”. A traditional design technique 
used  in  the  telecommunications  industry was Finite  State  Machines  and State  Transition 
Diagrams, loosely based on a theoretical computer science concept called Finite Automata. 
Other techniques were being developed in academia, Petri Nets, a diagrammatic notation with 
a  strict  mathematical  definition  invented  by  the  computer  scientist  Carl  Petri,  and  other 
approaches based on mathematical logic. There were also some more pragmatic approaches 
being developed elsewhere, PSL/PSA, Gamma, and SADT, “Structured Analysis and Design 
Technique”. PSL/PSA, the Problem Statement Language – Problem Statement Analyser, had 
been started at the University of Michigan under Professor Daniel Teichrow as early as 1968, 
and continued to be developed until  the early eighties. It was developed with the help of 
many industrial sponsors. The Problem Statement Language was used to define a system’s 
requirements, using techniques from relational databases. The Problem Statement Analyser 
consisted of a set of tools for generating reports and checking the integrity of the database 
created from the PSL description. PSL/PSA is still alive and well today, with its enthusiastic 
devotees,  a web site  and a series of conferences.  We invited the proponents of a further 
development of SADT, SAFP/2, to come and give us some extensive presentations. Several 
ITT companies were to take part in this software research activity. In 1978 we held the first 
of several  seminars,  to which we invited known people from other companies as well  as 
software  programmers  and  managers  from  ITT  companies.  There  was  a  tacit,  almost 
subversive, conspiracy amongst the researchers in different, even rival, companies to share 
our technical ideas with each other, as a way of helping to persuade all our managements to 
encourage and fund the activities we believed were worth advancing. We could then use a 
subtext when talking to our managers, “look, company X is investigating technique Y, we’d 
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better  not  lag  behind”.  Participation  in  international  standards  committees,  research 
conferences  and professional bodies like BCS special  interest  groups was a great help in 
promoting this unofficial collaboration. In writing and presenting the case for our software 
research activity we included a “scenario”, like a story, of how software might be developed 
in the future (the future then being the 1980s). This use of scenarios presaged the European 
Community  initiative  Framework  Six,  twenty  five  years  later,  which  used  a  number  of 
scenarios of computers in everyday life to give a direction to the aims of current research in 
IT. One can then list the kind of technologies needed to make the scenarios possible. Our 
software research case was to be part of a coordinated collection of activities from different 
ITT companies, so we had quite a few meetings with people from ITTLS in Madrid, SEL in 
Munich and others.

We began to  concentrate  on development  methods even more.  SADT and its  derivatives 
seemed to prompt people into dashing off to do the design of a system before working out 
fully  what  the  specification  was,  what  the  system  was  intended  to  do.  Much  of 
telecommunications  software  involved  parallel  processing,  using  a  computer  to  service 
demands and data input that was arriving in parallel from different sources. Analysing and 
designing parallel  or concurrent systems was a much less well  understood art.  Petri  Nets 
could  handle  concurrency,  and  so  could  CSP,  Communicating  Sequential  Processes,  a 
specification formalism devised by Professor C. A. R. Hoare, then at Queen’s University, 
Belfast12.  CSP  has  since  thrived,  is  the  basis  for  the  concurrent  programming  language 
OCCAM, celebrated its twenty-fifth anniversary with a conference in 200413 and continues to 
stimulate research and development.

I  went  to  a  conference  on  “Fuzzy  Reasoning”.  It  explored  the  relationship  between 
mathematics, linguistics and computer applications. The classical syllogism:

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

uses the deductive rules of classical logic. One can contrast it with fuzzy reasoning:

Healthy men live long.

Socrates is very healthy.

Therefore Socrates will live a very long time.

The  terms  “long”,  “healthy”,  “very”  are  not  cut  and  dried.  The  truth  of  statements  like 
“Socrates is very healthy” is not absolutely decidable or determinable, but can be slightly 
true, very true, debatable, etc. Different rules of deduction have to be used for these “fuzzy” 
12See Hoare 1978.
13See Abdallah et al., 2005.
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statements. These new rules of logic were called “fuzzy reasoning”. Fuzzy reasoning could 
be used in certain kinds of control systems in chemical plants for example, where temperature 
readings could start getting “a bit hot” and so on. The conference suggested that there were 
applications in system modelling,  artificial  intelligence,  medical diagnosis, social  sciences 
and medical information systems. This was a conference full of interesting ideas, but I did not 
think they were particularly applicable to telecommunications14.

The National Computing Centre was already over ten years old, having been founded by the 
UK government in June 1966. Its aim was to encourage the growth of computer usage in the 
UK, simplify the work involved in using computers and ensure that the necessary education 
and training were available.  Since its foundation it has produced copious useful booklets, 
guides and studies. In 1978 the NCC was planning a booklet on program design methods. We 
tried to be as up to date as possible in program development methodology by meeting with 
many  organisations,  the  NCC,  the  SRC  –  Science  Research  Council,  now  the  EPSRC, 
Engineering  and  Physical  Sciences  Research  Council  –  Software  Sciences,  the  Digital 
Equipment  Corporation  and  others.  You  could  say  we  were  thirsty  for  knowledge  and 
understanding.

We  invited  two  members  of  the  SRC  to  a  meeting  and  told  them  about  our  research 
programme,  both  in  software  and  computer  architectures.  Another  group  at  STL  was 
investigating novel microprocessor based architectures. We also visited Software Sciences in 
Macclesfield  and  heard  about  their  Gamma  method.  They  had  been  tutoring  the  data 
processing  department  of  Barclays  Bank in  its  use.  Barclays  bank had  a  team of  eighty 
programmers who were programming the first cash point or ATM facility. Cash points were 
in  their  infancy but coming into use as the nineteen  eighties  approached.  We decided to 
provide some funds to assist the development of Gamma, along with Barclays Bank, and 
made a case for ITT funding planned cover three years from 1978 to 1980. Cases for ITT 
funding had to be made for each calendar year afresh, which hampered the planning of longer 
term projects.

Digital  electronic  technology  was  also  advancing.  Software  resided  in  new  computers 
constructed  from  this  new,  miniaturised  technology.  Because  computers  were  becoming 
smaller  and cheaper,  it  was possible to have several  intercommunicating with each other. 
With the advent of microprocessors, this was even more the case. We were, indeed, starting a 
collaborative project on a new microprocessor with the Intel Corporation. This computer was 
expected to be ready to take new systems software on board in the early eighties. We had to 
restrict information on the project to protect the commercial security of Intel and we were all 
charged not to  talk  about  it.  The fewer  people who knew about  it  the better!  To enable 

14See Mamdani & Gaines, 1981.
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computers  to  communicate  with  each  other,  specific  communication  software  has  to  be 
written. The ways of doing this are far more problematic than with simple, linear programs 
that sit inside one computer and are executed one instruction at a time. Protocols are needed 
to  make  sure  that  information  is  sent  and  received  at  the  right  time,  to  ensure  proper 
synchronisation and to resolve possible conflicts if more than one computing process is trying 
to communicate with another. “Semaphores” were one of the first techniques for doing this 
and were invented by Edsger Dijkstra15.  They were a technique for ensuring that  critical 
sections  of  code  could  not  be  interrupted,  and  also  provided  a  mechanism  for  forcing 
different processes to wait and allowing others to resume. Another computer scientist from 
the  Netherlands,  Per  Brinch  Hansen,  devised  a  method  called  Monitors,  which  could  be 
implemented using semaphores. Monitors could ensure mutual exclusion, so that for example 
two different processes could not work on the same piece of data at the same time, with 
resulting confusion. With an airline booking system, you can imagine that two or more travel 
agents might be trying to allocate the same seat to two or more customers at the same time. 
Used  judiciously,  monitors  could  prevent  this.  Monitors  were  incorporated  into  some 
programming languages that were specially designed for concurrent programming. Modula-2, 
based on the earlier language Pascal, was a notable one of these. But these were low level 
mechanisms,  programming  techniques,  that  had  been  around  for  some  ten  years.  The 
theoretical understanding which would lead to more general rules and specification languages 
for  parallel  programming  were  just  beginning.  Petri  Nets16 and  Hoare’s  Communicating 
Sequential  Processes17 were two such theories that had recently been published, and were 
soon  to  be  followed  by  a  “Calculus  of  Communicating  Systems”  by  Robin  Milner  at 
Edinburgh University’s Department of Computer Science18.

But the advancement of computer hardware did not just affect the nature of the programs we 
had to write.  They could also affect  our working environment  itself.  This book has been 
prepared on a word processor, that is an application program on a personal computer. Until 
the late seventies, ordinary typescripts were not held on computer files but were prepared on 
typewriters,  usually by typists  and secretaries.  In 1978 the first word processors began to 
arrive. These were purpose-designed computers, used for nothing else, a desk-top substitute 
for a typewriter. There was a lot of resistance from typists and secretaries to using these. A 
firm came to visit us and demonstrated a word processing product called Wordwright. Typists 
and secretaries did not want to learn “how to use a computer”. Our organisation did not adopt 
this new way of working just yet,  but some others did, to advantage. We now take it for 
granted  that  any  document  can  be  altered,  paragraphs  inserted  and  moved  about,  with 
minimum effort.  For a few more years we stayed with the less efficient typescript  which 

15See Dijkstra 1968.
16See Carl Petri 1973 and 1980.
17See Hoare 1978.
18See Milner 1980.
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required retyping for major revisions or messy, literal “cut and paste” jobs with scissors and 
glue.

DEC,  the  Digital  Equipment  Corporation,  manufactured  a  successful  minicomputer,  the 
PDP11. They gave us a presentation on a new extended version being developed at the time, 
the VAX11/780. Minicomputers were much smaller than the big mainframes like the IBM 
360 and 370,  or  the  old English  Electric  KDF9 or  CDC or  Burroughs machines,  which 
occupied the whole of a large room. Minicomputers would take up a couple of racks, tall 
bookcase  sized  metal  frames  holding  layers  of  circuit  boards.  So  they  were  bigger  than 
personal computers, which were based on microprocessors and were designed for individual 
use. The VAX series was to become successful and to have a substantial product lifetime. 
The VAX11/780 was to have quite a number of innovative ideas. It would have a virtual 
memory, that is a two or more level store that the operating system would present as a single 
large storage area, which I first encountered on Atlas and which is present in every present 
day personal computer. It would have a cache memory holding the last or most likely used 
128 memory contents, as do today’s computers. Its instruction set was to be oriented to high 
level languages, having loop and case instructions (case statements are multiple conditional 
branch instructions). But I noted that there was no direct support for things like parameter 
passing or the more complex data types. I also had my doubts about whether a compiler could 
make use of these special loop and case instructions in practice. Every high level language 
has subtle differences that can easily be incompatible with the simple interpretation of such 
facilities that a machine’s architecture might offer. The VAX11/780 operating system would 
allow  concurrent,  multiprogramming,  interactive  and  batch  work.  Its  memory  had  error 
correcting codes that would correct all single bit and detect all double bit errors. Altogether, 
fairly impressive and full of good ideas for the time. I think it gave our microprocessor group 
much food for thought.

Alongside all this assessment of new research into computer technology and trying to push it 
forward, some of our day-to-day operational problems still persisted. They did not want to go 
away. Jacques Newey kept producing document after document giving details of his proposal 
for transporting the ITT 3200 software development platform from the 3200 to the IBM 370. 
This would have been by far the better, more efficient way to develop systems software for 
the 3200, something I had recognised soon after I started at STL some six years earlier. When 
I look back on it, part of me wants to say “At last!”, and part of me marvels at Jacques’ 
persistence in the face of management inertia. He didn’t take “no” for an answer and after 
being  steadily  bombarded  with  his  ever  more  detailed  documents  and papers,  describing 
proposed  conversion  utilities,  cross-assemblers  and other  features,  management  began  to 
believe that it was actually happening. The result was – it did. By September 1978 SDSS, the 
name given to the new cross-development system, was beginning to be used, particularly by 
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the Spanish ITT company SESA and their research laboratory ITTLS. But simultaneously 
DPSS, the replacement operational system for the BSCC and LCT software, continued to be 
developed and was well in hand by 1978. The main user seemed to be BTMC in Belgium. 
They were providing the most copious feedback to the development team and continued to 
test and validate it  throughout that year. I mused to myself that the original concern over 
DPSS had been that instead of superseding its two previous rival development systems for 
3200 software, the BSCC and LCT systems, DPSS might simply become a third. Now, with 
SDSS, we had four contending systems! Professor John Buxton’s original recommendations 
had been two-part. A recommendation of principle, that development should be incremental, 
not big bang, and a pragmatic one, and secondly, that since we had started DPSS we should 
finish it. While appearing to accept his advice, the company did not seem able to follow it, so 
as a consultant he was quite safe. No-one disagreed with his advice, and no-one could hold 
him to account since they did not do what he said!

However, the two pieces of development, DPSS and SDSS, had another beneficial effect. 
Programmers and managers from various teams in Europe all took some part in them, and 
previous  rivals  were  often  working  together  on  technical  policy  committees  to  reach 
agreement over the schedules, timescales, resources and technical details of these projects. 
The old rivalries were sinking into the mists of the past. I thought there was a moral here: 
don’t ever make too hostile an enemy, for you may find yourself working alongside them a 
couple of years later.

STL, being a research laboratory, frequently filed patents. The lab had a patents department, 
whose rôle was to draft patent applications and guide them through the filing process. Every 
department was urged to file patents. Filing patents was seen as a measure of success. But the 
question  of  whether  one  can  patent  computer  software  has  always  been  uncertain.  Only 
“products” can be patented, but these can include processes, for example, like those found in 
the chemical industry. A pure computer program is a document and an algorithm, a step by 
step process for performing a calculation or driving a piece of apparatus. It might be possible 
to copyright a program, treating it as a document. But that would not be particularly useful, 
for a program can easily be radically changed in form while keeping its  design intact.  A 
specific physical device containing a computer and some software could be patented, for that 
would be a product. These days the attitude to patenting software has relaxed a bit, especially 
for software that has a particularly recognisable user interface. As part of the drive within the 
company to  accumulate  patents,  we were  urged to  keep  laboratory notebooks,  dating  all 
entries so that evidence would be to hand in case of disputes over the origin of ideas. Most of 
us followed this advice,  although we never produced software patents.  Since then I have 
noticed that workers in many research and academic establishments keep their day to day 
notes in day books, instead of on pieces of paper or in folders. It does add some weight in an 
argument if you can say to someone,  “On 30th July at 2.45 p.m. we agreed that…”. And 
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without my notebooks I would not have been able to recall the flavour and details of all this 
work!

With the hardware technology changing under our feet all the time, ITT and STC continually 
needed to train and retrain their staff. Not only did existing programmers need to learn about 
the new languages and methods of design, but there was a general shift towards more use of 
computers  in  telephony.  Electromechanical  and  electronic  apparatus  were  slowly  being 
replaced by computer-driven technology. This meant that fewer hardware engineers and more 
software engineers were needed. So hardware engineers had to retrain as software engineers. 
Not only do old dogs not learn new tricks, but even relatively young hardware and software 
engineers were often reluctant to retrain.  Engineers may have established a reputation for 
themselves, having expertise built on several years experience in technique X. If they now 
have to learn technique Y, they are on the same level as younger staff, paid less, who are a 
few years behind them. The seasoned engineers would then feel insecure. We had to work 
hard to allay these feelings.

Part of the rôle of the research groups was to watch the future, to keep an eye on the way 
hardware and software were advancing so that the company could keep abreast or, preferably, 
ahead of its rivals. To do that the development staff had to be prepared for new techniques 
too,  so  the  research  groups  were  frequently  making  recommendations  about  training, 
designing  curricula  and  devising  courses.  We  worked  with  several  other  institutions  to 
discuss and jointly create courses. Lancaster University were, like us, interested in producing 
a course in the programming language Pascal. It had overtaken Algol60 in popularity and was 
regarded as being more practical. We also worked with The University of Essex, who were 
not far from us geographically.  They laid on custom designed courses for us, which were 
presented like fairly prestigious industrial events, with a formal dinner and various goodies 
for the “delegates”,  rather than “students”.  The government  had started to encourage and 
require universities to work with industry, and so there was a certain eagerness in academia to 
get together with us as soon as we said the word. Harold Wilson’s government coined the 
phrase  “UK  plc”,  and  if  universities  worked  with  industry,  they  were  justifying  their 
existences more strongly. We also had discussions about course construction with InfoTech, a 
software training and consultancy company that is still  thriving. However, we also had to 
work quite hard to persuade our own management to let us go along this path. STL was a 
research laboratory of the company and STL management had a slightly ivory tower view of 
their  own establishment.  For STL’s researchers  to get involved in  training was,  to them, 
rather undignified, a waste of intellectual talent. One or two of our proposed training projects 
were actually stopped by management intervention, at one time by the managing director, 
who happened to see a set  of course notes of mine in the photocopying room, ready for 
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duplication and distribution. He cancelled the duplication order (without letting me know). 
Training is not STL’s rôle, he said.

Prophets are rarely recognised in their own country. A research group in a large company can 
be  greeted  with  cynicism  and  suspicion  by  management  and  other  development  groups. 
Recognition outside the company can bring about greater internal respect for the research 
group. It was to our advantage to make ourselves known to other bodies, and we made a few 
approaches to enter contracts with other firms. Of course, they could not be direct rivals, but 
software was used in a great variety of applications, many of them not pursued by STC or 
ITT. We met Hawker Siddeley Dynamics in Stevenage, who were bidding for a contract with 
the European Space Agency. The contract was to write the on-board control software for an 
unmanned space vehicle.

Hawker  Siddeley  gave  us  a  rundown  on  the  potential  contract.  The  ESA  required  very 
restrictive Quality Assurance measures, which led to their tending to insist on methods and 
procedures  of development  that  were not up to date  in their  thinking.  For example,  they 
required a development process of design, code, test and recode. We favoured performing 
verification while implementing,  which meant  that  the development  preserved correctness 
whilst it was in progress. The more old fashioned code–and–test process meant that one was 
always trying to remove errors after they were made. It is well nigh impossible to catch them 
all.  We believed  our  approach  was  much  more  reliable,  and  therefore  more  suitable  for 
critical applications. Once a space craft has been launched, repairing the on board software is 
very difficult, if not impossible. In 1978 the ESA also required a great deal of information 
from its contractors: the CV of everyone engaged on the contract, corporate details and track 
record of the company, corporate experience as subcontractors (of which we had little), the 
organisational structure of the company. The development of the on board software was to be 
hosted on a Modular  One, a minicomputer  manufactured by a British company,  Modular 
Technology Ltd. Hawker Siddeley told us how a proposal for a similar study ran to 50 pages 
including 25 on the planning and scheduling of the work and 23 on the technical content.

The  ESA were opposed to  using high level  languages  for  on board  software  because of 
variations between compilers  and of occasional faults,  which were outside their and their 
subcontractors’ control. There is a real dilemma here. If one uses a low level language, one is 
effectively translating from the low level design to the code by hand, which is much more 
error prone and subject to variations in design approach. But the ESA were correct in their 
assessment,  at  the  time,  of  variations  and  lack  of  reliability  of  commercially  available 
compilers.

The  ESA also had a  low limit  on the  labour  rate  they were willing  to  pay for  software 
development  work.  Hawker Siddeley Dynamics  admitted they were hard pressed to meet 
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these labour rates and found it only worthwhile bidding for these contracts if they had staff 
who would otherwise not be engaged on any fee earning work. This was not really the case 
for us. After a lot of discussion within our division I proposed that, regretfully, we should 
withdraw from the bid. I thought it was important that we should tell the ESA the reason. I 
believed that  they were not ensuring the best  quality,  which they surely needed for such 
critical work, if they adopted this financially strapped policy. I telephoned their representative 
in Amsterdam and made this point to him. His only reply was:- “Well, we usually get several 
bids”. I believe that, since those days, the ESA have moved on a long way, and use software 
technology that is state of the art.

To increase our exposure to the technical world outside, we tried to publish academic papers 
and attended an increasing number of conferences. It all helped to make ourselves known 
elsewhere and in turn improved the regard in which our own management held us. IFIP, the 
International Federation of Information Processing had a number of specialist groups and a 
prestigious periodic conference. The Computer Journal of the British Computer Society and 
various  publications  of the ACM, the US Association of Computing machinery,  were all 
outlets for publications. These multiplied rapidly as the years went by until one day I realised 
that the department was receiving thirty seven journals. No-one had time to read many of 
them, and so we pruned the selection.

This account may suggest that my time was filled with excitement and innovation. In fact, I 
have found that every job consists of boring activities for at least 50% and, with luck, 50% of 
interest and engagement. Much of my time was taken up with necessary but pedestrian tasks 
of administration and non-technical meetings, planning and negotiating office space, budgets, 
furniture,  purchase  of  equipment  such  as  mains  voltage  stabilisers,  and  comparing  their 
sources of supply. The more senior of us spent much time discovering what other technically 
respected organisations, including competitors like Bell Labs, were doing, the programming 
languages and development policies they were pursuing. We needed to keep up with the best 
in the field, but also to try and predict in what directions various aspects of technology were 
likely to advance, so that we did not waste time and resources by going the wrong way.

A huge amount of my time was spent at this period on planning and estimating budgets for 
possible projects and activities, most of which we knew would never happen, but were just 
ideas up for discussion. For example, how much would it cost to develop a “computerised 
document control system” and train everyone to use it? ITT was very proud of its quality 
control system. They set up small groups of people called “product control centres” and gave 
them responsibility for controlling the quality of a set of products. The BSCC was one of 
these. An ITT standard prescribed how these centres should work, producing documents such 
as a product register, a register of sites which produced the products, and change proposal 
register, a change note register and so on, and so on. There were rules about what documents 
could or should be written when, and the whole system cried out to be implemented on a 
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computer. We made an outline design of a computerised system and made estimates for the 
cost of building it and bringing it into service, and did the same for several other proposals 
which never came into being. At the same time I was still involved in the nitty-gritty issues of 
the  3200  computer  centre,  configuring  new  peripherals  to  be  shared  between  several 
machines,  the  repair  of  sticky  hammers  on  the  line  printer,  maintenance  contracts  with 
suppliers etc. 

The seventies were coming to an end and the eighties approached. We continued to keep 
track of the latest advances and at the same time to spread the principles that we had learned 
to the development  groups within our own company.  Other research laboratories in other 
companies,  the  GEC  Hurst  Laboratory  and  Plessey  Laboratories,  were  doing  likewise, 
pursuing their own research agendas. But we all communicated, despite being ostensibly rival 
organisations.  There  was  an  almost  subversive  agreement  amongst  us,  that  sharing  our 
knowledge would speed up progress in the industry and accelerate technological advance. So 
I believe that our experiences were fairly typical of the computer and telecommunications 
industry, and not just in the UK.

We held seminars where we presented some of the latest thinking, applying it to practical 
telecommunications software design, and inviting occasional speakers from outside. We tried 
to make these attractive to visiting names in academic computer science, both to promote our 
own reputation among them and to attract interest in the seminars. We invited academics and 
known researchers in other companies like ICL, BT, Plessey and GEC to the seminars. STL 
and STC had rules about company confidentiality. One had to go through elaborate and time-
consuming procedures to obtain permission to publish papers and articles. The company had 
a certain paranoia about giving away our “secrets” to rivals. But, probably through omission 
rather than deliberate  policy,  there were no such strictures on seminars held on company 
premises, even when outsiders were invited. When publishing papers I had, in any case, hit 
upon the tactic of writing on the authorisation form “This paper is mathematical in nature and 
hence has no commercial value”. I was surprised at how well this worked.

One seminar went down particularly well and several external invited visitors came along to 
it. We decided to hold the event in a bigger, better accommodated lecture theatre in another 
STC building in Harlow. There was a local canteen in the building, and also a visitors’ dining 
room. My manager decided that it would be too expensive to provide a visitor’s lunch for 
everyone  attending,  so  he  authorised  only  enough to  accommodate  the  external  visitors, 
speakers and organisers, who were so to speak the hosts. On the day he decided to come to 
the seminar himself, and come lunchtime, he realised that he had excluded himself from the 
visitor’s lunch by his earlier ruling. He and I were talking together in the mêlée as it divided, 
the guests,  speakers  and organisers to the left  and hoi polloi  to  the right.  He said rather 
mournfully to me, “Oh well, I suppose I’ll have to try the canteen”. It was on the tip of my 
tongue to say I was sure there was room for an extra one on the visitors’ dining room, but I 
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held back.  I felt  that  to do so would have been sycophantic.  But it  was an embarrassing 
moment.

While I had been much influenced by Dijkstra’s seminal Discipline of Programming19 and his 
pre-  and  post-conditions  approach,  he  had  not  shown how  this  could  be  applied  to  the 
programming  technique  of  decision  tables.  Decision  tables  use  tables  of  conditions  to 
determine  which  of  a  choice  of  actions  to  take,  and  do not  fall  into  the  usual  ambit  of 
programming structures  prescribed by the structured  programming methods  advocated  by 
Dijkstra. Decision tables were used a lot in telecommunications programming because of the 
many  features  and  choice  of  actions  that  occur  in  telephony.  Imagine  the  recorded 
instructions you hear when listening to a recorded voice when dialling many numbers these 
days. The system takes different actions depending on whether you press or say “1”, “2”, etc. 
In one seminar I showed how Dikstra’s pre- and post-conditions could be extended to include 
well-structured decision table techniques.

Mike  Gifkins  at  STC  IDEC  proposed  producing  one-page  sheets,  called  “Software 
Technology Summaries” for internal consumption. We liked the idea of this and with Mike 
produced  several  over  the  next  couple  of  years.  The  first  was  on  state  machines  and 
grammars:  The simplest  kind of computing device consists of a machine that has a finite 
number of states and moves from one to another depending on the input it receives. In the 
1930’s,  before  any  practical  computers  had  been  built,  Alan  Turing  showed  that  any 
calculation that a computer could perform could be performed by a finite state machine (his 
was a very particular type using an indefinitely long tape, but other researchers showed that 
this was equivalent to other kinds of state machine). In fact, many of the earlier telephony 
designs were based on state machines, mainly because the early telephone exchanges were 
electromechanical and could best be described in this way. Other computer scientists such as 
John Backus had showed an equivalence between state machines and grammars, expressed in 
the form defined by Chomsky in the 1950’s. It was traditional  amongst telephony design 
engineers to define the simple telephony protocols using state machines. A protocol is really 
just a simple language. I was always puzzled by the fact that the telephony engineers used 
state machines to define a language, when it would have been much more natural,  to my 
mind, to use an equivalent grammar. It was as if they were defining the shape of a key by 
describing the lock that it would open. So one of the first Software Technology Summaries, 
STS’s,  was  on  state  machines  and  grammars.  We  produced  more  on  the  Contractual 
Methodology,  the approach to  system design mentioned earlier  in this  chapter,  and other 
topics.

19 See Dijkstra 1976
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Chapter 8 The Search for Formality
One of the turning points in my whole career was in January 1979. Don Combelic urged 
Bernie  Cohen  and  me  to  attend  a  Winter  School  on  Abstract  Software  Specifications, 
organised by Professor Dines Bjørner of the Technical University of Denmark. Don had met 
Dines Bjørner on the CCITT CHILL committee and had been impressed. This was a two 
week event in the depth of a Danish winter in Copenhagen. I went prepared for the cold, 
taking my walking boots which I wore to travel between my hotel and the university, a bus 
ride  and  trek  through  snow  every  morning  and  evening.  The  river  in  the  centre  of 
Copenhagen was frozen. Dines had gathered together most of the big academic names in 
what became known as formal semantics, the mathematical modelling of the semantics or 
meaning of programming languages. We had challenging and mentally exhilarating lectures 
from Cliff  Jones,  Steve Zilles,  Joe Stoy,  David Park,  Peter  Lucas,  Gordon Plotkin,  Peter 
Mosses, Ole-Jan Dahl, Barbara Liskov, Peter Lauer, Rod Burstall and Dines Bjørner himself. 
The  lectures  showed  how  mathematics  could  be  used  not  only  to  model  the  syntax  of 
computer languages, which the earlier work on grammars and automata had done. Set theory 
and  logic,  normally  regarded  as  part  of  pure  mathematics,  could  be  used  to  define  the 
semantics of a language. Mathematical theories could be put together to build specifications 
of what a program was designed to do, using the same ideas from set theory and logic. If you 
have the mathematical  tools to define the meaning of a program, then you can write this 
meaning down before you have written  the program itself.  That  way you have a precise 
statement  of  what  you  want  the  program to  do.  This  is  a  functional  specification,  more 
usually just called a specification, of the program. Mathematical logic can then be used to 
show that the program satisfies the specification. Some advanced mathematics was needed to 
model certain aspects of programming languages, topics such as domain theory and category 
theory that I had not come across, even in my maths degree course. All this extended and 
generalised the work of Dijkstra that had so engaged me to date.

Several of the lecturers, Dines Bjørner, Cliff Jones, Peter Lucas, had worked for the IBM 
laboratories  in  Vienna  and  had  produced  a  formal  semantics  definition  of  the  PL/1 
programming language,  which IBM used extensively.  To do this  they produced a special 
“meta-language” called VDL, the Vienna Definition Language. A variation and development 
of this could be used to specify programs, that is to write their specifications. Cliff Jones and 
Dines  Bjørner  together  devised  a  way  of  developing  programs  in  which  one  wrote  the 
specification,  and produced the program proving that  it  satisfied the  specification  as one 
wrote  it,  using  mathematical  logic.  This  approach  was  called  the  Vienna  Development 
Method, and the specification language, based on VDL, came in due course to be known as 
VDM-SL1.

1 See ISO/IEC 13817-1, 1996
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We had a free weekend in the middle of this course. On, I think, the Saturday, Bernie and I 
sat in his hotel room discussing how we might spend the time. I had seen people skating on 
an ice rink in the town and I had wondered about doing that. While we were deciding, Bernie 
produced a bottle of duty free vodka he had bought on the way out. We finished the vodka 
and didn’t go skating.

I think the Copenhagen Winter School stimulated both of us to go to more events and try to 
learn  more.  In  January  1980  I  attended  the  annual  POPL –  Principles  of  Programming 
Languages  –  conference  in  Las  Vegas.  This  may  seem an  odd  choice  of  venue  for  an 
intellectual conference on computing, but I learned that it was off season in Las Vegas and 
the  hotels  offered  extremely  advantageous  rates  for  conferences.  There  were  130 papers 
submitted to this conference and 25 were accepted. The criterion for selecting them was not 
to be survey or tutorial material, but original work. The most interesting from my point of 
view were papers by Leslie Lamport and Amir Pnueli. Lamport’s paper was on modal logic, 
that  is logic that takes time into account by using symbolised representations of ‘before’, 
‘after’, ‘never’, ‘sometime’ and so on. This is useful for reasoning about concurrent programs 
in which one is interested in continuous behaviour rather than what is true before and after 
execution. Examples might be operating systems or control processes which may in principle 
continue  indefinitely.  He  also  talked  about  modelling  non-deterministic  programs  which 
might  depend  on  indeterminate  external  events  or  timings.  Pnueli  talked  about  another 
temporal  logic  system  using  a  different  notation  and  presented  an  axiomatic  rules  of 
reasoning about systems. I thought this might well be relevant for telecommunication systems 
where there is a lot of parallel activities and unpredictable traffic properties.

Las Vegas was like nowhere else I have ever experienced. I stayed in the same hotel as the 
conference venue and on entering I could not find the reception for some time. The whole of 
the entrance foyer was a casino. One had to walk through it to find the hotel reception hidden 
at the back. There were fruit machines everywhere, on the walls lining the baggage carousels 
in the airport and even in the bus shelters at the side of the road. I determined to spend my 
time in Las Vegas without gambling either on machines or tables.

This was my first ever visit to the USA. To get a bit more value for money out of the trip I 
had arranged to visit the ITT location in Des Plaines, which is near Chicago, after the POPL 
conference. In January in Las Vegas the temperature was a pleasant 70°F, 21°C. People were 
walking around outside in their shirtsleeves. In Chicago, on the shore of Lake Michigan, it 
was  -4°F,  -20°C,  the coldest  I  have  ever  experienced.  The change in  temperature  in  the 
course of a short flight was dramatic. I stayed with a colleague who I knew from the CHILL 
committee who lived on the outskirts of Chicago and worked for Bell Laboratories. On an 
afternoon off we both visited the Chicago museum of modern art, a veritable treasure house 
and remarkably free of visitors for such a fine collection. There was not much to discuss with 
my colleagues in ITT Des Plaines, although they were interested in our Software Technology 
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Summaries and asked to be on the mailing list. I was a little shocked by the physical state of 
their premises. Their canteen had no crockery, only disposable plates and paper cups, which 
littered the tables and the floor.

In March of 1980 we invited Jean-Raymond Abrial  to give us a seminar  on his  abstract 
language, Z2. Abrial was an independent French researcher who had developed an approach 
to modelling computer programs that was in principle very similar to VDM. He had recently 
joined  the  Programming  Research  Group  at  Oxford  University,  and  this  was  to  be  the 
beginning of an enjoyable collaboration between us and the PRG. Z and the VDM language 
both used set theory and logic, topics in pure mathematics, to model the actions of a computer 
program. The syntax and appearance of the two languages were different,  but there were 
more important differences in approach. Z used traditional mathematical functions to model 
programming functions and procedures, whereas VDM used the functions of domain theory. 
To be more accurate,  VDM used a type  of reflexive domain developed by the computer 
scientist Dana Scott to model programming functions. VDM had evolved from the endeavour 
to define the semantics of programming languages. That meant that it had to be able to model 
any construct that one could write within a typical high level language, regardless of how 
likely anyone was to do so. In sophisticated high level languages one may define a data type 
recursively.  In particular, a data type could include functions from that same data type to 
another. However, in the late nineteenth century the mathematician Georg Cantor proved that 
no mathematical set can include its own function space. So, in theory,  it  is impossible to 
represent all possible computer data types as traditional mathematical sets.

VDM overcomes this problem by using reflexive domains, and in particular Scott domains3, 
which are an elaboration of sets, to model data. Domains, unlike sets, can include their own 
function space, because only computable functions are included. Computable functions, the 
kind that can be programmed on a computer, are finitary; that is they can be defined with a 
finite amount of information. If one restricts the function space to computable functions, then 
a domain can indeed include its own function space. Dana Scott had worked on this problem 
from the early seventies4 and spent important periods with the PRG at Oxford University.

Z uses traditional set theory to model data types. However, Z was devised to model programs, 
rather than to define the semantics of programming languages, and so one could argue that it 
does not need to use domains as its foundation. But, debatably, it might not be able to model 
programs containing certain kinds of recursive data types.

Abrial’s seminar was the beginning of a collaboration between our software research group at 
STL and the Oxford PRG. The PRG were keen to demonstrate Z by applying it to a real life 
programming project and to transfer the technique to ITT. The U.K. government were urging 

2 See ISO/IEC 13568, 2002.
3 See Scott 1980.
4 See Scott 1971.
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academic departments to demonstrate the practical value of their research work by applying it 
to industrial problems and working collaboratively with industry. So we looked for a project 
to  act  as  a  test-bed  for  Z.  We thought  it  would  be  most  unlikely  to  find  a  commercial 
telecommunications project willing to take part in an experiment of this kind, so we sought a 
non-critical  task that  would nonetheless  be useful  for the firm and that  could serve as a 
demonstrator.

STL, one of the leading research laboratories of ITT, had some 3,000 visitors every year. If 
one  expected  a  visitor,  one  had  to  fill  in  a  form,  and  send  it  to  Gladys,  the  visitors’ 
administrator.  Gladys  would generate  more  forms to be sent  to  the security at  reception, 
another to the visitors’ dining room if one had ordered lunch, book hotel accommodation, 
send forms to the canteen for coffee if required, initiate the production of a visitor’s lapel 
badge, and several other things. This was quite an involved administrative process, all done 
manually and on a fairly large scale. If the process was computerised it would be easier to 
amend arrangements, to trace progress and to avoid the hiccups which sometimes inevitably 
occurred. We invited Carrol Morgan and Bernard Sufrin from the PRG for a day and put 
forward  to  them  the  idea  that  they  could  specify  this  system  in  Z  and  develop  an 
implementation on a desk-top computer. When a piece of software is developed, one starts 
with  a  requirement,  which  can  only  be  accurately  determined  by  discussing  it  with  the 
customers,  those  who  are  going  to  use  the  software.  From  the  requirement,  which,  if 
everything is done properly, should be written as a document that forms part of the project 
development history, the principal items of data and functions to be performed on them can 
be determined, and then the specification can be written. The specification is taken back to 
the customer and its details played back to them to see if it truly reflects their needs. In this 
case the customer was Gladys, the visitors’ administrator. The statement of requirements and 
the specification would typically go through several iterations before all parties were satisfied 
with the results. Bernie Cohen and I were keen that the people from PRG should carry out all 
this part of the process in order to reach the specification in Z. It represented the proper way 
of doing things according to the latest thinking in good quality software engineering, and we 
were  particularly  interested  to  see  whether  two  academic  researchers  could  successfully 
replay the implications of a specification written in a language based on pure mathematics to 
our user Gladys, who had no technical or scientific background. One misgiving many people 
had about  formal  methods  was that  the technical  documents  would be unreadable  by all 
except a few specialists, and this would render them impractical. If the PRG could produce a 
formal software development while working with someone with no technical background, it 
would give the lie to this  common pessimistic  doubt.  Carrol Morgan and Bernard Sufrin 
enthusiastically took on the challenge and after a few weeks came back to tell us the result. 
They had had several meetings with Gladys and walked through the resulting Z specification 
with us. All seemed well and they proceeded to produce the program as described by the 
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specification. They chose Pascal, a popular high level programming language that was widely 
available, to implement the specification, and all went according to plan. The project and 
resulting system was called “CAVIAR”, an acronym for Computer Aided Visitor Information 
And Retrieval.

From this exercise we and the PRG had a demonstration of the efficacy and utility of Z, a 
formal specification language for software. This demonstrator was useful for both parties. It 
gave us evidence to persuade our own management to go ahead with using formal methods in 
further real  projects  and it gave the PRG evidence that their  researches were of practical 
industrial use.

In June the same year Tony Hoare, who was head of the Oxford University PRG, was seeking 
to  have  Jean-Raymond  Abrial’s  fellowship  from the  Science  Research  Council  renewed. 
Abrial  was  French,  and this  was before there  was the freedom to work anywhere  in the 
European Community.  So Tony Hoare needed affirmation of the value of his being in the 
U.K. We sent a letter with a director’s signature attesting to his useful work in technology 
transfer  to  ITT,  which  Tony Hoare  could  show to  the  SRC.  So this  academic-industrial 
collaboration was of mutual benefit.

Z and VDM could specify and model systems that are sequential, which means performing 
one action after  another and having a beginning and an end.  To model  a  process that  is 
reactive and continuous, interacting with its environment or with a human user, and having 
no  particular  endpoint  to  its  computation,  was  more  difficult.  Even  more  difficult  is 
modelling parallel computation, in which two or more computers interact with each other. 
Telecommunication  systems  were  typically  reactive  and the  new microprocessors,  which 
were coming on the scene, were bringing with them the possibility of many small computers 
acting in parallel to combine together to make a more powerful computation engine. So we 
were looking at other researches into ways of modelling reactive and parallel systems. There 
were  several  contrasting  pieces  of  academic  work  being  done  into  this,  all  with  their 
enthusiastic protagonists. It was not easy to determine which approach would be best for our 
purposes and for some time we kept track of most of them. Robin Milner from Edinburgh 
University  visited  us  and  gave  a  presentation  on  CCS  –  Calculus  of  Communicating 
Systems5. We were all impressed with this. It could model parallel computations, with shared 
data, and communication of data between processes. It could also display the structure of a 
system of parallel  processes,  allowing one to  analyse  a  system and express the model  at 
different levels of detail, and to prove properties of a system such as absence of deadlock. 
Today’s  personal computers are reactive systems that can do some operations in parallel. 
How often they seize up and have to be restarted! The system has reached a deadlock. A little 
later Bernie Cohen and I attended a conference on the semantics of concurrent computation, 
the first of many over the forthcoming years. Several of the approaches used temporal or 
5 See Milner 1980
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modal  logic,  in which one could make statements about the state of a system over time: 
something is true now, or will be true sometime, or will be true henceforth, or a combination 
of these. These systems have rules of deduction so that desired temporal properties can be 
demonstrated. Another formalism for modelling concurrent systems was developed by Carl 
Petri at the University of Bonn, which has become generally known as Petri Nets6.

Although we did not fix upon any one specification or modelling technique, we embarked on 
a  collaboration  with Robin Milner  and Edinburgh University.  The idea  was to  apply the 
theory to a number of practical applications provided by us at STL which were of relevance 
to concurrency problems in telecommunications. It took nearly a year from the first inception 
of the idea to get started. We had to find a project and, more critically, to make the case for 
funding the collaboration. Robin had to find a suitable candidate for doing the work. In mid-
1980 he proposed Mike Shields for the post. At the time Mike was working in the computer 
laboratory at the University of Newcastle.

I had encountered Mike the previous year at a conference on the semantics of concurrent 
computation7 held  in  Evian,  the  small  French  town  famous  for  its  water.  Mike  had 
particularly struck me when he gave his paper at the Evian conference, because he said right 
at the beginning that what interested him was the mathematics of the problem. A gathering of 
notable  computer  scientists  were there,  Tony Hoare,  Leslie  Lamport,  Glynn Winskel  and 
others. Evian is on the shores of Lake Leman, the French name for Lake Geneva. A much 
travelled colleague from ITT recommended to Bernie and me that we stay in a particular 
small hotel in the town, which he declared was the best hotel he had encountered in all his 
travels  in  Europe.  I  must  say that  this  was  a  delightful  place,  every  room different  and 
furnished with antique oak pieces. The hotel had a small open air swimming pool and one 
sunny morning we both had breakfast by the side of it. There was no breakfast menu – you 
just asked for whatever you wanted. In the bar all the way round the walls on a high shelf was 
the largest collection of Scotch Whisky I have ever seen. The prices were quite modest.

So it was that Mike Shields spent the time at STL busily reading up on telecommunications 
projects and principles.  We sent him on an introductory course that most of us had been 
through, to give him context: Telecommunication Switching Planning, run by a charismatic 
septuagenarian British employee  of ITT who had an apartment  in both London and New 
York. Mike returned from this course energised and enthusiastic about the forthcoming work. 
We had thought of several possible applications for Mike to work on. There are concurrent 
program facilities in both the languages CHILL and Ada. There were three software R&D 
projects in ITT that were possible candidates. But beyond the confines of ITT, the CCITT 
had defined a standard language for expressing the design of telecommunication systems, 
based on finite state machines, SDL. We decided to ask Mike to work on the semantics of 

6 See Petri 1973 and 1980.
7 See Khan 1979.
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SDL – System Design Language. It was widely used throughout the industry, not just in ITT, 
and was the subject of an international standard. Improving the definition of this language 
would deliver an industry-wide quality upgrade, and benefit not just our own company.

I wrote the ITT case for funding Mike Shields over the next three years. It was accepted. It 
was going to be far easier for us if this effort could be funded from a single year’s budget. 
Otherwise we would have to re-justify the case every year though its lifetime. If partway 
through, the case was declined, we would be in difficulties with our contract with Edinburgh 
University. So, rather to their surprise, I asked the University if we could pay for the whole 
three years of Mike’s costs in advance. They agreed without difficulty! So began a fruitful 
and stimulating collaboration.

Mike worked on the semantics of SDL and of other protocols that commonly occurred in 
telecommunications. In mid-1981 I proposed to STL that we made a case for ITT funding to 
enable  Mike’s  work  on  the  SDL semantics  to  be  presented  as  a  contribution  to  CCITT 
Working Party XI-3-1. Since he was funded to do the work already, presenting it to CCITT 
would incur very little extra cost: a trip to CCITT in Geneva to make the presentation and a 
few days extra for preparation. It would reflect well on STL, I argued, and be a constructive 
contribution  to  CCITT.  Mike used several  different  theoretical  approaches  to  explore  the 
SDL semantics:  vector  firing  sequences  and  later,  event  structures  that  formed  partially 
ordered sets. Numbers are an example of a fully ordered set: for any two different numbers, 
one is greater than the other. In a partially ordered set,  one member may be greater than 
another, or neither may be the greater. A family is an example, where one member may be an 
ancestor of another. He developed this quite considerably, calling the subject “non-sequential 
behaviour”, and it led to further ground-breaking work in years to come.

One of STC’s most important customers was British Telecom, or the British Post Office as it 
was then. Post and telephone services were provided by the same public corporation. Not 
until the next year, in 1981, did the two services split into the Post Office and BT. System X, 
the first public digital telephone exchange system in the UK, was being developed and would 
go live in the first public exchange in Woodbridge, Suffolk, in a year’s time. Charles Jackson 
of the BPO/BT Research Laboratories in Ipswich called together a group of researchers from 
the main suppliers to BT and founded the “Advanced Software Techniques Group”. Bernie 
Cohen and I attended from STL, and others came from GEC Research Laboratories, Plessey 
and elsewhere.  Charles set the aims of the group and did a very good job of conducting 
discussions by consensus while still subtly keeping to his own agenda and focus, which were 
forward looking and yet  practical.  This group came to be a forum in which the software 
researchers in rival companies got to know each other, gave each other informal presentations 
and  discussed  their  work  and  technological  ideas  without  interference  from  their  own 
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management. And, of course, the meetings almost always took place on the neutral ground of 
our mutual customer, BT. The group became a collaboration almost by subversion.

At the inaugural meeting we set the aims of the group. These were to be wider than just the 
software involved in System X, and should consider technologies in the longer term. We 
were to think about telecommunications system design and how we believed software should 
be  developed  in  three  to  five  years  time.  We  should  also  think  about  development 
environments,  that  is  the  sets  of  software  tools  needed  to  develop  software  using  good 
engineering practices. In other words we should consider what we are going to build, how we 
are going to build it, and what environments we need to support those building methods.

I have a note from that inaugural meeting that shows how Charles Jackson was typically 
willing to be creatively eccentric.  Successful engineering design requires aestheticism and 
complexity. Thus, he said, our designers need to be “good poets”.

A  telecommunication  system  has  complex  requirements:  it  involves  combinatorial 
interactions of behavioural facilities. Multiple users share resources. There are asynchronous 
demands on the system from its operating environment.  It has to respond in real  time.  It 
consists of concurrent components,  which must therefore be free from deadlock and have 
other  necessary  properties.  The  sequences  of  its  actions  are,  to  a  considerable  degree, 
arbitrary. It must operate continuously: there must be no cessation of service. Enhancements 
and updates to the system have to be made on-line, while it is in operation. Being able to 
prove non-termination, i.e. that the system never stops, would help to ensure these properties. 
There are requirements on performance. These come under the headings of security, privacy, 
accuracy, integrity, availability and ability to be enhanced. The software would have to have 
properties that support these requirements. It should be well  documented,  well  structured, 
accurately specified, with a low level of parallelism. Unavoidably, it would be large, with the 
problems that that entails.

So this forum began to explore the details of these principles and ideas. Over the next few 
years  the  ASTG came  to  endorse  and encourage  the  use  of  formal  methods,  as  well  as 
considering  several  different  design  methods.  The  software  that  operates  telephony stays 
embedded  in  the  equipment  for  a  very  long  time  compared  with  many  other  computer 
applications. One of the most important and costly parts of the development of this software 
is the maintenance phase. This is the work done on the software after the original installation, 
testing and putting into service. The maintenance does not just consist of correction of faults. 
Over its lifetime the software will require numerous enhancements and extensions to take 
account of all the extra features and enlargements that the exchanges and provided services 
will require. Think of all the frequent BT updates that arrive on one’s doormat, offering new 
options and possibilities. Each of these will involve alterations and additions to the operating 
software. The detailed phases of the continued development of the software over its lifetime, 
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its evolution, is called the Software Life-Cycle. The detailed phases of activities in the life-
cycle  came to  be  known as  the  Software  Process.  Professor  M.  M. Lehman  of  Imperial 
College  put  great  emphasis  on  the  study  of  the  software  process,  and  coined  the  term 
“Software Science” to denote it8. For example, even the simplest correction of an error in 
software consists of changing its design from that which was originally delivered.  This is 
quite different from the equivalent correction of a hardware error. A piece of hardware will 
wear out, and degrade from its original design. Correcting an error will consist of restoring it 
back to its original design. By contrast, all software maintenance consists of some measure of 
redesign,  in  principle  a  much  more  radical  change.  Lehman’s  approach  was  to  identify, 
observe  and  measure  different  activities  of  the  life-cycle  almost  as  if  they  were  natural 
phenomena, and derive various laws relating to them.

The  ASTG  invited  Professor  Lehman  to  a  meeting  to  talk  about  his  ideas  on  software 
evolution. We were trying to define the education and training needs for software engineers 
for a report to the Post Office. For that we needed to know the skills that software engineers 
use. Those skills depend on the roles played by the engineer in the life-cycle. Those roles 
relate to the life-cycle activities, so we needed to have a clear idea of the nature of the life-
cycle and its processes: the nature of maintenance, programming and even management. This 
led in time to the ASTG concentrating on software processes. Producing a computer program 
is a series of transformations of models, from a model of the application domain (telephony, 
engine control, railway signalling etc.) to an operational system. Testing a program to ensure 
that  it  is  correct  mixes  two different  concerns.  Verifying  a program compares  it  with  its 
functional  specification.  Validating  it  compares  its  results  with the real-world application 
domain. A process support environment needs to provide facilities that enable and assist the 
building of the various models that each stage of the life-cycle produces, the transformations 
between them, the verification and validation activities, and finally the planning and control 
of the process itself.

The ASTG continued until 1983, when BT was approaching privatisation. This resulted in 
changes  in  the  relationship  between  BT  and  its  suppliers.  They  wanted  to  foster  joint 
enterprises  rather  than  projects  funded  entirely  by  themselves.  Environments,  that  is 
coordinated collections of software support tools, which assisted the software process, began 
to be the hot topic. With a standard environment, a large customer such as BT could become 
less dependent on individual suppliers and more easily switch between them. The driving 
influences  on  advancing  technology  were  thus  not  just  technical  but  also  economic  and 
political.

8 See Lehman & Belady, 1985.
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In the late 1970s the US Department of Defense became concerned about the large number of 
high  level  programming  languages  that  were  being  used  in  defence  applications.  They 
numbered some thirty or so, and resulted in a large training overhead as well as hampering 
the transporting of programs from one application  area to  another.  So the DoD started a 
process of commissioning a design for an advanced language that would supersede all the 
others and become the standard for defence applications throughout the USA. This eventually 
resulted in the Ada programming language in 1980. Meanwhile, however, the CCITT was 
embarking on the same kind of exercise for telecommunications. This effort resulted in the 
CCITT High Level  Language,  CHILL.  In fact  the effort  to define CHILL predated Ada, 
although the two pieces of work overlapped in time to some extent. There was, of course, 
discussion within CCITT as to whether to abandon the CHILL work and adopt Ada as the 
telecoms  standard  language,  but  they  preferred  to  go  their  own  way.  With  CHILL  the 
telecommunications industry would have control over its own language development.

By the beginning of 1979 a first definition of the CHILL language had already been written 
and a  number  of  firms  and research  institutions  were  beginning  to  write  compilers.  The 
CCITT gathered the writers of these compilers together with other interested parties into a 
Working Party to make sure the compilers were all compatible and interpreted the language 
in the same way. The committee structure of the CCITT was large and complex. A collection 
of subcommittees formed Group 9, of which WP3 was concerned with SPC, Stored Program 
Control  languages.  SPC  was  the  telecommunications  industry’s  term  for  software  and 
computers  embedded  in,  and  controlling  exchanges.  WP3  consisted  in  turn  of  several 
committees, one to work on the semantics of SDL, a Software Design Language, another on 
the CHILL Implementers Forum, and a few other committees. Each of these bottom level 
committees appointed a rapporteur who reported up the hierarchy by submitting papers to a 
plenary session. Don Combelic was on the CHILL IF mainly as an observer, although one of 
the other ITT laboratories had started to implement a compiler and also participated in the 
forum. Don asked me to join the CHILL IF alongside him. I think he wanted someone to 
explain the more technical issues to him so that he could make a better judgement about any 
strategic consequences of the decisions that were taken. I was one of not very many people in 
ITT that he knew with substantial compiler experience. Don made representations to Frank 
Simpson, my Division Manager, to authorise me to join. The first meeting I attended was in 
London,  which  eased  Frank’s  agreement;  Don mentioned  that  subsequent  meetings  were 
hosted by participating organisations and that later in the year there would be a meeting in 
Melbourne. Frank agreed, although he implied that he would have reservations about the cost 
of a trip to Australia.

These meetings took place quite frequently, every three months. Before the London meeting 
there  were  two  preliminary  meetings.  One  was  amongst  the  interested  ITT  parties,  in 
preparation for the next two CHILL IF. Several ITT companies in Europe and the USA were 
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involved in various CCITT committees and this first pre-meeting took place in ITTLS in 
Madrid. I was concerned about to what extent I was representing ITT, or STL, or neither. I 
wanted to know what my liabilities were, what were the expectations upon me. The answer 
was specific but quite subtle. One participates on these committees in one’s own right, and as 
a representative of one’s own company, in my case STL. However, one’s participation should 
be compatible with ITT interests. This ITT committee, which I was attending there and then 
in Madrid (for the first time), organised channels of communication from the ITT companies 
to the CCITT committees. The leadership of this ITT committee used to be with the UK. 
Nowadays it was shared between the companies  of ITT Europe.  There was a nomination 
procedure for formal  ITT representatives.  All  this had been thought about at  length.  The 
procedures were laid down in a booklet written in 1974, some five years earlier.

CHILL was not the only issue that this ITT committee was considering prior to the next few 
CCITT meetings. It also discussed SDL. One criticism was that SDL had little structure and 
could not hide details or produce an abstract view of a design at higher levels. There were 
shades of Dijkstra’s separation of concerns here. Don proposed that the semantics of SDL 
should be defined so that any designs expressed in the language had a clear meaning. This 
was in time to lead to Mike Shields’ work at STL, already mentioned, which would later feed 
into the CCITT definition of SDL.

A second pre-meeting was called by the BPO for the British participants. The Post Office 
wanted  the  UK  to  present  an  agreed  view  of  any  difficulties  or  questions.  GEC  Hirst 
Laboratories hosted this meeting. The discussions were right down at the technical details of 
language syntax and facilities. Some features, we considered, were not worked out enough, 
others should be amalgamated or dropped.

The CHILL Implementers’ Forum then met in February and May, in London and Florence. 
There were about ten implementations of the language in various states of progress and in 
various  countries:  Italy,  Germany,  the  Netherlands,  the  U.K.,  Denmark,  Norway (a  pan-
Scandinavian cooperation),  the U.S.A., Japan, France. In some cases a telecoms company 
was implementing a compiler, in other cases an administration, that is a national telecoms 
and/or post office service provider,  or an administration was subcontracting to a software 
house or forming a collaboration amongst its national suppliers. The British Post Office was 
planning to subcontract an implementation to a software house.

Every compiler potentially has a host and a target computer. Most people who use a computer 
language are accustomed to these being the same. One translates a Basic or Java program 
using a compiler on a PC and then runs the translated program on the same machine. But they 
need not be the same, especially when one is producing software for an embedded machine, 
that is a computer that is part of a larger engineering device like a manufacturing plant or a 
telephone exchange. The software will typically be prepared on a general purpose machine 
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and  the  translated  code  will  run  on  an  embedded  microprocessor.  The  different 
implementations  had  various  different  host  and  target  machines.  A  popular  target 
microprocessor at the time was the Intel 8086, but there were others.

The choice of a computer language, indeed any computer technology, easily ossifies. In the 
case of CHILL, administrations were to some degree forced to accept the technology that 
their suppliers had to offer. The suppliers, on the other hand, to keep competitive needed to 
anticipate  the  technology they  thought  the  administrations,  their  prime  customers,  would 
require.  This  kind  of  positive  feedback effect  had a  disadvantage  of  being potentially  in 
disregard  of  the  absolute  technical  merits  of  a  particular  technology,  but  also  had  an 
advantage of tending to establish widely accepted standardisation.

The Implementers’ Forum observed the progress of the several compiler implementations and 
sorted through many language ambiguities and difficulties that were revealed by the task of 
trying to implement it. The members of the forum would bring to the meeting proposals for 
changes  to  the  language  and  if  accepted  (most  were  after  discussion),  these  would  be 
incorporated  into  the  “Blue  Document”,  the  on-going  language  definition.  The  Blue 
Document was to be recast by the end of the study period into a new Brown Document.

Unusually  for  a  computer  language,  CHILL had  two  alternative  concrete  syntaxes.  The 
concrete syntax is the surface form of the language; underlying both concrete syntaxes was 
the same abstract syntax, which embodied the structure of the language. The first stage of any 
traditional compiler is throw away the concrete syntax of a program in order to reveal its 
abstract syntax. With CHILL, one concrete syntax resembled PL/1 and the other resembled 
Pascal, both established programming languages but without the concurrency and many other 
features of CHILL. We agreed that any one compiler should accept programs written in just 
one syntax, not in a mixture of the two. In fact it was mainly NTT, the Japanese member, 
who required the PL/1-like syntax. All the others were going for the Pascal-like option.

The Technical  University  of  Denmark,  a  member  of  the  forum,  was producing a  formal 
definition of the semantics of the language. To date, formal definitions, that is mathematical 
models of the meaning of languages, had been constructed only after a language had been 
implemented and in use for some time, as, so to speak, an afterthought. This was, I believe, 
the first time that a formal definition was produced as the language itself was being defined. 
This work would help to contribute to a total language definition, syntax and semantics, that 
would form part of the standard. At the time I felt that this activity was innovative and would 
assume considerable importance over the next few years. I am not sure that this has been 
recognised, but since then an increasing number of formal language definitions have become 
parts of ISO and BSI standards for computer languages.

CHILL was quite a sophisticated language. I’ll briefly describe some of its features. Move 
rapidly on a few paragraphs if you want to skip these more technical details.  There were 
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powerful  facilities  for defining data types.  The discrete  types  that  could be defined were 
integer, character, Boolean, enumerated sets and ranges of these. Powersets, that is sets of 
elements of a discrete type, could be defined as a type. Composite types could be defined as 
arrays, strings or structures (like Pascal records or records in databases) of other types. There 
were  also  reference  types  for  handling  references  to  variables.  Finally  there  were  types 
related  to  the  concurrency  facilities.  Events  and  buffers  could  be  used  to  synchronise 
processes. Instances of processes, or tasks, were types. Processes could proceed concurrently 
and would be identified by a variable of process instance type. Types could be read-only and 
types  could have scoped access  in a  recursive context.  The types  in  CHILL were called 
“modes”.

There  were  the  usual  conditional,  loop  and  procedure  call  statements,  and  a  range  of 
exception conditions such as array bound overflow. There were also Assert statements, as in 
Ada, that could give rise to related exceptions.

There were several facilities for programming concurrent processes. A process instance could 
be created on obeying a  START instruction and executed concurrently with other processes. 
Two further synchronisation modes or types were available, events and buffers. A process 
could  wait  for  an  event  by  means  of  a  DELAY statement,  or  resume  execution  with  a 
CONTINUE Statement.  Buffers  and Signals  could  be used for  communicating  information 
between processes. Finally, Critical Regions could be defined for providing mutual exclusion 
on access to common resources. When a critical procedure is called, it cannot be interrupted 
or suspended. All other critical  procedures are locked out from execution until  the called 
critical  procedure exits.  Language restrictions help to ensure these rules are followed, for 
example critical procedures cannot call each other.

These  concurrency  features  of  CHILL  were  partly  based  on  the  customary  practices  in 
telecoms software at  the time,  and partly on well  respected computer  science work. This 
summary is brief and a simplification of the actual features, many of which will have changed 
over the years.

Although CHILL is not a widely known language amongst general software engineers these 
days, it still has a substantial user base in telecoms. There are today large teams numbering 
hundreds  each,  who  are  continuing  to  write  large  scale  software  in  CHILL  for 
telecommunications applications.

The final CHILL IF in 1979 was held in September in Melbourne. My Division Manager, 
Frank Simpson, was reluctant to authorise the expense of my attending. I explained this to 
Don Combelic, who telephoned Frank there and then. Don was a powerful personality. When 
Frank called me back to his office after the phone call, he positively instructed me to go to 
the meeting. The BPO held another meeting of the UK representatives in preparation for the 
Melbourne meeting. Their main recommendation was for a language control committee to be 
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set  up  afterwards  in  order  to  ensure  the  continuing  compatibility  of  the  various 
implementations  and  to  review  its  competitiveness  with  Ada.  There  should  also  be  a 
mechanism for certifying compilers.

So I went to the Melbourne meeting of the CHILL Implementers’ Forum. An aunt and a 
cousin of mine lived in Sydney, and I combined the trip with a visit to STC Sydney, who 
were one of the ITT customers of the 3200 BSCC, and stayed with my aunt. I had never 
visited my Australian relations on their home ground before, so this was an added benefit for 
me.

The CHILL IF meeting in Melbourne was spent mainly in completing final details. All the 
implementations were in various degrees of progress, several of them advanced. Indeed, the 
ITT implementation was complete, as was the Japanese compiler, produced by NTT, which 
had been in use for some months. The Danish implementation had been suspended while they 
carried on with the formal semantic definition. A team, headed by Dines Bjørner, was writing 
this in the VDM language, the development of the VDL, Vienna Definition Language, that 
Dines and his colleagues had used to define PL/1 at the IBM Vienna Laboratories a few years 
earlier.  The formal semantics exercise had already uncovered nineteen inconsistencies and 
errors  in  the  language  description,  so it  was  worth  the  effort  for  that  reason alone.  The 
meeting organised the production of a useful introductory manual.

The meeting in Melbourne was, essentially, the end of the main effort of the Implementers’ 
Forum and the end of my involvement  in CHILL. ITT decided to conduct  a trial  of  the 
language by reprogramming part of an existing system in CHILL. They would then obtain 
feedback to assess the advantages of using the language in a typical telecoms application. 
They wanted particularly to find out about how readable the code was and how easy it was to 
maintain. They were also interested in whether using the language improved productivity, 
and how accurate the implementation was. ITT also planned to study the efficacy of available 
tools for processing the CHILL language and to establish requirements for new ones. CHILL 
used more sophisticated data types than existing languages such as Post Office CORAL, and 
it was important not just to translate existing software into CHILL; the design had to be re-
expressed in terms of abstract discrete structures, which could then be expressed as CHILL 
data types. So a measure of deconstructing back to high level design, i.e. reverse engineering, 
and reconstructing in the light of more advanced data structures was necessary in order to 
make an effective comparison.

About a year after the final Implementers’ Forum in Melbourne, in October 1980 a further ad 
hoc  meeting  took  place  at  DataTechnik  in  Denmark.  Implementers  from  seven  of  the 
participating  countries  took part  and  described  the  state  of  development  of  their  various 
compilers and the experiences they had had in using the language. The Technical University 
of Denmark gave a comprehensive account of their work on the formal definition. They had 
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had to make their own extensions to the VDM language to be able to model the concurrency 
features. The formal modelling of concurrency was to become a compelling issue in program 
language semantics over the next few years. The CCITT continued to coordinate work on 
CHILL  compilers  and  other  support  tools  for  the  next  few  years.  A  user  manual  was 
produced in 1982.

Meanwhile,  at  STL we  continued  to  be  aware  that  the  US  Department  of  Defense  was 
sponsoring work on the Ada Language. In the nineteenth century Charles Babbage had built 
his mechanical computing engines, parts of which are to be seen in the Science Museum in 
London.  His  assistant  was  a  mathematician  called  Ada  Augusta  Lovelace,  and  she  is 
commonly regarded as the world’s first programmer. The Ada language is named after her. 
The DoD wanted to fix on one language for defence applications in order to reduce redundant 
effort. They decided that this language should have all the advantages of those currently in 
use, and be technically in advance of them. This meant inventing a new language. So Ada 
had an ancestry of previous languages: Coral66, Simula67, PL/1, Pascal, Jovial, RTL/2 and 
others. In 1975 the DoD set up a working party to define, not the language itself, but a set of 
requirements which the language definition should meet. This set of requirements was to be 
open to public scientific scrutiny and criticism, and so it was called the Strawman document, 
a straw man set up to be knocked down as in a traditional country fair. This document went 
through many iterations, each with a new name to indicate its increasing rigidity and stability. 
Woodenman and Tinman were defined in 1976 and then the DoD invited proposals to define 
the language. Seventeen proposals were submitted, of which four were short-listed. These 
four  were named Green (submitted  by CII Honeywell  Bull),  Blue (by Softech),  Red (by 
Intermetrics) and Yellow (by SRI International). In 1978 the shortlist was reduced to Red and 
Green. Intermetrics and CII Honeywell Bull were given one year to refine their designs and 
resubmit. Green was chosen in 1979, and so Green became Ada, by fiat so to speak. The 
requirements were meanwhile refined again to become the Steelman document and Ada was 
finally revised again in 1980, after  which it  became defined as an ANSI standard,  ANSI 
being the American National Standards Institute. A reference manual was produced in 1983.

With all this activity on producing a standard programming language across the Atlantic, the 
British DTI (which was then the DoI, Department of Industry) felt that the UK had better not 
be left behind. They believed there was a strong chance that Ada would become widely used 
in many applications, not just military ones, and so UK industry had better get up to speed in 
this new language. To use the language for projects one needs not just a compiler but also 
other language support tools, loaders to load the compiled code into a target computer, linkers 
to  link together  separately compiled  programs,  debugging tools  and many other  software 
tools  to  assist  the  programmer.  The  collection  of  all  these  came  to  be  known  as  an 
environment; it was the technical support environment in which the programmer was working 
and producing  a  program.  So the  DoI planned to  sponsor  the  building  of  a  UK support 
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environment for Ada, APSE as it was called – Ada Program Support Environment.  They 
would issue invitations to tender for this work.

During 1979 several  of us learned about Ada and held invited in house seminars  on the 
language. In April 1980 we had a meeting with Ferranti with a view to collaborating. Ferranti 
had already applied to the DTI to be invited to tender. In May we had a visit from ICL. Their 
interest was increasing and they saw Ada as a possible systems programming language, that 
is a language in which they might write operating systems software for their own ranges of 
computers. ICL had a product called CADES – Computer Aided Design and Evaluation of 
Software, which had many similarities in objectives to the proposed APSE. The APSE was to 
be oriented to databases, organised large volumes of data, and ICL had a lot of database 
experience.  There  was  a  strong  competitor  for  the  DoI  tender:  Logica  had  formed  a 
consortium  with  several  other  companies,  which  they  had  strategically  called  the  “Ada 
Consortium”. In mid-1980 we met with CAP, Ferranti and Scicon, who were apart of BP, and 
initiated our own consortium. To vie with the competition we called ourselves the “Augusta 
Consortium”, Augusta being Ada Lovelace’s second given name. In July we were agreeing 
about what questions we needed to ask at the bidders’ conference, which the DoI was shortly 
to hold at RSRE. RSRE, the Royal Signals Research Establishment, later became DERA and 
subsequently the more independent Qinetic. RSRE was at that time part of the Ministry of 
Defence. We spent much time working out a work-plan for the tender and a strategy to follow 
at  the  bidders’  conference.  By  then  SWURCC,  the  Southwest  Universities  Regional 
Computer Centre had joined Augusta. There was a lot of work to be done in establishing a 
working  consortium.  Memos  of  understanding  were  drafted,  and  we needed to  choose a 
prime contractor. There was some competition for this prestigious rôle, but soon CAP was 
chosen.  Should  we allow subcontracts  to  further  parties  to  provide specialist  expertise  if 
necessary? We decided to keep flexible. The APSE bidders’ conference was held in late July 
1980. The MoD and the DoI were to share the funding of the work. RSRE were acting as the 
MoD customer. Formal invitations would be issued in two to three weeks. The winning bid 
would be chosen on value for money rather than just least cost. They would take particular 
account  of  the  technical  strength  of  the  bidding  team,  targets  and  the  work  plan.  Our 
consortium expanded again in September to include Imperial College.

The weeks went past and we had not been invited to tender. On enquiring we discovered that 
the contract had already been let to our rivals, the Ada Consortium. We held another meeting 
and sent a strongly worded complaint to the DoI, pointing out that letting the contract to one 
consortium without considering other contenders was non-competitive, and the government 
could be open to a charge of favouritism. The DoI became quite agitated at this – it was clear 
that they had made a serious mistake in protocol – and by way of compensation they offered 
us a subsidiary study into the software development methods that could be used with Ada 
programming. This was a substantially smaller piece of work than the main APSE, but we 
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accepted it. So, in November 1980, as part of the Augusta Consortium, Mel Jackson and I 
from STL embarked on the Ada Methodology Study.

The other members of Augusta were CAP, Ferranti, Imperial College, Scicon and SWURCC, 
the South West Universities Regional Computing Centre. CAP were the prime contractors, 
but that didn’t mean they were necessarily the project team leader. Our various managers 
were present at the first meeting to initiate the project. We decided to split the leadership rôle 
into two parts: administrative and technical. CAP would take on the administrative rôle and I 
would be the team leader. One of the CAP members felt that the technical leader rôle would 
be diminished by not also having responsibility for administrative matters like time recording 
and expense claims, but I declared that I was quite happy with the arrangement. “It means 
that I get to do all the interesting work and CAP take care of all the boring bits”, I said. Peter 
Weston, the manager from CAP, seemed to be amused by this characterisation of mine and 
thereafter referred to “the boring bits”. I began to regret my spontaneous coinage. However, 
the arrangement remained and it went very well as far as I was concerned. The customer, the 
DoI, in consultation with us set up a steering committee to act as intermediary and general 
policy aides. This group of eleven came from industry and scientific civil service: British 
Steel, ICI, INMOS, British Telecom, British Aerospace, the Central Electricity Generating 
Board (CEGB), which has now been privatised and replaced by many different energy supply 
companies,  Easams,  the  Atomic  Energy  Research  Establishment  (AERE),  the  National 
Physical  Laboratory  (NPL),  and  RSRE.  Mike  Pickett,  the  manager  from CAP,  acted  as 
liaison between the project team and the steering committee. He would report on our progress 
and represent our position to them and come back with messages from them from time to 
time. Mike’s skilful handling ensured that our relationship with the customer had a smooth 
ride to the end of the project.

Ada was and still is a sophisticated and complex language. There was a danger that if pressed 
into use prematurely,  its  strengths  and weaknesses  would not  be properly understood.  In 
order  to capitalise  on the language,  our study tried to  relate  the language features  to the 
development process and identify the methods of working which would produce the most 
benefits.  We  carried  out  a  literature  review  of  twenty-one  development  methods.  These 
addressed various stages of the development life cycle: requirements analysis, specification 
and design. We did not look at any methods that catered for the maintenance phase, for no 
better reason than in those days, maintenance was not seen as so crucial. There was a clear 
understanding then, in 1981, that computer systems inevitably evolve and maintenance was 
important, but methods to support evolution were not much to the fore.

No single method is equally applicable to all applications, situations and stages of the life 
cycle. While the literature study revealed a lot of information, printed matter necessarily does 
not tell the whole story, so we visited potential users and developers of Ada-implemented 
systems, twenty-four organisations in total. These visits gave us more insights into the use of 
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methods and notified us of a further fifteen, on which we reported in outline in the study. 
Then we selected six of the methods and applied them to a couple of example problems, 
developing Ada designs and partial implementations in each case. We found that the more 
sophisticated featrures of Ada, such as packages, generics and overloading, could be used to 
beneficial effect. On the other hand, they could also be misused or simply ignored through 
lack  of  understanding  their  purpose.  Amongst  our  fairly  wide-ranging  conclusions,  we 
strongly  recommended  that  a  first  imperative  before  using  any technical  method  was  to 
establish a defined procedure for recording and communicating the outputs of the life-cycle 
which helps to follow a disciplined approach. This presaged the future industrial standards for 
quality processes, BS5750 and ISO 9000, and the influential work on the Capability Maturity 
Model initiated by the Software Engineering Institute at Carnegie Mellon University.

We published the findings in September 1981 and presented them to an invited audience at 
the National Physical laboratory in December that year.

It is rare in industry that one is working on just one task at a time. During 1979 and 1980 I 
was also engaged in several other avenues of enquiry, besides CHILL and Ada. In some of 
these, other projects merely asked me for advice and involved me in meetings, using me as a 
kind of internal consultant. In others I was more heavily involved. Two of the more intense 
efforts were our adoption of VDM as a software development method, which we were to 
propagate  through the  company,  and  a  more  temporary  flirtation  with  a  software  design 
system called Gamma, the brainchild of Dr. Mike Falla from Software Sciences Ltd.

Bernie Cohen and I had been impressed by the descriptions of VDM which Cliff Jones and 
Dines  Bjørner  had  given  at  the  Winter  School  in  Abstract  Software  Specifications  in 
Copenhagen in January 1979. Cliff had given courses in VDM when he was at IBM and had 
written a book, Software Development, A Rigorous Approach, based on these courses. We 
ordered ten copies of his book and distributed them amongst some senior technical software 
staff at STL. In June 1980 we and two of the STL Division Managers visited Cliff, who was 
now at  the  Oxford  University  Programming  Research  Group,  headed by Professor  Tony 
Hoare,  to  discuss  his  giving  us  courses  in-house.  He could  offer  a  two-day seminar  for 
managers and a longer in-depth course based on his original three-week courses at IBM. For 
starters we took up his offer of the two day managers’ course and he duly presented this to us 
in  July of that  year.  Cliff’s  industrial  background was at  IBM, where there was a “dry” 
tradition.  No alcoholic  drinks  were  allowed  on  IBM premises  or  could  be  consumed  on 
company expenses. This was far from the case at STL, part of ITTE whose nickname was 
“International Travelling,  Talking and Eating”. Cliff was, I think, a bit taken aback when 
during his course we broke for lunch and a canteen staff member pushed open the lecture 
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room door and wheeled in a trolley of clanking drinks! This was to be the beginning of a long 
association with Cliff and VDM.

After several meetings and in-house courses with Cliff we began to deploy formal methods in 
STC. One of the difficulties in getting VDM and other formal methods accepted was that they 
all used certain aspects of pure mathematics, namely set theory and symbolic logic. Graduate 
engineers have mostly been taught applied mathematics. Differential and integral calculus are 
the topics that  underpin the traditional  engineering topics like electronics and mechanics. 
Although the kind of pure mathematics that lie at the heart of formal methods is mostly very 
elementary, such as a first year maths undergraduate would be taught, it is just that little bit 
more abstract and the symbols used that little bit more unfamiliar. Most practising engineers 
shied away from this unfamiliar ground at first. I decided to try to overcome this by putting 
together a course in set theory and logic, “discrete mathematics” as it is called, and give it to 
volunteers.  STL had recently  introduced  flexible  working hours,  so  that  two hours  were 
reserved for lunch between midday and 2 pm. In general meetings would not be held during 
this time and staff could take as long or short a lunch break as they wished, and accumulate 
the hours worked. This enabled people to work longer at times and less time at other times, 
even  taking  a  whole  or  a  half  day  off  if  they  had  accumulated  the  hours.  Quite  a  few 
organisations  were  beginning  to  institute  this  innovative  scheme,  which  is  now  quite 
commonplace.  So I  gave the discrete  maths  course during lunch breaks  once a week.  A 
number of people attended, including my manager Frank Simpson. By 1982 I had shared the 
course material with two other colleagues, Chris George and Paul Taylor and the three of us 
were regularly delivering it to project teams within STC.

We set up a series of in-house one-day conferences on formal design methods, to which we 
invited external industrial people and academics, where we discussed more general formal 
methods  and  techniques.  Each  conference  had  a  theme  such  as  “Trends  in  Design 
Techniques”  or  “Emerging  Formalisms”.  We  thought  that  it  was  important  to  get  the 
managers  of software projects  on our wavelength,  so we held a symposium specially for 
software managers. After a lot of consultation with Cliff Jones, Mel Jackson, Roger Shaw 
and I started to give courses on VDM ourselves to projects and teams in STC. Several times 
we held these outside office premises,  in  small  conference  locations  in  the south-east  of 
England. Some of these had other attractions: a large ex-manor house in Ware had beautiful 
Edwardian plumbing fittings in the bedrooms, and a more modern facility in High Wickham 
had its  own swimming pool,  squash court  and snooker table.  One STC telecoms project, 
code-named Midwinter for the mundane reason that it was initiated on December 21st, agreed 
to use VDM for specifying at least parts of its software. This was a substantial exercise in 
technology  transfer,  with  tailor-made  courses  and  internal  consultancy.  Midwinter  had  a 
whole lot of technical features that would certainly be changed and extended over its lifetime. 
We had to consider how to devise a central design philosophy to facilitate the attachment of 
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these features after installation and delivery. We were fortunate to have a champion in the 
STL personnel department, Charles Harding, who had some responsibility for training within 
the laboratories. He decided to record one of the courses on videotape, and set up a CCTV 
camera at the end of the lecture theatre. It was early days in 1981 for this kind of thing, and 
the lighting had to be turned high over the stage and low over the auditorium. It was the first 
time I had been “televised” and I found it unnerving not to be able to see my audience and 
their reaction to what I was saying. STL retained Cliff Jones as a consultant for some time in 
order to assist with technology transfer to projects such as Midwinter.

Over the next few years,  1981 to 1984, we transferred VDM to two more STC telecoms 
projects, Fridge and Telspec. But we also gave presentations on VDM to a few companies 
outside the group, notably GEC and BP. The main protagonists of VDM were Cliff Jones, 
then at   the  University of Manchester,  and Dines  Bjørner  at  the Technical  University  of 
Denmark, who had started up a campus company, the Danish Datamatics Centre. Inevitably, 
slightly different usages and conventions with the language of VDM began to emerge, and 
we all agreed that we should try to coordinate the evolution of the method, to try to keep 
variations  to  a  minimum.  So  a  VDM coordination  committee  was  set  up  in  1983,  with 
representatives  from several  companies  and  academic  institutions.  Throughout  this  time, 
minor changes and improvements were discussed and made to the VDM language. Together 
with Cliff we worked on more techniques for proving the consistency of a specification in 
VDM and for proving that a program fulfilled a specification. We tried VDM out on several 
case studies within the Fridge and Telspec projects to see how readable a specification would 
be, how easy it was to make it complete and consistent, how easy to check if it was correct, to 
develop a manual of “style”, and in general to test the “usefulness”of the technique. All of 
this  required not  just  the technical  work but  also producing  the accompanying  literature, 
internal  brochures,  posters  and  course  notes,  and  writing  proposals  for  funding  the 
collaboration between us as a group in the research laboratories and the teams who were 
doing the “real” work of writing software for the telecoms project.

If  a  software  development  team learned  to  use  VDM, it  was  important  to  get  the  team 
manager on the same wavelength. Because it was a novel technique, even if the managers 
were more experienced than their team members, they would not be familiar with VDM. So 
we developed a version of Cliff’s two day managers course for them. This covered the aims 
of formal methods, their impact on the management process, the rôle of formal specifications, 
and an exercise in reading them. To my surprise I found that many managers were keen to 
come on these courses. I had expected resistance – old dogs not wanting to learn new tricks. 
But in fact many of them welcomed the opportunity to escape from their administrative duties 
and recall some of their technical expertise, which had in some cases been in suspension for 
some years.
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My colleagues and I were filled with enthusiasm to propagate formal methods, and VDM in 
particular,  as widely as we could.  We were keen to market  these courses, which we had 
developed, further afield, outside the company. Doing so would also validate the credentials 
of what we were doing: if other firms were willing to pay for it, it must be good! However, 
this met with some resistance amongst our upper management. They saw it as giving away 
our technical advantage to our business rivals. At one point, STL’s managing director saw the 
originals of the VDM brochure in the print room, asked what is was about and stopped the 
print job. Neither he nor the print room told me, and I only discovered this had happened 
when I chased the progress of the work. This irked me considerably at the time. We at length 
settled  half  way:  it  was agreed we could give the courses to  STC customers,  but  not in 
general to other external companies.

Gamma was a software design technique developed by Mike Falla at Software Sciences Ltd. 
in Macclesfield. Barclays Bank, who had a large team of some 80 programmers designing 
and programming the software for the bank’s up-coming automatic cash-point system, was 
partially funding the development of Gamma. In return Barclays received the Gamma system 
and tuition on how to use it. Barclays’ technical personnel policy at the time was quantity 
rather than quality. Only the leader of this 80-strong team had a university degree. SSL were 
keen to find other customers to fund Gamma, at a rate of about £25k each. We prepared a 
case for submitting to ITT headquarters for our funding of Gamma.

Gamma was essentially a tool that could support the use of a software development method. 
It had been used with JSD, the Jackson System Development method which was based on 
JSP, but SSL were keen to pilot its use with other methods. We were impressed by the good 
management of the Gamma project, their working papers, sound scheduling techniques and 
work analysis.  However, we had the problem that all ITT research funding had to be re-
justified  every  year,  and  we  felt  that  we  would  be  unlikely  to  obtain  the  necessary 
authorisation for a subsequent year. It fell to me to drop this bombshell to SSL at a quarterly 
Gamma meeting in August 1979. The Barclays representative was particularly irked by my 
warning  that  we would  likely  pull  out  in  the  new year.  He talked  about  the  damage  to 
goodwill and wondered aloud whether they could exert any influence through the DoI or 
discover anyone with joint directorships in STC, the British Oxygen Company (who owned 
SSL) or Barclays Bank. We held numerous subsequent internal meetings in which we went 
over our own motives for our interest in Gamma and tried to decide future policy. We were 
more concerned to gain input to our studies in methodology rather than to acquire the Gamma 
technique itself. Our support stumbled on; we attended the next two quarterly reviews but by 
July 1980 we decided definitely to pull  out.  I  composed a letter  to SSL, consulting with 
George Power, our contracts manager, who was the nearest person to a lawyer that we had at 
STL. He added a paragraph and the letter was despatched.
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For  some  time  STL had  recognised  that  the  next  generation  of  computerised  telephone 
exchanges would embody, not minicomputers like the 3200 (a more well known mini was the 
PDP11), but microprocessors. A microprocessor research department had been running for 
some while, under the leadership of David Wright. Microprocessors are distinguished from 
minicomputers by having the electronics of their central processors held entirely on a single 
chip. Raw microprocessors were available from a few manufacturers such as Intel. To build a 
computer based on a microprocessor and capable of being embedded in a telephone exchange 
required a substantial amount of digital electronic design. A research project within David 
Wright’s  group was  designing  the  architecture  of  the  Next  Generation  Machine  System, 
based on a microprocessor, namely a member of the Intel 8080 series. We had numerous 
discussions  on  this  NGMS architecture,  of  how it  could  be  made  to  support  high  level 
languages easily, of the means of avoiding the glitch between two or more communicating 
processors,  by,  for  example,  synchronising  their  clocks.  The  glitch,  by  the  way,  was 
originally  a  very specific  event  in  digital  electronics,  when two signals  occur  absolutely 
simultaneously,  resulting  in  two  mutually  exclusive  paths  being  partially  taken.  The 
probability of this happening is astronomically small, but when the processes are performed 
millions  of  times  per  second  over  months  and  years,  that  astronomically  unlikely  event 
eventually  happens,  perhaps  quite  often.  I  believe  that  this  may  be  a  consequence  of  a 
quantum physics phenomenon,  possibly resulting from Heisenberg’s uncertainty principle. 
The word “glitch” has now through popular usage lost its original highly specific technical 
meaning, and has come to mean almost any computer related malfunction.

The microprocessor research group began to design an operating system for the Intel 8080 
series. But eventually this work was overtaken by the Microsoft product, MS-DOS. I can 
imagine that many parallel pieces of work like this were going on in different establishments, 
most of them in time abandoned. When I had worked at ICL my department manager once 
remarked that the majority of the software developed would be thrown away. But he asked 
me not to tell too many of the other staff.

Chapter 9 The Search for Grants
The UK had been a member of the European Union since 1973. The EU then numbered nine 
countries, and Greece joined in January 1981 bringing the number to ten. With ten member 
states,  the  EU  was  beginning  to  encourage  innovative  projects,  to  improve  the  union’s 
prospects of prosperity and advancement, and not just to apply assistance to deprived areas, 
although it  was doing that as well.  Within a year  the European Strategic  Programme for 
Research into Information Technology, ESPRIT, would be set up, but in 1981 this had not 
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yet happened. Preliminary to ESPRIT, research projects were funded on an ad hoc basis. I 
had  for  some time had an  idea that  I  would love  to  see explored.  A dream of  software 
engineers is that of a reusable library of useful programs. So much effort was and is spent on 
programming, repeated, wasted effort. If only one had a means of finding that program one 
needed to write already in a library somewhere. I had my own dream that one would discover 
that  the  same  programming  problem  occurred  in  a  variety  of  very  different  areas,  say 
commercial databases and compilers and civil engineering for example. A piece of software 
is blind to the application in which it is put to use; the same computational problem may be 
being solved over again in dramatically different contexts. If only one had an application-
independent way of describing and indexing theses pieces of programming, one could maybe 
then build a library and look it up to see if the required program had already been written.

One clear  candidate  for  an  application-independent  description  of  a  program is  a  formal 
specification of it. A formal specification defines what a program does, not how it does it nor 
in what context it is used. Even so, with specifications written in the then two most popular 
formal  languages,  Z and VDM-SL, there is  a great  deal  of freedom to express the same 
specification in  different  ways:  there  is  a considerable  freedom of expression.  These two 
languages  are  examples  of  model-based  specifications.  One  composes  a  model  of  the 
function of the program, using set theory. There are even more abstract methods, based on 
universal algebra1, for expressing specifications. These come under the heading of Abstract 
Data Types, ADTs. The Ada programming language was a step towards programming with 
ADTs, and the more recent Object Oriented techniques and Java programming language are a 
step further along that path. The functions in ADTs need to be defined, and the most abstract 
means,  and therefore the easiest  to process automatically,  consist of axioms expressed as 
equations. So we decided to use ADTs with equational axioms as specifications and would 
explore how to search and index them.

Looking into this problem required some fertile brains. We had a few at STL, but could use 
more for a project that required such deep appreciation of underlying theory.  Further, the 
European Commission,  who were the body that  let  EU research funding,  favoured “pan-
European”  collaboration  and  indeed  required  projects  to  be  a  cooperation  between 
organisations in more than one EU country. I had met several people on the Chill committee. 
Working on technical  committees  gives one an excellent  opportunity to tell  how capable 
other members are and whether one could work with them. I contacted Rudi Meijer, who had 
been on the Chill IF and who worked for the research labs of the Dutch PTT, Dr. Neher 
Laboratories, DNL. He demurred but suggested a colleague of his, Kees Middelburg. I knew 
Kees too and was quite happy to contact him and propose this collaboration. There followed 
several meetings with Kees and DNL, with our own contracts people at STL, and with the 
administrative  officer  from the EC.  There  was a limit  to the  funding that  the EC would 

1 See Cohn, 1981.
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provide for research projects like this. The limit  was 100,000 ECU – European Currency 
Unit. The Euro, the European currency, did not exist then; it came into existence as coins and 
notes at the start of 2002, although the hard currency had been distributed as starter kits, not 
legally usable, from September 2001. But the European Monetary System, EMS, established 
a  currency  unit,  the  ECU,  at  the  end  of  1978.  This  was  the  official  European  Union 
accounting unit until the end of 1998. On the 1st January 1999, the Euro came into being, 
replacing the ECU and having exactly the same value. So although there were no coins or 
notes, transactions and bank accounts could be set up in ECU and later in Euro. Indeed, I had 
a ECU bank account myself in 1998 and it magically transformed into a Euro account on 1st 

January 1999.

So, with Dr. Neher Laboratories in the Netherlands, we submitted a project proposal to the 
European Commission.  After  scrutinisation by a review committee,  and some consequent 
revisions, our proposal was accepted. Many organisational details had to be sorted out. STL 
would be the prime contractor, so we had to subcontract to DNL. We could choose in which 
country’s system of law to make the contract: the EC suggested Belgian law, but I think we 
agreed on the laws of England and Wales, which were close to those of the Netherlands. Our 
proposal had to declare our methods of interworking between the two participants, to provide 
track records, organisation trees, and lists of personnel and their CVs. This was to be the 
norm for project proposals submitted to both the EC and the British DTI.

Whenever the EC or the DTI funded a project, they would allocate a project officer from their 
own staff to it. The project officer would often champion the project from the beginning, 
making the case for its funding amongst his or her own colleagues within, in this case, the 
EC.  Our  project  officer  turned  out  to  be  Rudi  Meijer.  Unbeknown to  me,  he  had  been 
seconded  from  DNL to  the  European  Commission.  His  secondment  must  have  been  in 
progress when I first approached him to collaborate on our project. Now I understood his 
initial reluctance; he would soon be our “customer” and could scarcely be a collaborator in 
the work. It was clear that Meijer was sympathetic to our project. “It was the only proposal 
we have received that is scientifically respectable!” he said to me, with inverted hyperbole.

Unfortunately,  we never came up with a good name for the project. Future projects in the 
forthcoming ESPRIT would have acronyms like RAISE or IPSSI. Ours remained the verbose 
“Methods of Defining, Cataloguing and Retrieving Specifications of Abstract Data Types”. 
Not very snappy. The team consisted of Will Harwood, Paul Taylor and myself from STL 
and Kees Middelburg and Jos Feinig from DNL.

We started off by defining “scenarios” of how someone might use a library of ADTs that we 
envisaged. There was a lot of reading to do: researches were apace in the USA, particularly 
by  a  number  of  computer  scientists  known as  the  ADJ group,  and  at  the  University  of 
Edinburgh. Several experimental axiomatic specification languages were published: AXES, 
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INA JO, AFFIRM, OBJ, CLEAR. We studied these and several others which we later put on 
one side as they were less relevant to our purposes.

An abstract data type comprises a signature, which is the set of data types, and the operations 
upon them. It also includes the axioms, which we had decided would be expressed as a set of 
equations. If a user of the library wants to look up a data type, he/she would present it with 
the signature and axioms of the desired ADT. The first thing that the system should do is to 
try to match the signature of the presented ADT with the signatures of those in the library. If 
a match is found, then the axioms have to be compared.

Two sets of axioms are equivalent  if  each can be deduced from the other.  Each set  will 
comprise theorems provable from the other set of axioms. So automated theorem proving 
techniques  would  be  necessary.  Plenty  of  research  work  was  being  done  in  the  field  of 
automated theorem proving. Automated theorem provers used a technique of term rewriting: 
transformations of logical terms which preserved their truth values. PROLOG was one of the 
first logic languages but others were around too.

Matching  two  ADTs  turned  out  to  be  difficult.  We  considered  going  for  an  interactive 
approach, where the user interacts with the system and guides it, rather than a completely 
automatic  one.  The  user  might  be  able  to  interrogate  the  axioms  to  see  whether  some 
theorems are deducible from them, and to do experiments with formulating hypotheses. We 
experimented with various usage models for the proposed system. To give ourselves focus, 
we chose a case study: a database for an employment agency. The research of Rod Burstall 
and Joseph Goguen from the universities of Edinburgh and California at Los Angeles was 
particularly relevant to us. We had included a budget for some consultation with experts in 
the project plan, so we arranged a visit from him at STL. Rod Burstall and his colleague Don 
Sanella  spent  a  day  with  us  in  January  1983.  We  had  meanwhile  also  tried  out  as  an 
additional case study part of the aircraft monitoring system, which had been figured in the 
Augusta study. Our meeting with Rod Burstall and Don Sanella gave us some more insight 
into deriving one ADT from another. Burstall was beginning work on a topic for which he 
coined the term “Institutions”. These were abstract algebras with a more flexible underlying 
logic than equations and term rewriting. All this was very relevant to our project.

We carried out experiments  on the two case studies,  but  after  a lot  of intense work and 
discussions,  by June 1983 we were forced  to  the  conclusion  that  automatic  matching  of 
specifications  as  we  had  conceived  them was  not  possible.  We  were  fairly  sure  of  this 
conclusion but thought that the EC may wish to seek further investigations to verify it. We 
nonetheless  felt  that  there  was  a  place  for  such  a  library  of  ADTs  to  assist  software 
development on scientific principles. The study was nearing its scheduled end and we had a 
final report to produce. We had produced some half dozen technical papers delivered to the 
EC during the course of the study, but also nearly a hundred working papers restricted to 
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circulation within the project, and over sixty administrative papers and minutes (written by 
myself). We sent the first draft of the final report to the EC in August 1983.

Rudi Meijer, the EC project officer, wanted to hold a review of the project by a panel of 
experts. He telephoned me and gave me a long list of some of the most respected computer 
scientists in Europe and asked me to invite them to a project review. I felt as if I had been 
asked to invite a firing squad of marksmen to my own execution. I duly telephoned the list 
and rather to my alarm well nigh all of them, thirteen in number, agreed to attend. We all 
went to the review meeting at the European Commission in Brussels in December 1983. Will 
and I gave the majority of the presentation. We described the rationale for the study, the two 
teams from STL and DNL, and the preliminary literature survey of methods and formalisms 
for defining ADTs. Then we went over our choice of a formalism, the library structure and 
access, matching of signatures and equations, and on through the course of the project and its 
problems that we had encountered, our conclusions and possible further work.

The comments  from the  reviewers  were  extensive  and detailed.  Frankly,  they were  very 
critical. Towards the end of the meeting, one member asked how long the study had been. 
The answer: 390 person-days. The reviewers’ criticism turned to some astonishment: they all 
felt  that  for a study of this scope, far longer should have been scheduled. Their  criticism 
turned on to the EC for having let the project on such a limited scale of time and effort. It was 
the chairman’s turn to defend the project. It was a feasibility study and as such a negative 
conclusion of “this cannot be done” was a legitimate and useful result. If it revealed research 
problems, that was a result they could live with. The Council of the European Communities 
intended to launch a pre-competitive work plan for ESPRIT. The study has given them some 
hints about research in the area. More rewriting of the final report was desirable than could be 
done at the end of the project, but something useful would result if the first part is reworked.

So we rewrote  parts  of  the  final  report  and delivered  a  final  draft  in  April  1984.  If  the 
technical results of the project were disappointing, this was probably because we had been 
too ambitious. At least, unlike the majority of software-related projects, it was delivered on 
time and to budget: we had spent 99,405 out of our allowed 100,000 ECU.

ITT had by now completely shed STC as an owned company. STL was a part of STC. Some 
of us wondered if ITT top management had fully realised that in divesting themselves of 
STC, they were losing one of their most prestigious research laboratories. We no longer made 
annual cases for funding to ITT headquarters. Instead we had to make cases for STC funding, 
and we were free to seek funds and grants from external bodies, provided they were not direct 
business competitors of STC; and even then, provided we were not giving away company 
“secrets”, there was some leeway. We had already successfully bid for EC funding with the 
ADT  project.  Other  possible  sources  of  funds  were  the  UK  DTI,  RSRE  and  BT.  The 
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successful  completion  of  the  Augusta  project  gave  us  and  the  other  members  of  the 
consortium the momentum of enthusiasm to continue with related investigative work. We 
made a proposal for a software development method, aimed at Ada programming. This would 
be based on abstract data types, because the language constructs in Ada called packages were 
strongly inspired by the ADT concepts. Tools supporting this method would form part of an 
APSE, an Ada Programming Support Environment. We had parallel conversations with the 
EC to develop a wider range of Ada support tools to populate an APSE, with the knowledge 
of all parties.  We held numerous meetings,  exchanged letters of intent, discussed staffing 
levels, the team leader, and pricing arrangements. We drew up project plans, partitioned the 
project into tasks and allocated them amongst the proposed participants. After six months, by 
July 1982 we had switched attention to the CEC, Commission of the European Communities, 
for seeking funds; the DTI and RSRE, although willing in spirit, did not seem easily to find 
the mechanisms to channel a grant our way. To get CEC funding under the ESPRIT initiative, 
we needed a partner from another European country, since an aim of ESPRIT was to foster 
pan-European technological cooperation. So we approached the Danish Datamatics Centre, 
DDC, the campus spin-off company that was the brain-child of Dines Bjørner. Dines was one 
of the originators of VDM. Rudi Meijer in the Commission wrote a letter of encouragement 
to Dines and STL’s commercial man, Alec Bell, worked with Leif Rystrøm, the managing 
director  of the DDC. Soren Prehn would be the technical  participant  from the DDC. We 
drafted  a  new project  plan  with contributions,  budgets and task allocations  involving  the 
DDC. By now it was November 1982: we had been running with this proposal for eleven 
months.

Again  nothing  transpired.  By  April  1983,  however,  the  DTI  had  undergone  some 
reorganisation. There was now a route for applying to them for funds for research into IT. A 
committee  headed by John Alvey established a  five year  programme of “pre-competitive 
collaborative  research  in  the  enabling  technologies  of  information  technology”.  It  was 
sponsored by the DTI, the MOD, the Science and Engineering Research Council, SERC, and 
industry. The government agencies would provide at least half of the £350 million budget 
over at least five years. This programme became known as the Alvey programme and the part 
of  the DTI who managed  it,  the  Alvey Directorate.  Our proposal  needed redrafting.  For 
example we had to put some emphasis  on marketing prospects. Again, no funded project 
resulted. But the Alvey programme was to become an important influence on UK research 
and development into IT.

During the CEC-funded ADT study, one problem that hampered us was that Abstract Data 
Types are often composite, especially those of any appreciable size. It is natural to compose a 
complex ADT out of smaller  ones. But there can be several  different ways of combining 
different component ADTs to produce the same composite one. Out of this problem arose our 
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interest in Category Theory.  Category Theory gave us a language for defining the general 
relationships between components and composites (“injection”) and for deriving composites 
from their components (“pushouts”).

Category Theory is a branch of mathematics initiated in the 1940s by Samuel Eilenberg and 
Saunders Mac Lane. It is an advanced branch of mathematics: despite having a degree in the 
subject, I had not heard of it before and did not recall there being any course in Category 
Theory offered even in the post-graduate Part III of the Cambridge Mathematical Tripos, in 
the early 1960s. Since the days of Georg Cantor in the nineteenth century and David Hilbert 
in the 1900s, set theory had been perceived as the foundation for mathematics. Everything 
could be related to and re-expressed as sets. For the next half century set theory was regarded 
as  the  most  fundamental  concept  of  mathematics.  In  the  1930s  a  group  of  French 
mathematicians working under the nom de plume of Nicolas Bourbaki attempted to produce a 
fully axiomatised presentation of the whole of mathematics. This massive task extended over 
forty  years,  producing  many  volumes,  but  Volume  1  was  devoted  to  sets  and  is  still 
influential today. The modern formal specification language B2 is based on set theory and 
shows, I believe, a marked inheritance from Bourbaki.

The  emergence  of  Category  Theory  changed  the  perspective  of  set  theory  being  the 
foundation  of  mathematics.  Already  that  foundation  had  been  rocked  by  Gödel  in  1931 
showing that no system based on finitary methods could produce a complete axiomatisation 
of the arithmetic of the familiar whole numbers3. Category Theory enabled one to consider 
the collection of all sets and all functions between sets and other “large” collections without 
falling foul of Russell’s paradox. While avoiding Russell’s paradox in itself is not of obvious 
interest  to  computer  science,  the  more  general  approach  to  functions  has  particular 
advantages. In set theory, a function f can be characterised by its graph, which is the set of 
pairs of values <x, y> where y = f(x). In tax tables the effect of applying a formula to a sum of 
money is illustrated by listing results of the formula application next to the input value. This 
is  a tabular form of the graph of the function.  But in the context of computing it  would 
usually be very cumbersome to represent a function using a table. The distinction between the 
tabular  or  pair-wise  representation  and  the  actual  notion  of  an  operation  is  prominent: 
Category Theory returns to the sense of a function being an operation that is applied to an 
argument, the input value, a member of the domain of the function.

Category Theory gives us another benefit when used to model programming languages. It 
would  be  possible  to  define  and  write  a  compiler  for  a  language  that  allowed  so-called 
generic data-types and functions. Most programming languages allow conditional expressions 
for all permitted data-types:

if p then exp1 else exp2
2 See Abrial 1996.
3 See Nagel and Newman 1959.
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With  the  current  methods  of  defining  program language  semantics,  the  meaning  of  this 
construct has to be defined for each principal data-type,  whereas in fact  its  sense is type 
independent. Category Theory could give a way of providing a generic semantic definition, to 
match  the  generic  nature  of  the  construct.  In  a  language  that  allowed generic  types  and 
functions, the above expression could occur in the defining body of a function, where the 
arguments exp1 and exp2, perhaps provided as input parameters of the function, were of any 
type. It would be difficult to define the semantics of such a function using a formalism that 
did not pay at least implicit reference to Category Theory.

In the ADT study we tried to use the ideas of Category Theory to give us a handle on the 
process of defining larger data-types as combinations of smaller ones and manipulating them. 
I think that categories could also come in useful for treating the whole idea of modularity, 
where  one  compiles  different  modules  of  a  system  separately  and  combines  them  after 
compilation. The usual present-day theories of semantics do not adequately cover this issue.

So Will Harwood, Paul Taylor and I learned about Category Theory and tried to apply it to 
the ADT study problem. I was very much the neophyte; Will and Paul were my tutors. One 
regular conference covering the more theoretical aspects of computing was the Mathematical 
Foundations of Computer Science. The tenth symposium was to take place in Štrbské Pleso 
in Czechoslovakia at the beginning of September. I decided to go to it. Štrbské Pleso, now in 
Slovakia, was at the foot of the High Tatra mountains near the border with Poland. In 1981 
Czechoslovakia was still an eastern bloc, soviet allied country and its economic prosperity 
was frugal. Hotel accommodation was scarce and we had to double up in twin-bedded rooms. 
I shared with a polite young American mathematician. At least we had a common language. 
There was only one other British delegate, Leslie Valiant from the University of Edinburgh, 
who was giving a paper. In fact,  almost all the delegates were presenting papers, and the 
presentations took place on a rigid time-scale in multiple parallel sessions. A few people I 
knew were there, including Dines Bjørner who was one of the very few others not presenting. 
The mountains were spectacular and one afternoon was given over to a conference “social 
event” in which a local mountain guide led a few of us over a snow covered pass. Chains 
were embedded into the rocks in places to help ascent and descent. The papers presented at 
the conference were arcane and I got the impression that the main motive for the event was to 
enable more publications, a metric of academic success. At the conference dinner, some other 
delegates sharing my table joked about a colleague of theirs. He had apparently published 60 
papers in the past year. That is more than one per week, a well nigh impossible task unless 
one is repeating reports of the same work or riding on the backs of junior colleagues. The 
academic imperative of “publish or perish” continues today, if anything even more strongly. 
On my way to the airport at the end of the conference I had a meal in a restaurant. There was 
limited wine on the menu, and I was the only diner drinking any. I remember that a litre 
bottle of vodka from a food store cost the equivalent of about 40 pence. At the airport in 
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Prague there were no luggage carousels. Instead lines of men in blue overalls laboriously 
passed travellers’  cases from hand to hand. A plane landed or took off about once every 
twenty minutes.  I flew to Prague again nine years later  in 1990. By then the airport  had 
changed dramatically and had all the usual modern features.

I  have  mentioned  several  times  how the  theoretical  analysis  of  concurrency  in  software 
systems  was  a  compelling  issue.  Several  formalisms  could  model  concurrency,  each 
enthusiastically championed by its proponents, but there was no clear way of comparing them 
or determining which was the best  to use in a given application.  The Software Research 
group  at  STL  decided  to  host  a  workshop  and  invite  the  champions  of  the  different 
approaches. We devised ten sample problems in concurrency and sent them in advance to 
academic researchers,  inviting them to try out their  techniques  on them.  We received  27 
solutions in advance and another six were produced during the workshop itself. After all the 
solutions were presented, we had a debriefing session during which we hoped to make some 
useful comparisons between the different techniques. We held the workshop in Cambridge in 
September 1983; this was during the university vacation and all of us stayed in rooms in 
Clare College. We were able to obtain funding for the academics’ travel from the SERC. 
After the event Will  Harwood, Mel Jackson, Mike Wray and I put together  a volume of 
proceedings  which  were  published  by Springer  Verlag  in  the  LNCS –  Lecture  Notes  in 
Computer  Science  –  series4.  Bernie  Cohen and Paul  Taylor  were  also  on the  organising 
committee.  In  addition  to  the  academics,  we invited  eight  participants  from some of  the 
bigger industrial players, British Telecom, Central Electricity Generating Board, GEC, ICL, 
MJSL,  Software  Sciences,  and  Systems  Designers.  Organising  this  workshop  took  a 
considerable amount of effort. We appointed rapporteurs for the sessions to report back on 
the  solutions  and  plenary  discussions,  wrote  guidelines  for  them,  organised  projection 
equipment, notice boards and stationery, wrote a justification to apply for the SERC funding, 
and as well as the final proceedings, wrote following reports for the SERC and for our own 
management. I had to analyse and approve the bill for accommodation from Clare College – 
it was detailed down to the last teabag.

The whole task of planning the workshop, holding it and drawing it to a conclusion took 
some 14 months, which is pretty normal for an event of this kind. Producing the proceedings 
from contributions written by multiple authors was a considerable task. In those days there 
was such a variety of word processing and other text preparation tools that it was impossible 
to impose a standard format on all the authors. Nowadays every journal or book series has its 
own down-loadable  text  style  that  intending  authors  use  to  create  a  uniform compatible 
format.  Then we had to rely on camera-ready copy.  Authors’ texts  had to be proof-read, 
corrected, page numbers played with and so on. We wrote an introduction and conclusions, 
4 See Denvir et al, 1985.
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no mean task. I felt that we should circulate these amongst the academic contributors for 
comment  in  advance.  Only  one  had  criticisms  of  my  conclusions,  and  I  think  my 
modifications met his objections. Was the workshop useful? I definitely think so. While we 
found no philosopher’s stone, we made progress. I could compare it to the conference on 
concurrency  held  in  Evian  in  19795.  There  most  of  the  presenters  simply  stood  up  and 
explained  their  theories.  In  our  workshop there  was  much  more  interaction;  providing  a 
common  set  of  problems  for  the  participants  to  solve  seemed  a  good  framework  for 
encouraging discussions. Afterwards we felt more confident about choosing a formalism for 
modelling concurrency and as a basis for a development method. We had a good idea of the 
strengths and weaknesses of each individual method in terms of abstraction, manipulability, 
ability to make provable deductions of properties, and ability to hide, decompose, structure 
and refine to a more reified design.

The managing director of STL, Bernie Mills, stepped down on 1st July 1983. He had ruffled 
some feathers during his term of office. The previous MD had frosted glass doors to his 
office suite. When Mills moved in he had the doors replaced with heavy solid wooden ones. 
He lowered the “delegation of authority”, this was the amount of money one could authorise 
to be spent on purchase orders and the like, of a whole range of middle managers at a stroke. 
His only stated reason was that they did not need it. He communicated this by instructing a 
junior clerk in the accounts department to send a memo. Many of the managers did not realise 
what had happened: the memo was scrappy and not clearly expressed. They discovered only 
when clerks  in  the  purchasing department  began bouncing  their  purchase orders.  Shortly 
before he left, Bernie Mills walked down the corridor past my office. I always kept my door 
open unless I was having a meeting. He saw me, doubled back and dropped in. After some 
small-talk,  I  said,  “I  expect,  like  all  the  rest  of  us,  you  are  looking  forward  to  your 
retirement.” If he noticed my deliberate ambiguity, he did not show it. With the departure of 
Bernie Mills, there came substantial reorganisations in the upper reaches of the company. We 
began to notice still more changes of the kind that began under his regime. The authority of 
middle  managers  slowly  diminished.  When  we  belonged  to  ITT,  rules  could  be  bent 
occasionally;  if  one  showed  initiative  in  pursuing  the  benefit  of  the  company,  one  was 
rewarded. Now, rules and bureaucracy were paramount. STL slowly became a less pleasant 
place to work.

VDM courses continued to be a significant part of our technology transfer effort. We had 
produced and delivered a one-day course for managers and a one-week course for software 
engineers. Next, we developed an advanced workshop. There we covered the more intricate 

5 See Khan 1979.
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features  of  the  VDM  language,  and  some  of  the  more  advanced  aspects  of  the  theory 
underlying it. VDM is based on set theory and logic. This mathematical basis enables one to 
prove properties of the specification, and of programs which fulfil the requirements that it 
specifies. But any proof written by a human can contain errors. A lot of work had been done 
on so called mechanical theorem provers; these are computer programs which can generate a 
mathematical proof of an assertion written in symbolic logic, or which can check a proof that 
is provided to it. These mechanically generated or checked proofs have to be in far more 
intricate  detail  than  the  proofs  that  are  in  the  usual  mathematical  tradition.  Only  in  the 
discipline of mathematical logic does one find the same level of rigour. For such rigorous 
proofs, the theory in which the propositions are stated have to have a consistent set of axioms, 
sufficient  to  enable  proofs  of  useful  theorems.  There  are  several  alternative  systems  of 
axioms for set theory. The two most usual ones are NBG and ZF. In the mid-1920s John von 
Neumann6 proposed  a  system  of  axioms.  Later  Paul  Bernays  and  Kurt  Gödel  further 
developed von Neumann’s  system and the result  became known as NBG. In 1901 Ernst 
Zemelo provided a slightly different axiom system. Again,  in 1922 this was extended by 
Abraham Fraenkel, and the resulting system is known as ZF. NBG and ZF are very similar, 
and in certain circumstances can be shown to be equivalent. In general terms the logic of 
VDM is based on ZF. So in the advanced VDM course, we included an explanation of ZF set 
theory7.

One of the purposes of having a VDM specification is to prove that a program is correct. One 
also should prove that the specification itself is consistent. A newcomer to the topic could be 
unsure  about  what  propositions  exactly  one  needs  to  prove  in  order  to  demonstrate 
consistency and correctness. These propositions we called “proof obligations”: one is obliged 
to  prove them in order to  demonstrate  consistency and correctness.  Our advanced course 
covered these proof obligations, as well as various other topics such as more detail on data 
types and desirable “style” of writing specifications. We wrote a manual for course lecturers, 
and after a lot of discussion, an outline of qualifications that lecturers needed.

In VDM and, indeed, in computing in general, functions are often partial. That means that 
they only produce a defined result when applied to some of the values of the type of their 
domain. Most functions in mathematics are total, producing a result for every value. Some 
are partial, however; one cannot divide a number by zero, for example, or obtain a real result 
by taking the square root of a negative number. With VDM specifications, there can be many 
logical expressions in which a partial function is applied to an argument. To produce logical 
proofs of correctness and consistency, the logic has to be able to cater for partial functions. 
Cliff  Jones  had  been  doing  research  into  this  subject,  abbreviated  LPF,  and  with  his 
cooperation we included LPF in the advanced course. In simple terms, in classical and other 
6John Von Neumann proposed a machine architecture that was the blueprint for all subsequent computers: see 
Von Neumann et al 1947.
7 See Devlin 1994.
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conventional logic a proposition can only be true or false. In LPF, a proposition can be true, 
false or undefined.

Our  VDM  courses  had  now  been  given  to  quite  a  variety  of  organisations,  who  were 
beginning  to  use  the  method.  IDEC  started  to  specify  part  of  the  new  TX4  telephone 
exchange software in VDM. The government’s DTI sponsored a project to develop support 
tools for VDM under the Alvey programme. We held a VDM users’ conference in which we 
displayed the latest  developments and activities and shared case studies. We tried to pull 
together the several variations in the VDM language that different developers and researchers 
were  using  and  produce  a  standard,  to  be  submitted  to  ISO,  the  International  Standards 
Organisation.  The  EC  funded  project,  RAISE,  was  beginning,  which  was  to  develop  a 
considerable extension of VDM. These were topics to be aired at the users’ conference. A 
coordination  committee  with  members  from several  companies  and academic  institutions 
discussed  the  curriculum of  the  courses.  We approached  the  NCC,  National  Computing 
Centre, with a view to giving courses to the “public”, where anyone could reserve a place, 
rather than their being invariably in-house.

The  desire  to  prove  programs  correct  was  not  the  only  reason  why  programmers  were 
interested in symbolic logic. Artificial intelligence is the attempt to duplicate various human 
cognitive  processes  with  a  computer.  An  important  one  of  these  enterprises  is  the 
understanding of human language. There are many aspects to this. Sentences in the language, 
with all their inherent ambiguity, have to be parsed. One needs a means of representing the 
knowledge denoted by the language script. To fully explore the meaning of a script requires a 
logical deductive system. Another topic within AI is expert systems. Here the workings of 
human experts are recorded over many trials and recorded in a database. The expert system 
analyses all the data and creates an automated “expert”. This technique has applications in 
medical diagnosis and many other human skills  that  take a long time to learn and which 
cannot be completely defined.

At STL Nigel Steele,  a member of the software research group, had for some time been 
pursuing his own research programme in AI. He had reserved himself a place at the 1984 
International Symposium on Logic Programming, to be held in Atlantic City. Some time later 
he decided to move on, and although he was still  working out a period of three months’ 
notice, STL would not allow him to attend the symposium; they were unwilling to fund the 
travel and fee for someone who was not going to be an employee for much longer. I thought 
this was a touch short-sighted and churlish, for he was the one who would benefit most from 
attending, owing to his specialist expertise. However, the company was not to be moved and, 
since the booking was already made, I was sent instead.
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There were a large number of attendees at this symposium: 350. The organisers had expected 
about 100. Most of the papers were related to Prolog, a programming language using logical 
expressions rather  than the usual imperative commands.  The Prolog interpreter  is  able  to 
draw  deductions  from  the  logical  expressions  and  prove  a  desired  goal.  The  logical 
expressions have to be of a restricted form, called Horn clauses. These are named after the 
logician Alfred Horn who pointed out their significance in 1951. A characteristic of Prolog 
programs is that the interpreter rapidly devours large quantities of computer processing time 
and memory space. The interpreter uses a technique called “unification” to draw inferences 
from the logical expressions in a program. Prolog had been invented by Alain Colmeraur 
twelve years  earlier  in 1972. The last  leg of my journey to Atlantic  City was in a small 
aircraft of about eight seats. He was one of the other passengers and all the remainder were 
attending the symposium. The other delegates in the plane showed him a respect verging on 
awe. I learned that there were many organisations at the symposium advertising for staff with 
expertise  in  logic  programming,  AI  and  expert  systems,  and  some  specialist  firms  were 
concerned exclusively with the area.

Many of the papers in the symposium were devoted to techniques of reducing the amount of 
time and space, known as the complexity, required by programs. Some extended the language 
until it was scarcely recognisable; others attempted to overcome the inherent computational 
complexity of logic programs by taking advantage of massively parallel  architectures that 
were only on the drawing board at the time. I noted that the state of hardware architecture 
design  still  seemed  to  be in  the  same  primitive  condition  as  software  used  to  be  in  the 
nineteen-fifties,oriented to the machine rather than the function and lacking in abstraction. I 
felt that quite a few of the papers in the symposium would be of interest to our EST and AI 
projects.

There was a notable interest from Japan in the symposium. Some 25% of the papers were 
from  Japanese  institutions  including  a  recently  established  Institute  for  New  Generation 
Computer Technology. For this reason I was highly irritated when a president of IBM flew in 
to give an after dinner talk at the conference dinner. His theme was “The Japanese Threat”. 
He was referring  to  commercial  competition,  but  I  thought  he  could  have  registered  the 
international nature of the event before choosing his topic. The Japanese delegates applauded 
politely at the end of his speech.

Artificial Intelligence is the research topic that attempts to replicate human thought processes 
by computer.  One notable cerebral capability of human beings is the ability to reason, to 
construct a logical argument and reach a conclusion. Every process in a computer program 
has to be expressed in abstract symbols. So one topic, among many others, of great interest to 
researchers in AI is automated proving. The same topic is also of great interest to software 
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engineers pursuing formal methods, for proving that a program is a correct realisation of its 
specification would go a long way to reduce errors and faulty behaviour in software. A small 
but vigorous research team in STL had been pursuing its own efforts in this direction. EST 
was a project,  led by Will  Harwood, which was investigating the construction of a proof 
system based on the logical  rules of program proof, starting from the rules of equational 
reasoning, but moving on to other logics. The ITT laboratories in Madrid were interested in 
obtaining a copy of EST to conduct their own researches. EST, however, was a prototype; 
Will’s vision was to construct a generic engine which could be parametrised with the codified 
rules of a logic, and could thence be instantiated as a proof suite for that logic. This was 
rather like the step from building a compiler for an individual language to building a parser-
generator, which can be parametrised with the syntax rules of any language. This aim, to 
build  a  logic-based  proof  system  generator,  was  the  objective  of  NIMBUS,  a  successor 
project to EST.

Tony Hoare, who headed the Oxford University Programming Research Group and devised 
CSP, the formalism for modelling communicating sequential  processes,  had been made a 
Fellow of the Royal Society.  I think it is true to say that he was the first person to be so 
honoured for contributions to theoretical aspects of software, although Maurice Wilkes, the 
director of the Cambridge Computer Laboratory was a FRS before him. Maurice Wilkes’s 
principal  achievements  were  in  computer  hardware.  He  designed  and  oversaw  the 
construction of one of the first stored program computers, the EDSAC, which was completed 
and operated successfully from May 1949. After its successor EDSAC 2, the next computer 
in his laboratory was the Titan,  designed and installed in conjunction with Ferranti and a 
“sister” machine to the London Atlas. He is also credited with several developments which 
paved the way for high level languages.

So software research now had a representative in the Royal Society. In February 1984 the RS 
held a “meeting for discussion” on Mathematical Logic and Programming Languages. Tony 
Hoare was one of three organisers, the others being Michael Atiyah and J. C. Shepherdson. 
Sir Michael Atiyah, also an FRS, later became the president of the Royal Society. He had, 
incidentally,  lectured  on  linear  algebra  in  the  Cambridge  mathematics  tripos  during  my 
undergraduate years. The two-day meeting at the Royal Society was very stimulating. The 
speakers  comprised  some  of  the  most  well  known  names  in  computer  science.  I  had 
encountered several of these, Tony Hoare himself, Robin Milner who developed CCS and 
LCF, the logic of computable functions, Bob Kowalski from Imperial College London, who 
was an authority on logic programming, and others. But I heard two other speakers for the 
first time, who had been remarkably influential in theoretical computer science. Dana Scott 
had developed the kind of domain theory that  provides the foundation for recursive data 
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types8.  Edsger  Dijkstra  had  devised  the  notion  of  guarded  commands9 and  published  A 
Discipline of Programming10 which had so inspired me in the mid seventies. As would be 
expected,  logic  applied  to  programming  languages  was  the  main  theme  of  the  meeting. 
Proving programs correct can be computationally time-consuming and difficult. There is a 
trade-off between expressiveness of the logic language and the efficiency of its “execution”, 
that is the process of using theorem provers to deduce consequences from premises. One has 
a choice between developing proof theories and algorithms, and developing programming 
languages that are not imperative but are more conducive to constructing proofs. Some of the 
talks focussed on the former and others on the latter. Robin Milner’s talk described LCF, the 
Logic of Computable Functions11, in which strategies and tactics for proofs can be described. 
Kowalski  described  proof  techniques  for  Horn  clause12 logic.  D I Good  described  a 
verification environment called GYPSY for developing programs. It included a verification 
condition generator. Verification conditions are much the same as proof obligations already 
mentioned. GYPSY also had a proof checker that checked the validity of proofs. Most of the 
other talks sought ways of expressing programs so that proofs fall  out on the way,  so to 
speak. Functional programming languages are close to specification languages like Z and 
VDM, but are executable. The proof of correctness follows the construction of the program. I 
came across one of the speakers for the first time, Per Martin-Löf. His approach is that the 
intuitionistic theory of types and constructive mathematics can be viewed as a programming 
language. The inference rules of the type theory are themselves the rules of correct synthesis 
of programs. So the correctness of a program written in the theory of types is proved formally 
at the same time as the program is synthesised. This was to me a very novel way of looking at 
programming. Martin-Löf showed how the axioms of set theory are analogous, indeed are the 
same apart from differences in syntax, as those of intuitionistic logic.

From the sublime to the, if not ridiculous, severely practical, in April the same year (1984) 
the first spell checker came our way. It made a half hearted attempt to distinguish between 
British and American spelling, but was incomplete in many ways. It did not recognise many 
words, some of them technical, others prosaic. It recognised the electronic busses but not the 
vehicular buses; homological but not heterological; it did not recognise instantiate, powerset, 
coproduct,  codomain,  morphism,  bijection  or  more  everyday  words  like  lorry,  puce, 
watertight, scruffy. But it was the first spell checker I had come across and it was almost 
usable.

8 See Scott 1976.
9 See Dijkstra 1975.
10 See Dijkstra 1976.
11 See Gordon et al, 1979.
12 See Horn 1951.
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FACS,  Formal  Aspects  of  Computing  Science,  a  special  interest  group  of  the  British 
Computer Society, was founded in 1978. I had been attending their meetings for five years, 
since 1979, and in 1984 Dan Simpson, its chairman, asked me to join their committee. FACS 
had  established  working  relationships  with  the  London  Mathematical  Society,  the 
Association  of  Mathematics  and  its  Applications,  and  the  European  Association  for 
Theoretical Computer Science. I was gratified to be invited to join their committee, which 
organised meetings and generally ran the group. In my first committee meeting with them, 
because of my previous experience with the DTI and the Augusta study, my name was put 
forward  to  be  the  FACS  representative  in  a  BCS  task  force  liaising  with  the  Alvey 
Directorate.  We  discussed  several  future  meetings  on  topics  such  as  Mathematics  for 
Computing,  Petri  Nets,  OBJ  –  an  algebraic  specification  language,  ML  –  a  functional 
programming  language,  Knuth  Bendix  and  Unification  algorithms,  and  HOPE –  another 
functional programming language that was a predecessor to the later languages Miranda and 
Haskell. This was the first of many FACS committee meetings that I would attend over the 
next nineteen years. FACS was something of a ginger group that tried to stimulate new ideas 
in applying computer science theory to practical software development.

In  1983 the  British  firm INMOS designed and built  a  computing  microprocessor  with a 
concurrent architecture called the “transputer”. Having a concurrent architecture meant that it 
could carry out several computations in parallel, that is, using several CPUs working together 
simultaneously. The transputer was designed to work with a parallel programming language 
called OCCAM, designed by David May of INMOS in association with the Oxford PRG. 
OCCAM was in turn based on Tony Hoare’s CSP formal language and shared many of its 
features. Indeed it could be said to be an executable version of CSP.W

Bill Roscoe of the PRG developed a semantic definition of OCCAM. Although in the long 
run neither the transputer nor OCCAM could be said to be grand commercial successes, they 
were both in their way very influential over later computer architectures and principles of 
concurrent program language semantics.

Shortly before ITT shed STC from its conglomerate family, we had to contribute to one last 
review in the USA. I was asked to give a talk on 10th April 1984. The next day my children, 
young  teenagers  then,  were  performing  with  their  school  orchestra  in  the  Albert  Hall  in 
London, a prestigious occasion. I decided I could just fit it all in. I flew out, gave my talk on 
VDM, Ada and how they could work together, had a short nap on my hotel bed for an hour 
and flew back. That was the only time I took a day trip to the USA.
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In 1984 Dines Bjørner, Professor at the Technical University of Denmark and founder of the 
Danish  Datamatics  Centre,  suggested  that  we  should  get  together  with  several  other 
institutions to submit a proposal to the European Commission’s ESPRIT initiative to develop 
a new practical formal method for software engineering that incorporated all the advantages 
of various existing languages and methods. We had numerous meetings and discussions. The 
result  was  the  RAISE  project---Rigorous  Approach  to  Industrial  Software  Engineering. 
Manchester University’s computer science department under Professor Cliff Jones were also 
involved  at  the  early  stages  of  getting  the  proposal  together.  The  central  components  of 
project was the RAISE Specification Language, RSL, and its support tools, together with a 
“method” for using these in software development. The language would incorporate all the 
features of VDM plus facilities for concurrency, so that systems with concurrently executing 
components  could  be specified.  The  method  would  include  guidelines  for  discerning  the 
requirements of the system and managing the project, as well as the usual methodology of 
using a formal specification and refining it to an executable implementation.

Incorporating  concurrent  features  into  the  specification  language  required  us  to  combine 
features from different formal specification languages: theories had to be combined. For large 
systems of software, managing size needed a way of bringing specification modules together. 
To reach these objectives, the project needed to start with a theory study. The DDC held a 
preliminary  workshop  on  combining  specification  methods.  Many  academic  experts 
contributed  to this:  Michel  Sintzoff,  Dana Scott,  Gordon Plotkin,  Laurence Paulson,  Ugo 
Montanari,  Jim Thatcher,  Willem P. de Roever, Albert Meyer,  Hans Langmaack, Andrzej 
Blikle,  Jeannette  Wing,  Hartmut  Ehrig,  Eric  Hehner,  O-J  Dahl,  Allessandro  Fantechi, 
Matthew Hennessey, Manfred Broy, Mads Tofte, Peter Mosses, Otthein Herzog. Rod Burstall 
agreed to be a consultant to the project. Dines had an astonishing list of contacts and a deal of 
influence.

If we were to convince other organisations, especially industrial ones, that RAISE was worth 
using,  some  demonstrator  projects  would  be  useful.  The  proposal  needed  to  lay  out 
motivation for the project, its objectives, and a strategy and work-plan for carrying it out. 
Then there were the more administrative issues to be sorted out like a partnership agreement 
and the sharing of intellectual  property rights.  Each partner should be free to market  the 
results but also to use them for free within their organisations. We aimed to start the project at 
the beginning of January 1985. Within STL we had to convince our management and peers 
that the project harmonised with company research strategy. There was potential conflict with 
current internal projects. If we committed to RAISE, there was a danger that STL’s NIMBUS 
project,  a  successor  to  EST,  could  collapse  with  staff  being  diverted  to  RAISE;  it  is 
organisationally imprudent to have two projects with many similar aims. The company had 
invested considerably in EST and NIMBUS. On the other hand, the DDC had produced an 
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ADA compiler with EEC funding and were offering a licence to IDEC, an STC company 
close to STL, at 50% discount.

The biggest investment which a company like STC makes is in teams of people who can 
work together coherently. This occurs when a team can identify with a project’s objectives. I 
privately  reckoned  that  if  the  NIMBUS  team were  reassigned  to  RAISE,  several  of  its 
members would leave. I could see four possible solutions: abandon participation in RAISE; 
abandon NIMBUS and collaborate  wholeheartedly in  RAISE; divide STC contribution to 
RAISE into two: STL and IDEC, with IDEC providing the lion’s share so that we could 
pursue both projects; acquire more staff so that again we could do both.

I felt that we could not abandon RAISE; too many of our company objectives would not be 
met. I thought we should go for solution 3, and see if the DDC would accept sacrificing some 
commitment from STL but using consultative style contributions from us and commitment 
from IDEC. I knew that Cliff was not in favour of this solution, but I thought it should be put 
to the DDC and their reaction tested. Failing that, we could explore solution 4. But that was 
probably  not  feasible:  STC  had  made  390  staff  redundant  in  the  last  year,  having 
overstretched their  financial  resources by recently acquiring ICL, so the company climate 
was hardly conducive to recruitment.

If a choice had to be made between abandoning RAISE or NIMBUS, STC would have to 
decide whether it wanted to invest in RAISE, a substantial enhancement of VDM, over the 
next five years, or continue investing in NIMBUS, which was more long term and might be 
in a prototype stage in three years’ time. I believed that abandoning NIMBUS was not a real 
solution.  While  one could assign the NIMBUS staff to RAISE, one could not be sure of 
“assigning” their commitment to it. I felt that one of the “compromise” solutions should be 
pursued as vigorously as possible. The worst thing that could happen was to be indecisive and 
follow  the  course  of  least  resistance,  i.e.  to  assign  staff  to  RAISE without  their  proper 
commitment and to pretend that the NIMBUS project can continue unaffected. If that was 
allowed, all objectives would be missed. I sent a memo to director level management listing 
the possible solutions, my concerns and my recommendations.

By 1985 ICL had joined  the  RAISE consortium.  We held  workshops  on  the  theoretical 
problems of combining specifications and on aspects of VDM. By the end of February the 
European Commission had approved the proposal and the project was under way. As I feared, 
no firm decision was made about the dilemma between pursuing RAISE or NIMBUS. Will 
Harwood  who  led  the  EST  and  NIMBUS  projects  left  STL  and  set  up  his  own  small 
organisation under the wing of Imperial  Software Technology, a campus company sprung 
from Imperial  College’s  Department  of  Computing.  There  was  a  severe  danger  of  other 
members of his team following him and leaving STL with a drastic reduction of staff with 
experience  in  formal  methods.  The scenario I  had foreseen as  worst  case had happened: 
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inaction  over  RAISE-NIMBUS.  Again  I  alerted  management  up  to  director  level  of  the 
situation.

There  were  other  changes  in  STL,  most  likely  resulting  from ructions  following  STC’s 
acquisition of ICL and subsequent redundancies. STC sold off its prestigious headquarters 
building at 190 The Strand: not a good indicator. Reorganisations in STL produced a vacancy 
for our own senior division manager position. It was advertised nationally, and locally on a 
company notice board. I decided to apply for it myself. Since the management had made, in 
my view, serious policy mistakes over RAISE-NIMBUS affecting all of us, I thought that if I 
was higher up the management chain, I might at least limit the damage and prevent further 
similar errors. I also thought that the move might help the morale of the staff around me to 
recover. I obtained a copy of the job description and found that I exceeded all the qualifying 
requirements by considerable margins.  I applied and had a one-to-one interview with our 
technical director. I heard nothing until one of our research staff greeted me with the words, 
“Have you heard the good news?” Valerie Downes from Imperial  College,  whom we all 
knew quite well and whose abilities we respected, had got the job. This was the first and only 
notification I ever received that my own application had been unsuccessful.

More RAISE workshops took place  over  the next  nine months,  in  which we carried out 
intense technical work, as well as in between times. In May I was appointed joint system 
architect  alongside Dines Bjørner.  I  felt  honoured and gratified.  A technical  board and a 
management  board  were  set  up.  The  technical  board  sorted  out  more  strategic  technical 
matters  like  how we should use external  consultants,  schedules  for  workshops and more 
specific technical decisions. The management board dealt mainly with the project’s relations 
with the European Commission, the issue of reports to them and deliverables, costings and 
other such items.

RAISE attempted to define the actual process of developing software by a formal model, 
expressed in mathematical terms. Each step in the development produced a new product, a 
specification or other document, that, to be valid, had to bear a definitive relationship to its 
antecedents. The set of documents in a project together with the relationships between them 
formed a Project Graph, and the process of developing it was termed a Meta-program. We 
attempted to incorporate non-functional requirements into the whole concept too, typically 
performance requirements such as timing constraints and ability to handle capacities of data. 
A project in its final form could be seen as a rationally reconstructed history. RAISE would 
include a raft of software tools to support the method and concepts underlying it.

The earliest part of a software development is the elicitation and analysis of the requirements 
for the project. This has always been an elusive part of the development cycle, because it 
necessarily involves human intuition. The vast majority of software disasters have resulted 
from the delivered software not meeting the actual requirements of its working environment; 
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disasters rarely result from the software being technically wrong, although a few have. See, 
for example, Robert L Glass’s book, Software Runaways. Formal modelling could be used to 
help understand and analyse requirements through an interplay between the examination of 
conjectures  expressed  as  formal  models,  intuitive  creative  work,  constructing  lists  of 
questions, experiments, abstraction, generalisation, and recognising common and orthogonal 
features.

The  RAISE project  continued  to  a  successful  conclusion  after  I  eventually  left  STL.  Its 
products and support tools were developed and continue to be available, used and marketed. 
Other institutions became involved in RAISE after the end of the EEC funded development 
phase,  notably  Terma  A/S  and  the  United  Nations  University  in  Macau.  The  Danish 
Datamatics  Centre  transformed  into  the  independent  Danish  company  IFAD,  and  the 
involvement  in  RAISE  moved  from  them  to  Terma.  Dines  Bjørner  for  several  years 
transferred to UNU and established a thriving computer science department there. His recent 
work on domain engineering is, in my own perspective, a natural evolution from the work on 
meta-programs that we did in the RAISE project.

In parallel with the RAISE project, there were, as always, a host of other smaller activities 
engaging  my  attention.  The  Alvey  Directorate  used  to  work  with  the  other  government 
funding agency, the SERC, to foster industrial and academic cooperation. These could take 
the  form of  joint  projects  with Alvey part-funding  the  industrial  contribution  and SERC 
funding the academic part. But academic research projects were also encouraged to engage 
some industrial involvement by appointing an “Uncle” from industry. The idea was for the 
industrial partner to take an advisory rôle, attending meetings with the project every three or 
six months and providing some industrial perspective to help keep in sight some prospect of 
eventual  exploitation.  Calling the rôle an “Uncle” was rather quaint,  to my mind,  having 
evocations of being, well, avuncular, rich and kindly perhaps. I received a phone call from 
Robin Milner at Edinburgh University asking me if STL could fill this rôle. The project was 
to produce a BS standard version of ML, a functional programming language developed by 
Edinburgh and Cambridge University. Apparently they had asked ICL first, but ICL had been 
more possessive over exploitation rights and so forth than Edinburgh had been willing to 
agree. Now they were looking for someone who was not a computer manufacturer, to avoid 
the same problem. I was pleased to show willing.

The one ITT research laboratory in the USA, the Advanced Technology Center, were keen to 
gain as much information from STL before the final date beyond which STC was no longer 
an ITT company. ITT had mostly done most of its research in European laboratories, STL, 
LCT in Versailles and ITTLS in Madrid, for the pragmatic reason that, at the time, British 
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and European labour rates were cheaper than US ones and research was labour intensive. We 
agreed to a visit from ATC staff in August of 1984. ITT had recently enlarged the ATC with 
some fifty new staff, all PhDs and involved in computer software in some way. ITT’s hope 
was that they could put all these fine brains together and stand back to watch the resulting 
intellectual fireworks. This did not work out quite as anticipated. Certainly, the staff at the 
ATC  included  a  lot  of  talent,  but  many  were  somewhat  charismatic  and  idiosyncratic 
individuals. There was apparently not much in the way of structures set up for them to work 
together cooperatively.

In September 1984 a research group in STL developed one of the first LCD flat screens. It 
used “semectic” LCDs. The screen required 150 volts to keep it charged but otherwise used 
very little power, about two to three watts. Its response was slow, too slow for television and 
slowish for word processing. This first prototype produced monochromatic images only. The 
size was 720 by 400 dots, giving bit mapped images and 24 rows of 80 characters, using a 
character matrix of 9 by 16 dots. It had a capacitive overlay for touch entry and control. The 
active matrix controlling the LCD screen was a silicon slice 10 to 15 cm wide.

The  telecommunications  industry  was  perhaps  the  major  recruiter  of  computer  science 
graduates in the U.K. Industry had a considerable interest in the skills and knowledge with 
which graduates emerged from their degree courses, and hence in the content of the courses. 
The  universities  on  the  other  hand  had  an  interest  in  providing  courses  that  equipped 
graduates well in their search for post-graduate employment. This mutual interest resulted in 
the formation of the Joint Curriculum Development team. The industrial members were STL, 
GEC and Plessey.  We met  at  intervals  to  discuss  details  of  undergraduate  and graduate 
courses and tried to interest the Alvey Directorate.

Dan  Simpson,  who  had  worked  at  Elliott’s  in  Borehamwood,  moved  first  to  academia, 
Sheffield Polytechnic, which later became Sheffield Hallam University, and then to the Alvey 
Directorate. He was a founding member of BCS FACS and as its chairman had asked me a 
little earlier in 1984 if I would participate in the FACS committee. He had a strong interest in 
formal  methods  and  later  in  the  same  year  helped  to  stimulate  a  project  exploring  the 
application of formal methods to protocols. In telecommunications a protocol is the rules and 
meaning of a specialised language for introducing the context of an electronic message. For 
example, today when one receives a telephone call one’s equipment can display the number 
of the caller. That number is encoded together with the notification of the incoming call. So 
that this information is universally understood by all equipment, there have to be agreed rules 
about  the format  of  the information  and its  interpretation.  These rules  form national  and 
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international  standards, of which the CCITT is  the international  standardisation authority. 
With  the  onset  of  digital  telephony,  protocols  were  becoming  more  numerous  and  of 
burgeoning importance. They are called protocols because they are like the rules of etiquette, 
of saying “how do you do?” that two pieces of computational equipment exchange before 
getting on to the real exchange of information.

So the seeds of an Alvey funded project, Formal Methods Applied to Protocols, FORMAP, 
were sown. In October 1984 Dan, together with Howard Nichols of the Alvey Directorate, 
held a meeting with British Telecom, ICL, GEC and STL to see if we could put a proposal 
forward. There were already Alvey projects working on Z, VDM and ML, but none on CCS 
or  CSP,  two of  the principal  specification  languages  for  modelling  concurrent  processes. 
Protocols almost invariably denoted some measure of concurrent behaviour. All of us, David 
Freestone  from  BT,  Ken  Turner  from  ICL,  Peter  Scharbach  from  GEC  and  I,  were 
enthusiastic  about  the  idea.  Our  first  steps  were  to  draw  up  a  collaboration  agreement 
between our companies, send it to the Alvey Directorate and expect a letter of intent from 
them in reply. After that would follow a work-plan and cost estimates. We expected to get 
started in the new year.

E-mail  was  just  beginning.  It  originated  in  the  US  as  the  US  Department  of  Defense 
Advanced  Research  Projects  Agency  Network  in  the  1960s.  ARPANET  grew  gradually 
through  the  1970s  until  by  the  early  1980s  the  number  of  hosts  had  reached  over  200. 
Following this lead, the UK SERC pioneered a research network based on the X.25 protocol. 
It was originally built for communication between academic institutions, and all further and 
higher education institutions and government research organisations were in time connected 
to it, schools eventually following. Because of the close links between SERC and the Alvey 
Directorate, Alvey were able to set up a mailbox supporting email between partners on an 
Alvey funded project. So it was that our first experience, corporate and individual, of email 
was on the FORMAP project, rather appropriately since the project focussed on protocols, on 
which email and its supporting network relied. Compared to today, this email was decidedly 
clunky and took a great deal of effort and time to set up for the project, but it was there and 
usable.

The administrative processes for initiating the project were immensely protracted.  Alvey's 
letter  of  intent  was  contingent  upon  their  receiving  a  report  from  referees.  These  were 
delayed.  Because  protocols  were  so  bound  up  with  standards,  we  involved  the  British 
Standards Institution and the National Physical Laboratory, who work hand in glove with the 
BSI. Even in April 1985 there was still uncertainty whether Alvey needed separate contracts 
with each partner or just one with a prime contractor who would subcontract to the others. At 
least the project work had started and Alvey assured us that time and resources spent could 
charged in arrears once the proposal had been approved. This kind of contractual delay to a 
project start was to be entirely typical of both Alvey and CEC funded projects. We eventually 
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received the letter of intent on 25th March, backdated to the 4th. Meanwhile we had our own 
managerial arrangements to do: setting up a management and a technical committee, drafting 
template  subcontracts  to  consultants  and  agreeing  on  our  own  “protocols”  for  project 
communications:  email  for  short  documents,  numbering  and  a  classification  scheme  for 
project reports and documents.

In  mid-March  Robert  Milne,  working  for  STC,  joined  the  project.  I  felt  that  this  was 
something of a coup. Robert had achieved some academic fame by writing one of the first 
books on formal semantics of programming languages with Christopher Strachey in 197713. 
He was working on an internal project that had some overlap with FORMAP and wanted to 
know what the relationship between the two should be. He was expert on higher order logic, 
algebraic data types and modal logic,  all  of which were highly relevant to the theoretical 
foundations of FORMAP.

We began by jointly carrying out a reading of all  current papers and research that had a 
passing relevance to the project and providing short commentaries of them. Between us we 
trawled through back copies of thirteen different journals and sent for other research reports 
from the US Government Printing Office and the Science Reference Library in London. To 
make comparisons easier we all wrote our commentaries in an agreed review format. With a 
classification scheme and preliminary findings the results formed our first project deliverable 
in mid-1985. Alvey themselves held an annual conference and they wanted a poster on the 
project from us for the next one during 25-27th June. At the same time our contractual terms 
with Alvey were just about to be signed, with separate contracts  with each partner and a 
collaboration agreement, which Alvey wanted to approve too. Of course, since we all worked 
for large organisations, all these had to be approved by everyone’s legal departments, who all 
had their own agenda of demonstrating to their companies that they were protecting their 
employers’  commercial  interests  and thereby were justifying their  own existences.  I  have 
observed then and several times since that this leads company legal departments into long 
negotiations about clauses protecting against contingencies that could never in reality occur. 
In the words of the Flanders and Swann song, “it all makes work for the working man (sic) 
today”. In all Alvey contracts the government funded 50% of the industrial costs, and the 
company  funded  the  other  50%.  The  government  through  the  SERC  funded  all  of  the 
academic costs. The idea was that the industrial partners invested some of their own money, 
which would focus their  minds on only submitting projects that had a plausible future. STC's 
central funding constraints meant that we were limited to supplying one person-year per year 
to the project. We had to work within that limit and allocated half a person year to STL and 
the same to IDEC. My own involvement would be limited to a few days from time to time, 
but I would keep abreast of the work. The literature survey would continue throughout the 
time of the project, updating the first report as new information and perceptions emerged. 

13 See Milne and Strachey, 1977.
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Protocols  had  until  then  been  defined  in  a  very  procedural,  mechanistic  way;  there  was 
precious little high level specification in the standards. In my own view, protocol definitions 
did not describe the key, they described the lock it would open. We found that  there was 
little  abstract  specification,  data  structures  etc.,  and  that  terminology  was  often  loosely 
defined. Structured, top-down ideas were little in evidence and there was not much indication 
of deriving design from requirements, at least in the documents available from the protocol 
design work. So there was an interplay between the techniques available and the approach 
used by protocol designers, or rather between the lack of techniques and the limitations in 
approach.

While Alvey agreed to contracts with the separate individual partners, an arrangement desired 
by some of the companies, they still required a coordinating partner to be responsible for 
deliverables.  The coordinator also had to approve invoices from the other partners,  so in 
effect  this  became like  a  single  contract  with  a  lead  partner  in  all  but  name.  Again this 
presaged  a subsequent preference of the funding agencies: they far preferred to deal with a 
single  point  of  contact  in  the  consortium.  Alvey  nominated  an  independent  Monitoring 
Officer who attended project management meetings and could attend technical meetings if he 
or she wished. The MO oversaw the running of the project on behalf of Alvey and would try 
to  keep  the  objectives  of  the  project  related  to  those  of  the  Alvey software  engineering 
initiative.

In parallel with examining some thirteen standard protocols and their existing definitions we 
brought each other up to date on a range of formal techniques. We gave each other mutual 
tutorials on CCS, ACT1, LOTOS, Temporal Logic, CCS, and Petri Nets.

By the end of November 1985 the collaboration agreement was being circulated for signature 
and Alvey had sent a grant letter to all parties, nine months after the project had started and 
over a year after the ball had begun to roll.

Sheffield Polytechnic, now Sheffield Hallam University, got in touch with me about another 
Alvey-funded project. I was well advanced with turning the course I had given in STC on 
discrete mathematics for software engineering into a book. Sheffield were working with the 
Open University and the BBC to construct a course on mathematics for computing, delivered 
in modules in the high standard OU format with videos, manuals, tutorials etc., a project very 
much in sympathy with the aims of my book. As usual, the initial  discussions were once 
again  all  about  legal  matters,  intellectual  property  rights  of  the  end  product,  marketing, 
equity, who could run public courses. I suggested that equity should be in proportion to each 
partner's  contribution  to  the  development.  The  OU  could  market  through  the  National 
Computing Centre. The industrial partners would be ICL and STC, STC working through 
STL and IDEC. The other academic partner was Hatfield Polytechnic. I dubbed the project 
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“Polymaths”, but this name never stuck. It came to be called the BEAVER project. In the end 
STC’s rôle consisted simply of me taking part in the steering committee.

The course resulted in eight modules, Introduction, Sets and Logic, Functions, Recursion, 
Relations, Logic and Proof, and two Case Studies. The Introduction would be the usual “How 
to study the course”, motivation for it, and course contents. This project sped along quickly. 
By October  1985 Hatfield  and Sheffield  had nearly completed  the  case studies,  modules 
seven and eight. There remained to complete the final bells and whistles, a tutor's guide, a 
written  rationale  for  the  course,  bibliography,  glossary of  terms,  modes  of  studying  it,  a 
profile  of  expected  attendees,  expectations  of  what  attendees  could  do  on  completion, 
solutions to exercises, and a script on how vital were the exercises. ICL offered their own 
tutor guides as a template. My last task was to send comments on the two case studies. The 
project was complete.

In October 1984 Neil Davis of Systems Designers Limited telephoned me to propose another 
Alvey project. At that stage in the game formal methods mostly consisted just in notations for 
writing  specifications,  semantic  definitions  of  languages  and  models  of  computations. 
Deriving programs from specifications, proving correctness of implementations and proving 
consistency were all mostly done by hand, although there were programs available to verify 
proofs and even to generate them. But there were no automated tools specifically tailored to 
any of the formal specification languages. To make a technique like VDM really useful, some 
support tools were needed. A project to develop a suite of support tools for VDM would be 
very useful for the software industry.  Manchester  University were working on a tool for 
assisting rigorous software development called  MULE, a closely allied objective.  It made 
sense to collaborate with them under the Alvey initiative.

In developing a substantial  software project, one will be working on a large collection of 
connected  programs.  If  using  VDM,  for  each  of  these  programs  there  will  be  a  VDM 
specification, hence within the project there will be a library of specifications. At that time, to 
write and edit a specification on a computer, one would use an all-purpose text editor. Much 
more useful would be a structured editor, one which knew the syntax of VDM and which 
would prevent one from writing syntactically incorrect VDM. Another useful tool would be a 
pretty-printer, which would print out a specification formatted and indented so as to reveal 
the structure of the script. The library would contain the scripts of specifications, programs 
and statements of requirements. A configuration control tool to relate different versions of 
specifications and programs to each other and to track requirements to parts of specifications 
which fulfilled them would be ideal. Finally, an aid to animating the specifications, replaying 
the effect of their implementations to the customer, would be most desirable. We had only a 
general idea of what this last tool would do and how it would work, but these were our first 

151



thoughts on the scope of the project. A structured editor would in particular would release the 
writer  from concerns  about  lexical  conventions  and could  select  between any alternative 
formats before printing or storing the final text.

We thought that introducing concurrency into VDM would also be of great benefit. Over the 
next few months we spent some time considering different concurrency techniques, temporal 
logic,  CCS  and  so  on,  and  how  well  they  might  combine  with  VDM:  whether  any 
experiments  had  been  done  to  date,  experience  so  far,  whether  the  technique  handled 
parallelism, degree of abstraction and so on. We also considered making use of the results of 
the NIMBUS project to construct VDM proof tools. The VDM Tools project continued to 
November 1985 and beyond, after I had left STL.

At the end of 1984 STL complimented Mel Jackson and me by giving us an award for our 
contributions to bringing VDM technology into use in STC. The company hosted a reception 
in the evening, took photos and presented us with cheques for £500. This was a very pleasant, 
relaxed occasion and good for both our CVs.

For some years now we, along with many researchers in other places, had been concentrating 
on the process of producing software that was correct, that is, that fulfilled its specification. 
The languages that we had devised for writing specifications were rather technical, so that 
most customers were not able to produce them themselves. The model of development that 
emerged was that the specifier would talk to the customers and discover their requirements, 
and then frame them as a specification. This would then be played back to the customer, 
“animated” we used to say, to confirm whether the understanding was right.

It was becoming clear to many people that this process of sorting out the requirements in 
order  to  write  a  specification  was  the  weakest  link  in  the  whole  software  development 
process. In succinct terms,  we had been concentrating on “producing the software right”, 
whereas the biggest problem was “producing the right software”. This whole area has grown 
into  a  topic  called  variously  “Requirements  Engineering”,  “Requirements  Analysis”,  or 
“Requirements Elicitation”.  The customer’s  requirements  usually start  off as a number of 
goals: for example, to automate an existing manual system, to coordinate a disparate set of 
existing systems, or to assist a process with automated support in some way. From these often 
vague objectives, the specifier has at the end of the day to produce a specification from which 
the  software  will  be  developed.  So  part  of  requirements  analysis  is  the  building  of  a 
specification that reflects those requirements. What exactly is this process of specification 
building? What sort of systems were we going to specify? We tried to characterise them. 
Systems could display modularity, that is, be built of connected parts; they could be state-
based, that is having a memory or state that persisted from one activation to the next; their 
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modules  may  need  to  communicate  with  each  other  or  with  their  environment,  possibly 
concurrently; they could be time-dependent, non-deterministic or probabilistic.

It  was  becoming clear  to  us  that,  while  technology was fairly well  defined,  the areas  of 
application were usually not so. When devising a specification one is, in effect, defining the 
technological properties of the required system. The process of devising the specification will 
in turn reflect back on the understanding of the requirements. One major difficulty in all this 
is that the presence of a major piece of software will alter the environment in which it is 
intended to operate. If we were going to have criteria for the success of the various phases of 
the  specification  process,  they  have  to  be  testable.  The  CORE  method,  with  which  we 
experimented in the Augusta project, analyses requirements by recording different viewpoints 
of the desired system, and attempts to resolve any clashes.

Specification,  then,  is  a process consisting of cycles  of clarifying  one’s understanding of 
requirements, building models, formalising them, and testing them. Many of us followed the 
ideas  of Karl  Popper,  the philosopher of science14.  For us testing meant  the search for a 
refutation  of  claims  of  consistency  and  fulfilment  of  requirements.  Having  built  a 
specification, one needs to understand all its implications, what its behaviour will be when 
implemented.  One can do this  by constructing models of it.  Often the model  will  be the 
implementation. A specification lies at the interface between deriving it and understanding it, 
in this sense. We needed tools to support both activities. Building models could be a way of 
crystallising what one is talking about when describing requirements. In this way we should 
reach  a  specification  that  more  closely  reflects  the  real  requirements.  For  example,  a 
requirement might be “the system should have a user-friendly interface”. Building models 
may  be  useful  for  exploring  such  requirements  where  in  fact  those  requiring  them  are 
uncertain of what exactly they want.

The search for a good method of analysing requirements continued, and does so to this day. 
One subsequent project which I was to encounter later was the FOREST project, which took 
the approach of building formal models of requirements in order to reflect and analyse them. 
One lesson I have learned is that a large software project should be developed incrementally, 
with small steps being delivered and piloted in a cumulative fashion. All big bang projects 
fail!

During my last year at STL my colleagues and I attended plenty of stimulating seminars and 
other  events.  We  gave  a  good  measure  of  talks  ourselves,  too.  I  gave  presentations  to 
Coventry Polytechnic,  the Open University and to ICL in Bracknell,  where I had worked 
myself twelve years earlier. My topics were a syllabus for discrete mathematics foundations 
needed for learning formal methods, approaches to teaching, how to choose a formal method 

14 See Popper 1972.
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and concurrency in particular. Mel Jackson, Roger Shaw and I gave a paper15 at the 1985 
TAPSOFT conference detailing our experiences with bringing VDM to STC: our reasons for 
choosing  VDM, our  evaluation  process,  how a  formal  specification  language  could  be a 
cognitive tool, the training programme, and further developments. This was a very rewarding 
conference with papers by many well known names, including Professor Andrei Ershov, a 
pioneer of computer science from the USSR Academy of Sciences in Novosibirsk, Siberia. A 
symposium on Program Transformation  at  Reading University was a little  more  rarefied. 
Several aspects of formal methods were the subjects in a BCS FACS meeting. Dr. Hartmut 
Ehrig talked about algebraic specifications and data types, a topic based on universal algebra, 
which was pioneered by the mathematician Paul Cohn in the 1960s, although the subject 
started in its present form in the 1930s. Hartmut Ehrig developed his ideas into a book on 
Algebraic Specification which I found immensely useful a few years later16.

John Cooke from Loughborough University of Technology and chairman of BCS FACS had 
interests in the mathematics of computing much in accord with my own, having published a 
book  “Computer  Mathematics”  the  previous  year  and  other  books  subsequently17.  He 
suggested that he and I got together to give a double act at a FACS meeting on mathematical 
concepts  in  computing.  John had  developed a  curriculum for  the maths  needed for  their 
degree course in computing at Loughborough. He had given a lot of thought to the need and 
rationale  for  the  mathematics  that  needed  to  be  taught.  A  computer  program  takes 
information in and gives information out. A program is therefore a function between input 
information and output. His course started from that premise, and began by showing how to 
specify and define functions. Programs can represent partial functions, where not all inputs 
lead to a specified output. Although there are partial mathematical functions, such as sin−1

and  , they are rarer and mathematical tradition does not dwell much on partiality. The 
partiality of programs as functions leads one on to domain theory, where a flat domain is a set 
such as the set of real numbers, together with an undefined element, written ⊥ . Dividing 
by  zero  or  taking sin−12 for  example,  produces ⊥ .  An  assignment  statement  like

x= x2  in a programming language is a function from the state of the program to another 
state. From there one is led on to sets, logic, relations, lambda calculus, which is a notation 
for  defining  functions,  and  fixed-point  theory,  which  gives  a  way  of  defining  recursive 
functions and data-types.

John Cooke’s work and my discrete maths course and book-in-progress were very much in 
sympathy with each other. He was exploring what mathematics was needed for a degree in 
computing,  and I  was exploring what  maths  was needed for software engineering.  I  was 
determined that one should take a scientific approach to the engineering of software. One 
needed to take notice of the mathematics underlying the science of computing in order to 
15 See Jackson et al, 1985.
16 See Ehrig and Mahr, 1985.
17 See Cooke and Bez, 1984 and Cooke 1988.
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accurately engineer computer programs. Several of us had been greatly struck by the work of 
certain philosophers of science, notably Karl Popper18 and Imre Lakatos19. Part of their thesis 
is  that  a  scientific  theory can  never  be  proved correct.  However,  the theory must,  to  be 
scientific, be amenable to experiments that can have alternative outcomes, some of which 
would  refute  the  theory.  This  can,  incidentally,  quite  cleanly  distinguish  scientific  and 
theological theories. This emphasis on refutation seemed to provide a fruitful approach to the 
software  development  life-cycle.  Testing  a  program could  be  regarded as  a  search  for  a 
refutation  of  the  claim  that  the  program  fulfilled  its  specification.  A  specification  of  a 
program has a dual rôle. It is a prescription for an acceptable implementation, and it is a 
theory of the problem to be solved. Mathematics is “the language of science” and discrete 
mathematics  is  a  good  way  of  expressing  many  of  the  problems  we  try  to  solve  by 
constructing computer programs. Discrete mathematics is also a good tool for formulating the 
theory of the phenomena which are at the root of the application area of many programs, the 
“phenomenological  theory”.  A  formal  specification  thus  is  an  interface  between  the 
application domain and the implementation, the program.

John and I gave our talks to a reasonably well attended FACS meeting held at Manchester 
Polytechnic,  now Manchester Metropolitan University.  A month later  in July 1985 FACS 
held another meeting on automated theorem provers. The first theorem prover was probably 
produced by Robert S. Boyer and J. Strother Moore20, who had been working on the problem 
of automated theorem proving since the 1970s. They explained the working of their theorem 
prover  at  the FACS meeting,  going into details  of the strategy used.  There were several 
processes, generalisation, destructor elimination, elimination of irrelevancies, induction and 
heuristic use of equalities among others, which all interacted with a pool of formulae. This 
was a  very exhilarating  meeting.  A final  FACS event  in 1985 was their  annual  one,  the 
Christmas meeting.  There was some emphasis  on algebraic  specification techniques:  OBJ 
was a programming language that  had many of the attributes  of the later  object oriented 
languages, with abstract types, generic modules and types with multiple inheritance. Another 
topic was modular specifications, something many of us were to skate around for some time 
to come.

The computer science department at the University of Surrey in Guildford held a four day 
tutorial and workshop on category theory. The list of speakers read like a collection of the 
most talented computer scientists from across the world. The first intensive day dwelt mostly 
on the mathematical nature of categories. We were introduced to both the basic and the more 
elaborate categorial concepts: objects and arrows, universal properties, duality, products and 
coproducts, functors, natural transformations, forgetful functors and more. In the workshop 
over the subsequent three days the speakers moved on to less well known and developed 
18 See Popper 1972.
19 See Lakatos 1976.
20 See Boyer and Moore 1979.
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ideas. We saw how categories could be applied to algebraic semantics, Dijkstra’s weakest 
preconditions  which  he  used  to  give  meaning  to  statements  in  imperative  programming 
languages, typed lambda calculus, and the logic of formal specifications. Most of the ideas 
current in the formal specification area were looked at from a categorial perspective. This 
experience set me back to thinking about what theoretical computer science was really about. 
Perhaps it is a search for an answer to the question, “What are we talking about when we 
program a computer?”, just as the philosophy of science is the search for an answer to the 
question, “What are we talking about when we do science?” This leads on to the questions, 
“What are we doing?” and “What ought we to be doing?” when we do programming.

The Institute of Mathematics and its Applications was found in 1964 and aims to advance the 
knowledge and culture of Mathematics in the UK and elsewhere. Some of my colleagues, 
notably Dan Simpson, had dual membership of FACS and the IMA and so were able foster 
links between the two organisations. So it came about that the IMA invited me to give them 
an  informal  talk  on  the  rôles  of  mathematics  in  software  engineering.  This  I  did  with 
pleasure, as usual eager to propagate the message that proper scientific development required 
a mathematical  approach. I was impressed and humbled by the mathematical  expertise of 
many  of  the  IMA  members.  Later,  in  1988,  the  IMA  held  a  one-day  conference  on 
Mathematical Structures for Software Engineering, in which I gave a revised version of my 
talk21.

The notion of an APSE, Ada Programming Support Environment, aroused a lot of interest. Its 
context  became wider.  A support  environment  that  was independent  of  the programming 
language used would be much more useful.  So was born the idea of an IPSE, Integrated 
Programming Support  Environment.  At the same time,  there  was some uncertainty about 
whether the “P” stood for Programming or Project,  and trended towards Project.  Various 
levels of IPSE were defined, 1, 2, 3, and the Alvey Directorate approved a project to develop 
an IPSE 2.5 with attributes partway between 2 and 3. The environment would contain tools 
for supporting not just program and specification development, testing, verification and so 
forth  but  also  configuration  management,  version  and  compatibility  control,  resource 
planning and expenditure; hence a Project rather than a Programming Support Environment.

STL took some part  in  the IPSE 2.5 project  from its  conception,  but  always  with  some 
corporate uncertainty. We were not sure about whether it was in the company’s interest to be 
involved.  IPSE  2.5  would  support  different  rôles  in  the  development  process  including 
management, requirements analysis and the tasks involved in rigorous development. All this 
was quite closely allied to the work on NIMBUS and RAISE; indeed, the concern within STL 

21 See Denvir 1991.
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was that if we got involved in IPSE 2.5, effort would be diverted from those other projects. 
At first IPSE 2.5 was to be a support environment for general software development,  not 
specifically  for  formal  development.  So  involving  our  department  did  not  at  first  seem 
especially relevant. But as the IPSE 2.5 concept evolved towards greater rigour, STL became 
more  inclined  to  participate.  ICL  and  Manchester  University  were  progressing  with  the 
project. Both Manchester’s MULE and STL’s NIMBUS project could benefit from mutual 
collaboration on IPSE 2.5.  NIMBUS could quite easily add to the IPSE 2.5 proposal for 
packets of work which they already needed to do and which would fit into the overall scheme 
of an integrated support for software development. IPSE 2.5 was therefore a possible funding 
opportunity for NIMBUS. Much the same applied to Manchester’s MULE. So there were 
arguments that IPSE 2.5 would both benefit and detract from the work on NIMBUS. 

Other groups in STL were interested in IPSE 2.5, however. Robert Milne was working with 
others  on  hardware  development  methods.  Hardware  support  systems  could  be  another 
“instance” of a development hosted on an IPSE. We had a meeting with Alvey and discussed 
the progress of the proposal. Alvey wanted more detail about the database that is central to an 
IPSE, the database that holds the versions of all the products and documents produced during 
the  course  of  a  development:  how  tightly  would  it  depend  on  specific  equipment  and 
platforms,  and  would  knowledge-based  techniques  be  used,  for  example.  They  were 
particularly keen on the management support features. Alvey would pay for the user trials, 
but not the basic development; however, they would be generous in the interpretation of that 
distinction. They were concerned that the end result would not be locked into VME, ICL’s 
proprietary operating system.

We were in January 1985. The tentative timetable for IPSE 2.5 was to produce the proposal 
revision by 11th February, obtain company approvals by 18th February, funding approval from 
Alvey by 18th March and start the project on 1st April.

Will Harwood left STL at the beginning of March. He was an inspiration to the NIMBUS 
group  and  I  felt  that  there  was  a  danger  the  others  might  also  depart;  we should  exert 
ourselves to keep them. People with experience in formal methods were in short supply and 
STL should maintain its lead in that arena; we would also need such skills for IPSE 2.5. For 
reasons  of budget,  morale  and investment  in skills,  we should strive to  make a  working 
environment that encouraged people with formal methods experience to stay with us. I made 
these points urgently to our technical director. It was to no avail. Most of Will’s team left and 
joined him in setting up a largely independent team to continue the NIMBUS work under the 
umbrella of Imperial Software Technology. IST was a “campus company” sprung out of the 
computer science department of Imperial College, London.
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Over the previous three years I had expanded the lecture notes for my course on discrete 
mathematics into a draft text for a book. I had offered it to Addison-Wesley, and they sought 
the advice of a reviewer, an academic from the Netherlands. He was at best lukewarm at the 
outset, apparently not being in sympathy with my aims of presenting aspects of set theory and 
logic to an audience of software engineers. After I had sent the whole text to A-W, he became 
vociferous in his objections. My main thesis was that set theory can be used as a language for 
expressing  the  abstractions  of  typical  software  engineering  problems.  I  aimed  to 
communicate this to typical software engineers, for whom discrete mathematics is generally 
unfamiliar. In my experience, the biggest hurdle was that of associating the entities of the 
problem domain with “sets”. I tried to establish a cognitive connection in the mind of the 
reader between abstract set-theoretic concepts and the phenomena of software engineering. 
Indeed,  many  competent  mathematicians  introduced  to  software  engineering  are  slow to 
perceive this connection. I attempted to do this by gradual introduction of the concepts and 
copious examples at each stage, almost to the point of tedium. The reviewer, an experienced 
mathematician,  wanted to strike out passages of discursive text,  to reduce the number of 
examples dramatically, and to separate out the exercises from the rest of the development. It 
seemed clear to me that he found my approach unnecessary and possibly irritating. I could 
sympathise, but did not agree. I felt that it would be an uphill task for me to continue with 
A-W.

I spoke to Cliff Jones about my difficulties with A-W. He arranged a meeting for me with his 
department head at Manchester, Professor F. H. Sumner. They were both enthusiastic for me 
to  cut  my  ties  with  A-W and  offer  my  book  to  Macmillan.  Professor  Sumner  was  the 
consulting editor for their Computer Science Series. Much encouraged, I agreed to go along 
that path. In fact, despite our differences, there was much in the A-W reviewer’s criticisms 
with which, on reflection, I agreed. In particular I needed to improve my presentations of 
proofs. At Cliff Jones’ suggestion, I enlisted the help of Paul Taylor, my colleague at STL.

Paul  was  immensely  helpful,  the  Macmillan  editor,  Malcolm  Stuart  was  friendly  and 
courteous, and after another few revisions I eventually delivered the final manuscript in mid-
1985. Macmillan were still using old-fashioned typesetting, a method coined by publishers 
then as “hot metal”. So a copy-editor took my script and copied it all out, querying minor 
issues along the way and laying out the whole text, including especially the mathematical 
sequences, of which there were many. The result was a galley proof, which I had to check 
over, and finally page proofs, which again I had to check. The opportunities for errors in all 
this lengthy process were great, especially since I was becoming mesmerised by the script 
after  reading it all in intense, character by character detail  for about the fourth time. The 
book22 came out in print early in 1986; some of those errors embarrassingly persisted and 
required a small errata sheet. Today’s approach in which the author prepares a text close to 

22 See Denvir 1986.
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the final layout in electronic form and the publisher merely massages it into the final copy 
may be a little more labour intensive for the author, but is far less error-prone.

As  part  of  the  impetus  to  make  academic  courses  and  research  industrially  relevant, 
universities were setting up liaisons with firms to add some kind of industrial credentials to 
their  curricula.  Loughborough  University  of  Technology  invited  me  to  contribute  to  a 
steering committee whose brief was to set the direction of their undergraduate courses. Their 
computing  science  courses  included  an interlude  in  industry.  At  the  first  meeting  of  the 
committee the department head presented statistics of those attending a conversion course: 
applicants (250), failures (1), resits  (2), and outlines of industrial  projects. Loughborough 
preferred  the  flavour  of  these  industrial  interludes  to  be  non-critical.  Pilot  studies,  extra 
pieces of work the firm would like to do but which were not essential, and tasks which were 
not part of a long-term project or on a critical path were ideal. These industrial interludes 
gave the students considerable motivation, increased their perception of the relevance of the 
course and engaged them hands on in a “real” project. Loughborough wanted to supplement 
these arrangements  with external  lecturers  from industry and visits  to  IT companies  who 
could display activities in computing, communications and human factors. There was also a 
continuous need for collaborative projects in which MSc students could engage.

At this  time we had given VDM courses mostly to other STC or ITT organisations.  The 
company were too wary of not losing commercial advantage to let us disseminate these good 
practices to the world at large, much as we would have liked to have done so. However, 
sometimes a customer of an STC company was invited on one of our courses. Laurie Robbins 
worked for the Central Computer and Telecommunications Agency, who were buying some 
consultancy from IDEC. As the audience were settling in their seats, he greeted me by name. 
“Good morning”, I replied, puzzled, for he looked familiar, but I could not recall from where. 
After  I  had started the introduction to the course it  came to me.  I  broke off  and looked 
straight at him. “I remember”, I said. “We were on a mountaineering course together!” We 
had both recently been on a course on mountain craft run by the Enfield Council. The change 
of context had thrown me. I did not even know he worked in computers. “That’s right!” he 
beamed, pleased that I had recognised him. Some time after the course CCTA approached 
IDEC for advice on using VDM-style rigour in their program development. The CCTA had a 
large  number  of  people  working  as  computer  programmers.  They  had  for  some  time 
traditionally  used  SSADM, a  graphical  methodology  supporting  structured  programming. 
Indeed,  since  1983  they  had  mandated  using  SSADM  for  all  new  information  system 
developments. They did not want to throw away the investment they had made in SSADM 

159



and staff training,  but were persuaded about the advantages of VDM. Could the rigorous 
techniques of VDM be grafted on to SSADM?

Laurie Robbins had attended my course on VDM and well  understood its  principles.  His 
thought was that SSADM, Structured Systems Analysis and Design Method, was effective at 
the early stages of the development life cycle, but the ideas in VDM could provide a semantic 
model with abstract syntax for SSADM. This could increase the deep level understanding of 
SSADM by “experts” and extend the checks on validity that could be made through a support 
environment.  He  hoped  in  addition  to  identify  possible  future  scenarios  for  using  more 
advanced and formal techniques. He had a time window of twelve months.

We put together a project outline and proposed a finger in the air estimate: 150 person days, 
£75k.  The  project  began  to  roll.  At  this  stage  STL  and  IDEC  were  working  together 
increasingly  in  certain  areas,  in  particular  in  software,  and  in  a  short  time  STL was  to 
incorporate  substantial  parts  of  IDEC,  becoming  a  multi-site  research  laboratory.  Patrick 
Goldsack joined IDEC and came on the project team. He had excellent background in formal 
methods and was to be the principal  researcher on the project,  which,  as often occurred, 
accumulated a heavy steering team. He started by going on a three-day SSADM course. The 
course lecturers were accustomed to an audience of data-processing people. I think they were 
rather stunned by Patrick’s searching questions: he was trying to track down what should be a 
formal semantic model of SSADM. Two of the central concepts in SSADM were Data Flow 
Diagrams and Logical Data Structures. Both of these were well amenable to formal semantic 
modelling.

The formal semantic definition of DFDs made possible support tools with dialogue design. 
This could give an SSADM-style front end to VDM. By September 1985 the feasibility study 
was nearly complete we started to put together the final report.

We had last heard from the European Space Agency seven years earlier. They had shown an 
inflexible approach to their systems development that originated from an entirely necessary 
desire for high product and process quality.  This time it was clear that their attitudes had 
changed. They were using high level languages, no longer fearful of the unknown quality and 
accuracy of commercial compilers, and were contemplating using formal methods and Ada.

ESA had a  language  for  testing  software  called  ETOL.  It  was  interpreted  by a  suite  of 
Coral66 programs. They were considering reimplementing this suite in Ada. They proposed 
to redesign the whole system using formal methods with an implementation in Ada in mind. 
Then  they  would  recast  one  module  in  Ada  and  compare  this  implementation  with  its 
predecessor. They also wanted to consider the possibilities and feasibility of having mixed 
implementation languages. Using the results of these exercises they would determine whether 
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to go ahead and reimplement the whole suite. Prior to comparing the Ada module with its 
predecessor, they needed to determine a set of criteria for making the comparison.

It  was heartening to find that the approaches of the ESA had advanced so far from their 
previous rigid state. However, I don’t think the discussions resulted in a project for STL.

Various contracting firms, GEC, Ferranti, Marconi Data Systems, CEGB and STC had got 
together and formed an Ada UK special interest group with a subgroup focussing on formal 
methods. At first this SIG simply had self-instruction meetings where members demonstrated 
aspects  of FMs to each other.  A popular exercise problem was that  of a set  of lifts  in a 
building. Up and down buttons were positioned on each floor, together with lamps, and call 
buttons for each floor in each lift, and the floors had doors to the lifts which could be open or 
shut. This was an excellent,  familiar  problem in interaction.  The lifts,  buttons, lamps and 
doors could be controlled by binary logic circuits or by software. At the first meeting we 
considered three techniques applied to the “lift problem”: OBJ, Mascot 3, and JSD.

Mascot  3  was  scarcely a  formal  method.  It  defined  interfaces  between functions  and the 
configuration of software, which are equivalent to the arities and invocations of functions, 
without defining the effects of functions in any way. Data types too were glossed over. JSD 
approached requirements analysis by modelling, which resulted in formal models used early 
in the life cycle. The Ada UK formal methods group continued to meet periodically.

The US President, Ronald Reagan, was much exercised by the perceived threat of nuclear 
attack by the Soviet Union during the Cold War. In March 1983 he proposed the “Strategic 
Defence Initiative”. This consisted of a system of laser weapons based both on the ground 
and in space, which would destroy any incoming nuclear ballistic missiles. SDI would form a 
protective virtual umbrella over the United States. The detection and laser defence systems 
would be connected by computer networks in order to work in close coordination. Crucially, 
to  achieve  a  rapid  response  to  immediate  situations,  the  system  would  be  autonomous; 
decisions and actions would be taken using Artificial Intelligence techniques without human 
intervention.  The media dubbed SDI “Star Wars” after  the 1977 film directed by George 
Lucas, itself highly innovative in that it made pioneering use of computer generated graphics. 
A massive amount  of R&D would be needed to make these intercommunicating systems 
feasible. The White House originally requested $5.3B, reduced by Congress to $3.8B.

This proposal caused much debate in the computer science community. Although computers 
and software had been used for military purposes before, this would be an unprecedented 
concentration  of  effort  on a  military  objective.  There  was also a  serious  question of  the 
feasibility of the whole enterprise; the complexity and area of deployment of the system was 
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far in excess of anything that had been done before. David Parnas, a renowned computer 
scientist23, had publicly expressed reservations about the whole enterprise, and resigned from 
the  SDI  Panel  on  Computing  in  Support  of  Battle  Management,  a  government  advisory 
committee,  when his criticisms were unheeded. Yet SDI also promised an unprecedented 
volume of funding for addressing many problems in computing,  especially in the area of 
concurrent computation. Some academics and industrial researchers took the attitude: so it 
won’t work, but meanwhile we’ll get lots of funding for doing research into very interesting 
and useful problems.

The BCS had established rules of professional conduct and ethics for its members. The Star 
Wars question was raised in a meeting of the Software Engineering Task Force, a Special 
Interest Group of the BCS. Was it ethically acceptable to take SDI funding when there was a 
widely held professional opinion that the desired system would never work with the available 
technology of the time?

There was a more general anxiety amongst those working in British software engineering that 
the military was taking over computing research. Much of the work done under the Alvey 
initiative was of interest to the MoD. There was a natural relationship between Alvey and the 
MoD,  since  the  latter  were  a  major  software  developer.  A  story  in  the  popular  trade 
newspaper Computing warned of an impending MoD hijacking of Alvey. Ada, the US DoD 
sponsored language, might be “just another language”, but it had special technical properties 
and  was a  field  ripe  for  R&D. The Alvey Directorate  themselves  asserted that  they had 
avoided excessive intrusion of Ada and the MoD on their policies. There was, they said, no 
diversion from the public stance expressed at the outset: specific concentration on Ada and 
defence applications would be handled outside the programme.

At a meeting of the BCS SE Task Force we decided to have a special meeting to explore the 
SDI question, and we would invite special extra guests who might have an input on ethical 
matters.  We  had  in  mind  Bernard  Williams,  a  British  philosopher  who  had  written 
extensively on ethics. Meanwhile we had considerable debate and came to some preliminary 
conclusions. Infeasibility was nothing new: the Great Wall of China, TNT and many other 
inventions and constructions were originally believed infeasible. David Parnas need not have 
resigned, one argued. He was an advisor, his advice was genuine, he offered it, so it was not 
his fault if it was not taken. The BCS took the position that they did not advise on moral 
issues  nor  even  on  technical  ones  which  were  not  generally  agreed  across  the  technical 
community. But, given that they had a policy on professionalism, they could advise on where 
it could be applied. Whether the BCS could proclaim on national issues was less certain at the 
time (since then they have done so periodically). We formulated the question for discussion: 
what  considerations  arise  from principles  of  professionalism in  computing  which  should 
determine whether one should work on projects whose feasibility one may question? Other 
23 See e.g. Parnas 2001.
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strategic  notions  besides  feasibility  may  affect  these  considerations  such  as  the  social 
outcome of a project.

The meeting with Bernard Williams took place on 13th December, 1985, two and a half weeks 
before  I  left  STL.  Also  present  were  Richard  Ennals,  who  was  coordinator  of  Logic 
Programming and of the Flagship parallel computing project in the Alvey Directorate and 
who  wrote  extensively  on  artificial  intelligence,  Professor  M. M. Lehman  from  Imperial 
College, London, acknowledged expert on the software development process, and Dr. Henry 
Thompson of Edinburgh University, who co-founded American Computing Professionals for 
Social Responsibility and British Computing and Social Responsibility.

SDI was “an automatic  knowledge-based  weapons system operating  in  real  time without 
human control”24. This was an alarming prospect. Alarming because:

1. Current techniques were inadequate to build such a system.

2. Software  engineering  did  not  have  the  reliability  necessary  for  a  system of  such 
criticality.

3. The current nature of research in Artificial Intelligence would not assist in building a 
reliable system of this kind.

These were among the arguments put forward by Professor David Parnas when he resigned 
from  the  SDI  Office  Panel  on  Computing  in  Support  of  Battle  Management.  He  also 
considered that the SDI Office was an inappropriate vehicle for funding research25 [Ennals 
1986, p.52; Parnas 1985]. Ennals graphically likened SDI to a game of celestial snooker. It 
might be possible to program a robot to play snooker, but it would be a long term research 
project.  SDI  proposed to  pot  numerous  incoming  nuclear  ballistic  missiles  using  nuclear 
powered cues of X-ray lasers, without fail and without practice, while the balls were moving 
at speed in three dimensions.

At the BCS meeting on December 13th, 1986, Bernard Williams was at first bemused at being 
asked for an “ethical opinion”. But he thought that perhaps philosophers should come out and 
declare their ethical views on current issues more than they had done to date. He said he 
would confine himself  to ethical  considerations of the question of whether people should 
work on SDI.  He said he could not give ethical  prescriptions,  but could help to sort  out 
ethical issues. He summarised the arguments he had heard in the meeting so far.

The system could “fail”. This could mean:

a) it does not get off the ground;

b) the system gets constructed but doesn’t work. This would be extremely dangerous 
especially if, for speed, human intervention was cut out;

24 See Ennals 1986, page 90.
25 See Ennals 1986, page 52 and Parnas 1985.
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c) the system works but not as a complete strategic defence system.

He considered the position of those who were opposed to defence related research in general. 
One might think that they would therefore be opposed to SDI. On the other hand, they might 
argue: SDI won’t work, so it is all right to work on it! That would not hold water, because in 
that case SDI would exacerbate the danger. Those opposed to nuclear research might feel 
able to support SDI because at base, SDI did not involve nuclear weapons.

SDI would exacerbate tensions, encouraging pre-emptive strikes, and therefore could lead to 
catastrophic  results  whether  it  failed  or  succeeded.  “Working  from  within”,  a  policy 
supported by some, is a suspect argument, possibly leading to sabotage!

Some people were concerned that it would be dishonest to work on something one knows 
will  fail.  Bernard Williams thought this  was not so, provided one declared one’s opinion 
throughout.

If one thought that SDI would lead to catastrophe, then that would be an individual reason not 
to work on it. If one thought that it is unwise, for example unwise for British computing, 
British science, the British economy etc., then that would be a professional judgement. Hence 
it would be within the ambit of a professional body like the BCS.

At the end of the discussion Bernard Williams remarked that he had the impression of a 
society (the BCS) that had just lost its innocence. This loss of innocence is reflected in an 
article  published a year  earlier  by Dr.  Henry Thompson,  also at  the 13th December  BCS 
meeting, in New Scientist:

As computer scientists, we know what computer systems are like, what computers can 
and cannot  do.  Not  one  of  us,  or  I  am confident  any other  responsible  computer 
scientist, could ever literally or figuratively turn the switch which placed the means 
for starting a nuclear war under fully automatic unsupervised control.  From that it 
follows that it would be profoundly and morally dishonest to connive at the creation 
of any programme with that as its stated goal.26

Meanwhile there was increasing national concern over the fact that the UK government had, 
along with Western Germany, agreed the secret US Memorandum of Understanding, without 
debate or more general  consensus. This Memorandum of Understanding was classified as 
secret in perpetuity under the Official Secrets Act, but was leaked and printed in Aviation 
Weekly in January 1986. Causing even greater concern was the ever widening proscription 
on research results,  classified as of military significance under the US COCOM rules.  It 
seemed that Britain could either cooperate in SDI or continue with the Alvey Programme and 
other initiatives, but not both.

26 See Thompson 1985.
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Of course, SDI and the fierce controversies that it  stimulated are now history and mostly 
forgotten.  The  Memoranda  of  Understanding  have  all  been  filed  in  official  waste  paper 
baskets.

Dana Scott  developed his theory of domains from the late 1960’s into the 1970s. Scott’s 
domains enabled the mathematical modelling of computable functions and the full range of 
recursive data types that computable functions permit27. The logic with which one can reason 
about computable functions and data types following Scott’s theory became known as LCF, 
the Logic of Computable Functions28. At the same time, through the seventies and into the 
eighties and beyond, the ability to prove desirable properties of programs became something 
of a great quest. At the time of writing, one of the Grand Challenges initiated by the UK 
Computing Research Committee in 2004 focuses on Dependable Systems Evolution.  The 
goal  of  GC6 is  to  produce  a  Verifying  Compiler  and  a  repository  of  verified  software. 
Proving properties of computable functions remains a quest and challenge. This UK Grand 
Challenge  GC6  is  related  to  the  EU  ISTAG  Grand  Challenges  in  the  Evolution  of  the 
Information Society, challenge number 429.

The meanings or semantics of programs are elements of Scott domains and Scott’s LCF is a 
notation for writing those meanings. It was a form of λ-calculus, typed with two base types, 
natural  numbers and Boolean values. Robin Milner further developed Scott’s LCF with a 
more  elaborate  type  system,  allowing  recursively  defined  types.  Theorem  provers  for 
theorems written in Milner’s  LCF30 were then developed from the late  seventies into the 
eighties. To develop a theorem prover, one needs a language in which to program it. Robin 
Milner designed ML31, an abbreviation for Meta-Language, expressly to facilitate theorem 
proving in LCF. ML is a functional programming language, but with a powerful polymorphic 
type inference system. ML has a type checking mechanism based on a Unification technique. 
Unification was used in Prolog and, although as an algorithm it is quite simple, it is effective 
in deducing logical terms from their predecessors in a proof or argument.

The essentially beautiful idea in ML is that a type can be defined as a set of logical terms, 
with the axioms and the type inference rules as the rules of deduction allowed by the logic. 
By defining LCF as a data type in ML in this way, proofs as it were come for free along with 
the type inference system. The polymorphism in ML, an ability to allow types themselves to 
stand as data in a function definition, enable proof strategies, which Milner called “Tactics”, 
to be expressed as functions. Operations that combine tactics could be expressed as higher 
order functions delivering more elaborate strategies, called “Tacticals”.
27 See Scott 1982.
28 See Scott 1971.
29 See ISTAG 2004.
30 See Milner 1979.
31 See Milner et al, 1990.
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LCF and  ML are  together  an  example  of  a  remarkable  collaboration  amongst  academic 
institutions.  Milner’s original LCF was developed while he was at Stanford University in 
Connecticut. Further developments resulting in increasingly useful and powerful versions of 
LCF took place in Edinburgh, Cambridge and elsewhere up to 1987, resulting in Edinburgh 
and Cambridge LCF. At the same time ML was developed further and “Standard ML” was 
later defined and published in 1990, revised in 199732. Implementations of SML have been 
produced by many institutions, some of them extended in radical ways and today, almost all 
of  them available  as  open source.  LCF has  in  turn  been  extended  into  other  useful  and 
effective proof systems and languages, notably HOL (Higher Order Logic), ProofPower (by 
ICL), and proof assistants for NuPRL and Martin Löf type theory. Probably unknown to most 
practising software engineers, the work on LCF and ML, carried out over some 25 years, has 
underpinned the foundations of future reliable software engineering.

Several countries were beginning to recognise the impact that software would have over their 
national economies. Nationally funded software research programmes began to flourish. In 
Britain an advisory committee chaired by John Alvey made a list of recommendations to the 
Department of Trade and Industry. The government accepted most of these and the Alvey 
programme  began  in  1973.  This  was  a  wide  programme  involving  three  government 
ministries,  the  DTI,  the  Ministry  of  Defence  and the  Science  and Engineering  Research 
Council  in  the  Department  of  Education  and  Science.  Industrial  and  academic  research 
groups were to take part in the programme. The Alvey programme covered four enabling 
technologies:

● Very Large Scale Integration (VLSI);

● Software Engineering;

● Man-Machine Interfaces (MMI);

● Intelligent  Knowledge  Based  Systems  (IKBS),  more  generally  called  Artificial 
Intelligence (AI).

One of the aims of the Alvey programme was to encourage more coordination between these 
different areas. Workers in the four areas had not communicated enough with each other, it 
seemed. Another aim was to foster industrial  and academic collaboration.  Industry would 
give commercially useful focus to academic research and academia would bring the best of 
theoretical understanding and knowledge to future industrial products. That was the theory. In 
collaborative  projects,  the  industrial  partners  were  generally  funded  up  to  50% and  the 
academic  partners  100%. Other,  longer  term research  projects  could  have  academic-only 
partners.

32 See Milner et al, 1990 and 1997.
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Around the same time the European Union approved the ESPRIT programme, the European 
Strategic  Programme  for  Research  into  Information  Technology.  The  motivation  for  this 
initiative was very much an economic one. The research activities of European companies 
were considered much smaller than their overseas rivals. Cooperation was seen as the way to 
international competitiveness for the EU. The European Commission ran ESPRIT, but each 
phase of the programme would be approved by the EU Council of Ministers. Each phase, 
called  a  Framework,  would  be  initiated  by  a  call  for  proposals.  Successful  proposals 
generally received 50% funding. Each Framework,  of which there have been some seven 
now, would have a number of technical areas. The initial areas of the ESPRIT programme 
were:

● Advanced Micro-electronics;

● Software Technology;

● Advanced Information Processing;

● Office Systems;

● Computer-integrated Manufacture.

Each Framework would embody a five-year programme, but the Frameworks overlapped in 
time substantially.  Work under at least two Frameworks could be progressing at the same 
time.

Slightly earlier,  in 1981, Japan announced its intention to start a brave new generation of 
computers,  called  the  “Fifth  Generation”.  One  could  fairly  argue  that  the  need  to  keep 
competitive with Japan stimulated the initiation of both ESPRIT and the Alvey programme. 
The  Japanese  initiative  placed  great  emphasis  on  AI.  Their  plan  was  to  implement 
“mechanisms for inference, association and learning” in hardware. Then artificial intelligence 
software would be developed to make full use of these hardware functions. These proposals 
were  put  forward  by  the  Japanese  Institute  for  New  Generation  Computer  Technology 
(ICOT).  This  was  a  radical  strategy,  with  heavy  focus  on  AI  and  PROLOG,  the  logic 
programming language. The programme would require highly parallel computer architectures 
and very large scale integrated circuits in order to enable the massive computer processing 
which  implementing  such far-reaching  AI would  require.  (The  human  brain  is  slow and 
lumbering compared to a computer, which is why we cannot calculate as fast as one. But a 
brain has a massively parallel “architecture”, which is why even the relatively minute brain of 
a bird can recognise visual patterns far more quickly than any computer). The long term aims 
of the Japanese programme have today not yet been realised, but their research programme 
has put Japan into the forefront of AI research. Several popular products have emerged from 
this effort, such as the Sony “dog” that can learn and be trained. The ICOT programme set 
some challenging targets for the rest of the computing world.
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Other  national  programmes  of  research  began  following  ICOT’s  publication  of  their 
initiative. The most notable was from the USA, where funding came from the military. The 
Defence  Advanced Research  Projects  Agency (DARPA) launched a  Strategic  Computing 
Programme with a substantial budget over five years.

Meanwhile all practising computer scientists and software engineers have to work for some 
institution  or  other.  I  was  still  with  STL.  Software  had  become  more  significant  in  the 
company. At the top of the organisation’s hierarchy, just below the managing director, there 
were  three  technical  directors.  One  of  these  now had  specific  responsibility  for  IT  and 
information  systems.  With this  newly enlarged significance of IT and software,  we were 
frequently reviewing our strategy. What were we here for, in corporate terms? Because there 
was  no  long-standing  company  tradition  in  software,  upper  management  were  mostly 
experienced in other engineering specialities. This meant that we, at somewhat lower levels 
of the hierarchy, had more control over our own technical destiny than we otherwise would 
have  done.  Software  technology  was  rapidly  becoming  ubiquitous,  like  transistors  and 
semiconductors.  To  plan  for  our  own  future  we  needed  to  be  technologically  aware. 
Attending conferences,  keeping abreast  of scientific literature,  taking part  in collaborative 
research,  and  interacting  with  our  peers  in  other  institutions  all  worked  to  improve  our 
awareness. We had a rôle in assisting other companies within STC who were developing 
software-intensive products. We helped them to exploit new methods and development tools 
in the short term, up to three years ahead. In other words, we had a technology transfer rôle. 
We also had a rôle in longer term R&D, more than six years ahead, say, in order to ensure the 
company’s  competitiveness  for  the  more  distant  future.  We  therefore  had  to  decide 
proportions of investment and emphasis for each. To date our acquisition of projects had been 
opportunistic rather than according to a policy. We involved the technical people who were 
“on the job” in these policy discussions, because we ourselves had technical backgrounds. 
We devised a meta-plan for selecting and steering projects. Policy provides a direction, a 
programme which evolves but has a theme, formal methods for example, and an objective 
like  “efficient  software  systems”.  Criteria  can  evolve  and  change;  for  example  cost  and 
correctness may be traded off. Sometimes one might focus on a product or service, but these 
are merely milestones in a more general route, even if they take many person-years to build. 
We had already started to engage in collaborative projects, something we had not done all 
that  much  before:  We  were  negotiating  actual  and  prospective  collaborations  with  ICL: 
FORMAP,  IPSE2.5,  RAISE and  LOTOS.  Given  the  knowledge  and experience  that  our 
software research group had acquired over the previous few years, we could, if we wanted, 
develop and sell engineering products. Should we do so? This had not previously been part of 
STC’s business. We gave several talks to own management in order to “sell” our ideas on 
software strategy.
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All  this  local  soul-searching  and  policy  formation  was  part  of  a  larger  company-wide 
reshaping. A new company within the group, STC Technology, was formed. In October 1985 
STC Technology divided into two, STC Technology Labs and STC Technology Enterprises. 
The Software Engineering Technology Centre was part of the SW directorate within STL. 
The latter was formed from units previously within STL and IDEC. So STL itself became 
multi-site. We were used to the Harlow site being part of our identity, so this change affected 
individuals quite strongly.

STC had taken over ICL and then found itself financially strapped. To save money they sold 
off their prestigious headquarters building, 190 The Strand in central London. This was an 
ominous move. What had been ICL was sold on to Fujitsu. Large numbers of people were 
being given early retirement or redundancy notices. The NIMBUS team had already departed 
earlier in the year. One of my closest colleagues, Bernie Cohen, had been offered a Chair at 
the  University  of  Surrey  in  Guildford,  and  had  accepted  with  the  STL  management’s 
blessing.  The software research group was seriously disintegrating.  I and two other close 
colleagues, Mel Jackson and Roger Shaw, looked for pastures new and we all left at the end 
of 1985. I made a list of my responsibilities in order to hand them over tidily. I was involved 
in five main projects and about eight minor ones. I was a member of the Technical Board and 
joint Project Architect with Dines Bjørner in the RAISE project. In the FORMAP project I 
was  the  local  site  coordinator  attending  project  management  committee  meetings  and 
communicating  their  decisions  down  the  line.  Springer  Verlag  were  publishing  the 
proceedings of the workshop we had held on the Analysis of Concurrent Systems two years 
earlier; I was the liaison with Springer and the participants, who should receive copies when 
they were produced. The VDM Toolset project was about to start but had not yet imposed 
any  great  commitment.  A  consultancy  contract  with  the  CCTA,  for  which  I  was  the 
coordinator,  was  to  all  purposes  complete.  Other  consulting  rôles  and  membership  of 
committees  I  could  hand  over  to  other  individuals  or  simply  continue  as  a  personal 
commitment.  I  felt  obliged  to  ensure  that  my  leaving  STL  did  not  harm  any  of  these 
endeavours.

Chapter 10 Theory in Practice

Roger Shaw, Mel Jackson and I had all felt that we would like to push the exploitation of 
formal methods further and more energetically than ITT or STC had been willing to do. Our 
employers were not in the business of software development as an end in itself; they were 
interested in software only as a component of telecommunications products. We thought long 
and hard about setting up a company of our own, but hesitated, because without any contracts 
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in sight, this would have been a massive risk. We all had families and mortgages to support. 
Then one day I noticed that Praxis, a software house in the city of Bath, was beginning to 
make a name for itself, branding itself as a company dedicated to high quality software and 
keen to use formal methods. Bath was in the west of England, 130 miles from London. Praxis 
was formed from the South-West Universities Computer Centre, when that organisation was 
disbanded by the south-west universities. The time had come for nearly all universities to 
have  computer  centres  of  their  own.  SWURCC  was  helped  by  several  organisations  to 
transform  itself  into  a  commercial  software  house,  making  its  way  by  writing  bespoke 
software for customers. SWURCC had taken part with us in the Augusta project. I felt that 
the manager of SWURCC, Martyn Thomas, and I were on the same wavelength. He had said 
complimentary things to me after my presentation on the Augusta project at its completion 
conference  at  the  National  Physical  Laboratory,  so  I  thought  he  had  some belief  in  my 
abilities. Martyn was now chairman of Praxis. I suggested to Mel and Roger that we approach 
Praxis and proposed that the time was ripe for them to set up a London office, and we three 
would spearhead it.  I  composed a letter  to this  effect  and sent it  to Martyn  Thomas.  He 
telephoned me a few days later and said that my letter was waiting for him when he returned 
from holiday.

Over the next few weeks Roger, Mel and I had several meetings with Praxis directors. We 
worked over a business plan for forming a London office in some painstaking detail. For the 
first time in fifteen years I came face to face again with the financial rigours of operating a 
small company that depended entirely on sales for its income, unsupported by grants from a 
larger organisation or group. In the end we were all forced reluctantly to the same conclusion: 
a London office was not a viable proposition for Praxis at this time. Then the Praxis directors 
suggested that the three of us join Praxis in Bath as senior but otherwise regular employees. 
By that time the three of us had got to know and like the company and found this prospect 
tempting. David Bean, the managing director, had a one to one chat with each of us and we 
each received job offers that day. Mel and I both accepted, but Roger decided to stay at STL 
for the time being. He indicated that he might join us later. So on January 1st, 1986, I changed 
jobs and employers. I had already booked a holiday in the Lake District with my family, and 
slightly  to  my surprise,  Praxis  were willing  for  me  to  start  my new employment  with a 
week’s leave. Furthermore, since I was eligible for a company car with Praxis, as I had been 
with STL, Praxis permitted me to take delivery of my car in advance to use on holiday. I was 
impressed!

I still  lived in London, my wife Hazel was doing research into mathematics education at 
Chelsea College, London University, and both my children were established at an excellent 
school in North London on course to take their GCSE and A-level public exams. I did not 
plan to  move to  Bath,  so Praxis  and I  came to  a deal:  I  would commute  in  the reverse 
direction to normal from London to Bath, staying overnight if necessary,  and take on any 
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London  based  business  and  contracts  that  I  could.  Sure  enough,  within  days  I  became 
involved in a contract with Oracle, the database company. I had never worked in databases 
before, knew only the bare principles of what they were about and protested to that effect. My 
protestations were waved aside. We all have to be technically flexible, they said. You’ll pick 
it up quickly.

Oracle’s product was a relational database hosted on the UNIX operating system on IBM 
personal computers. IBM designed and manufactured the first personal computers. Only later 
were they required to publish sufficient details of the design so that other companies could 
sell  PCs  in  competition.  Relational  databases  were  based  on  the  mathematical  theory  of 
relational algebras, pioneered by E. F. Codd1. Oracle had sold one of their database systems 
to BT, who wanted to have a custom user interface developed. This user interface was to 
consist  of  a  syntax  driven  text  analyser.  Oracle  estimated  two to  four  person weeks  for 
developing this user interface, but wanted help with the design. Their own staff would then 
implement it, so that they would keep knowledge of whole system within their company and 
be able to update it further as it and its environment evolved. I was to learn that over the next 
few years  more  and more  customers  wanted this  kind of arrangement  with Praxis and,  I 
assume, other software houses. The software house would carry out part of the early stages of 
the  development  life-cycle  and  the  customer  would  then  do  the  rest,  including  the 
implementation.  This  way the  client  keeps  control  of  the  design  and is  able  to  continue 
maintenance without being dependent on the supplier.

Databases were the mainstay of commercial data processing, an area I had been away from 
since my days at ULACS. A database typically contains large amounts of data in a structured 
form.  The user of a database is able to query it and obtain information about how many 
records  exist  with  certain  properties,  and  other  such  information.  The  user  queries  the 
database in a purpose-designed language.  The first databases were developed in the mid-
1970s, but the more sophisticated Structured Query Language, SQL, was developed a little 
later. The first commercial versions were released by Oracle and IBM in 1979. By 1986 the 
American National Standards Institute adopted SQL as a standard. ISO followed suit a year 
later.

Oracle saw this contract with BT as an opportunity to upgrade their own product and improve 
their  competitiveness.  They  were  already  using  a  specialist  database  consultant,  John 
Ashford, but they required more expertise with drafting the syntax of the SQL extensions in 
BNF. I was surprised that any firm needed extra help to write some BNF, for it had been 
around for nearly thirty years  and formed the foundation of any language definition.  But 
apparently familiarity with BNF was less widespread than I thought.  The implementation 
would be programmed in the C language. We were not to count on any particular operating 
system architecture. At a meeting with John Ashford, he pointed me towards several journals 
1 See Codd 1970.
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specialising in database technology and related topics: the Journal of Information Science, the 
Journal of Documentation, Intelligent Information Retrieval, and some books and papers. In 
the contract  negotiations  we agreed that  Oracle  would subcontract  fifteen person days  to 
Praxis, ten of which would be allocated to me.

Praxis’ emphasis on quality meant that they had written procedures for every activity, both 
technical and administrative. I was used to company standards from working in ITT, who had 
extensive quality standards and procedures, recorded in multiple written volumes. Before I 
could  start  on  the  work  proper,  a  Project  Authorisation  had  to  be  signed.  We needed a 
statement of the technical requirements from BT. 

The text-oriented extensions to SQL that BT and Oracle required included extended Boolean 
conditions, in particular where data contains a defined text expression. I imagine this would 
be used for on-line directory enquiries. The diagnostics needed to be consistent with those 
already available with the SQL facilities, so that users accustomed to the existing systems 
would  not  have  to  relearn  anything.  We  had  to  design  the  architecture  to  enable  the 
diagnostics to be orthogonal: an error in using part of the extended syntax should produce its 
own diagnostic rather than an irrelevant one from the central analyser.

I spent ten days on this project. It took me six days to understand and sort out the actual 
requirements, and four days to write the syntax extensions. These amounted to four pages of 
BNF with some introductory and explanatory text. I was bemused by anyone paying some 
thousands of pounds for four pages of BNF, but everyone seemed to regard it as good value. I 
then  learned  Praxis’  involved  procedure  for  closing  a  project.  I  had to  write  an  internal 
Debrief Report, have it reviewed and signed off at a review meeting, write a Closure Report 
for the client, write a Project Charges Summary and authorise Accounts to send the invoice. 
The Debrief Report and its review meeting took me another two and a half hours.

Oracle requested a meeting to discuss the invoicing. It turned out that BT had decided not to 
proceed with the extensions after  all,  so Oracle had lost  their  contract  with them. Oracle 
therefore proposed not to pay Praxis because the work, which we had already completed, was 
no longer required. Naturally, Praxis objected; we had a contract with Oracle and Oracle had 
to fulfil their part under the terms. Praxis received payment after sending a solicitor’s letter. I 
felt a bit sad that the first job I had done for Praxis led to a legal conflict, but it was not of my 
doing.

Personal  computers  were  the  outcome  of  microcomputers,  small  computers  constructed 
around the microprocessors that were developed in the mid-seventies. As the name suggests, 
personal computers were designed to be used by one person at a time, interactively. At first 
there was a proliferation of designs of microcomputers; in the UK the BBC micro and the 
Sinclair ZX80, ZX81 and Spectrum were among the most popular during the early 1980s. 
IBM joined the personal computer market in 1980 in response to the competition from half a 
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dozen other firms. The IBM PC became dominant, but competition again was rife with many 
firms manufacturing PC clones. However, when I joined Praxis in 1986, the dominance of the 
IBM PC was by no means yet clear. Other personal computers presented serious competition. 
Furthermore,  for  use  in  offices  and  scientific  and  engineering  institutions,  multi-access 
machines where users had a “dumb” terminal on their desk linked to a central mini-computer 
were still for some time the norm, rather than a lot of personal computers served by a file 
server  enabling  co-operative  use  and  shared  data.  A  dumb  terminal  would  consist  of  a 
keyboard and monitor with little or no processing power of its own. More powerful personal 
computers designed for engineering applications, with greater processing power and graphics, 
were known as Workstations.

In fact Praxis had no in-house computer system when I joined them. They were soon to do so, 
however, and a central Vax minicomputer was installed with dumb terminals on individual 
desks.  The  contract  with  Oracle  was  to  extend  software  that  would  run  on  a  personal 
computer, an IBM PC. The usual operating system for an IBM PC was PC-DOS, developed 
by Microsoft on contract to IBM. Microsoft developed variations and upgrades which they 
sold themselves as MS-DOS. At the same time AT&T Bell  Labs developed an operating 
system called UNIX, an evolution from previous systems, which was hosted on a number of 
workstations and minicomputers. A version was developed for PCs, and the platform for the 
database in the Oracle contract was PCs running UNIX.

Operating  systems  were normally written  in  an assembly language,  because an operating 
system needs to drive the machine hardware such as peripheral devices, printers and hard 
discs, directly. UNIX broke new ground by being probably the first OS to be written in a high 
level language. The language C was designed by Bell Labs for writing UNIX. C was a block 
structured, imperative programming language with fairly normal high level features, but also 
with  low  level  facilities  for  driving  the  hardware.  Nonetheless  it  encouraged  machine-
independent programming and transportability across machines. Although being designed for 
systems programming, it was and is used for programming applications too. The extensions 
to Oracle’s database system were to be implemented in C.

The  contract  with  Oracle  had  some  momentum,  in  that  John  Ashford,  the  independent 
consultant we worked with, was quite keen to continue the experience, as it were. He had a 
prospect of a contract  with the Foreign and Commonwealth Office, having recently done 
work for the Scottish Office, another government department. I accompanied him to the FCO 
several times to bid for the task. They were in the process of upgrading their internal library 
system, which covered five sites. They were also about to move amongst these sites, so the 
system needed to be flexible to cater for these moves. Any purchase of hardware, software or 
consultancy had to conform with EEC regulations.
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The work, being more intensively in databases, would not involve me personally, but being 
based in London it was easier for me to take part in these initial negotiations than other Praxis 
staff.  There were about a dozen possible Praxis people who could do the actual work, in 
addition to John Ashford. John wrote the first draft of the proposal, and then I and others 
discussed  it  and  tossed  many  modifications  back  and  forth.  Review  meetings  in  which 
documents,  including  bids  and  proposals,  were  scrutinised  and modified  through  several 
versions,  were a prominent  part  of the Praxis Quality System.  But these kinds of quality 
procedures were by no means unique to Praxis; the recent U.K. Standard, BS57502, defined a 
‘model for quality assurance in design, development, production, installation and servicing’ 
in industry,  and an increasing number of firms were attempting to be certified by BSI to 
BS5750 conformance. The international standards organisation, ISO, later adopted BS5750 
so that it became ISO9001 and ISO9002, parts of a series, ISO 9000. But in this case no 
contract resulted from our bid.

When I joined STL I stipulated that I did not want to work on military projects. Since my first 
post  was managing the 3200 BSCC, there was no problem with this  because we had no 
connection with the military, only with civil telecommunication systems. Towards the end of 
my time there, the scope of work had changed considerably and I was at one time asked to 
discuss a possible contract with GCHQ, the Government Communication Headquarters, an 
intelligence and security organisation. GCHQ is a Civil Service Department, which works 
closely  with  MI5  and  MI6.  I  objected,  explaining  my position  on  military  projects.  My 
managers were unaware of this. Many changes in organisation and in the reporting hierarchy 
had taken place over the years.  I  had a number of awkward interviews with some senior 
administrators. I had another reservation about GCHQ. They had recently been required by 
the government not to allow their staff to belong to trades unions. I did not want to support an 
organisation  that  denied  its  employees’  rights  in  this  way.  But  that  was  a  more  difficult 
objection to raise.

Praxis had a company policy not to work on weapons. This was a welcome contrast and the 
policy attracted employees with packages of particular ethical outlooks. For example, about 
40% of the staff were vegetarian. The company did not shy away from contracts with defence 
organisations, however, so long as these did not involve work on weapons. But the policy 
was not written down and was open to much debate. Should we seek a balance of clients? 
How much should we respect employees’ individual ethical views? We debated whether a 
vegetarian employee might refuse to work on a database for a meat distributor. More general 
discussions  on  marketing  policy  followed.  Do  we  seek  business  from  large  or  small 
companies? From customers with any particular kind of end product or from any particular 
sectors?  For  example,  large  scale  consumer  products,  automotive,  TV,  radio,  airlines, 
2 See BS 1991.
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aerospace?  From public  service,  utility  or  fuel  companies,  BT,  CEGB,  British  Gas,  BP, 
Shell?  From suppliers  to  other  industries,  telecommunications,  software  houses  (such  as 
Oracle,  the  client  in  the  recent  contract),  data  processing  companies,  computer 
manufacturers? To what extent, if any, should we sell products as opposed to services? To 
date Praxis had sold services only, not products such as a software package of some general 
use that might be sold to several, or even many, customers. The whole finance of projects to 
develop products was radically different from that of projects to develop bespoke software. In 
the latter case the development costs have to be covered by that single sale, whereas with 
products the development  costs can be recovered after  a projected number of sales. How 
should we decide such questions? The strengths of the company, its reputation and growth, 
the need for security (e.g. not to have too many eggs in one basket) were some of the factors. 
All these questions revealed the youth of the company.

In fact,  Praxis had one single product which a team maintained and marketed. Ella was a 
language  for  simulating  digital  electronic  hardware.  With  Ella  one  could  construct  a 
computer model of a circuit consisting of nodes connected by wires. The nodes themselves 
are multiple functions, which could be defined to perform as typical electronic gates and so 
on. The signals flowing through the wires consisted of data of some type; types could be 
defined much as in any normal high level programming language like Pascal.

There were other languages for defining and simulating digital hardware. STL, my previous 
employer,  had  defined  a  language  called  LTS.  Robert  Milne,  whom  I  knew  well,  was 
instrumental in the work, which was well grounded in process algebra theory.  One of my 
early tasks at Praxis was to examine Ella and LTS in depth and write a report comparing the 
two. STL planned extension to LTS and were seeking Alvey funding to develop a simulator 
for the extended language. Praxis was a possible partner in the project, but the considerable 
preliminary work, which spanned a couple of moths, did not result in any contract.

Praxis began life three years earlier in 1983 and had been profitable from the start. It had 
grown progressively and had some seventy staff when I joined; I was employee number 69. 
Its ambitious objective was to become a foremost UK developer of high quality software. 
One of the selling points  was the “Praxis quality culture”.  They achieved certification to 
BS5750 in the year that I joined. Slightly to my surprise, there were no sales staff; the notion 
was that everyone was a salesperson. This contrasted from my two previous experiences in 
software houses at  ULACS and RADICS, where a sales team (one person in the case of 
RADICS) handled all the marketing and sales promotions and bids. In Praxis producing a bid 
for a contract was the first stage of the project. I spent much of my time working on the 
composition of bids.
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The Alvey Directorate awarded grants and funding to support partners from UK industry and 
academia to carry out collaborative research and development projects. Each project had a 
nominated  Project  Officer  within  the  Directorate.  However,  the  Alvey Directorate  was  a 
small organisation. The limited number of Project Officers meant that each had responsibility 
for many more projects than he or she could keep an eye on. So for each project, the Project 
Officer  would  engage  an  independent  Monitoring  Officer  from  outside  the  Directorate, 
someone either from industry or academia, to observe the progress of the project and report 
back. The fees for this task were individually negotiated, but fell within a broadly standard 
band.

One such project  was “Analyst  Assist”.  Its  aim was to  take the JSD design method and 
enhance  it  with  the  Artificial  Intelligence  techniques  of  Intelligent  Knowledge-Based 
Systems. In the JSD method one starts by modelling the real-world entities of the problem 
before proceeding with the design of the computer system which is to deal with them. One 
difficulty that system designers had was with the initial step of extracting and representing 
the real  world entities.  IKBS use a database of existing knowledge on a subject  and the 
automated inference techniques of AI to attempt to solve a presented problem. By applying 
IKBS to the initial stages of JSD, the Analyst Assist project hoped to produce an enhanced 
tool for the requirements analysis phase of system design. Some eight organisations were to 
take part, some of them representing potential users of the end result and playing a reviewing 
rôle in order to keep a focus on usability and commercial exploitation during the project. Data 
Logic, a software and systems house, were the principal contractor. Other industrial partners 
were  Scicon  and  MJSL,  Michael  Jackson  Systems  Limited.  The  academic  partner  was 
UMIST. Two of the reviewing partners were the UK car manufacturer, Rover and United 
Distillers, who were about to merge with Guinness. I was asked to be the Monitoring Officer 
for this project.

The Alvey Directorate understandably stipulated that its Monitoring Officers maintain strict 
commercial  confidentiality.  I  would  be  exposed  to  the  research  and  development  work 
carried  out  by the  commercial  partners.  I  had  to  sign a  confidentiality  agreement  not  to 
divulge any information, including my own reports to the Directorate, to any other person or 
organisation.  But  the  Praxis  quality  standards  insisted  that  all  my  reports  in  a  project, 
especially those sent to a customer, should be reviewed by other staff in a review meeting, 
before delivery. They could make no exceptions, for this practice had to apply to all projects 
in order for Praxis to conform to and maintain their certification to BS5750, an achievement 
which  they  had  won  only  after  a  great  deal  of  work  and  investment.  These  conflicting 
requirements very nearly led to an impasse, but the Alvey Directorate finally agreed that one 
other Praxis member of staff, our quality manager, Chris Miller, could sign the confidentiality 
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agreement just for the purpose of reviewing my reports to the Directorate. In the event, Chris 
was entirely relaxed about these reviews, which were no kind of obstacle during the project.

The project rolled on over the next three years, the work was done, I attended many project 
management  meetings,  which  were  occasionally  quite  acrimonious  but  on  the  whole 
proceeded to plan, and I wrote my reports to the Directorate. As was typical with funded 
collaborative projects, initial contractual difficulties made for a slow start to the work. After 
ten  months  Distillers  withdrew  from  the  project  because,  following  the  merger  with 
Guinness, their new management did not have the same motivations for taking part. With all 
funded projects like this, the funding provider, in this case the Alvey Directorate,  require 
deliverables and milestones at intervals in order to monitor progress and to have concrete 
evidence that something useful is being done. It was the Monitoring Officer’s job to check 
that the milestones are really reached and examine the deliverables, reporting on whether they 
met their stated aims. The partners had particular difficulty in agreeing on the development 
hardware that they should use. But a year in, all eventually agreed. One question perplexed 
me:  some of  the  deliverables  were  pieces  of  software.  It  made  no  sense  for  the  project 
actually to send these software items to the Directorate, who did not have the platforms on 
which to run them, and who would not be interested in using them anyway. The Directorate 
told me they simply wanted a statement from me saying that I had seen a demonstration of 
the software and that it was working.

During the project there were the typical many hiccups all along the way, with questions of 
copyright of deliverables, the evaluating partner wanting to share some deliverables with a 
third U.S. Party, and some partners having staff leave or be assigned to other “more urgent” 
projects.  But  the  whole  project  did  useful  innovative  work  and  provided  a  maturing 
experience  for  the  participants,  leading  to  a  stronger  group  that  might  embark  on  more 
collaborative projects.

Right at the end of the project the lead partner made the project manager redundant. The 
work had been done, but the final report had not yet been written. As Monitoring Officer I 
contacted the lead partner and insisted that the final report must be delivered, otherwise they 
would not receive their final payment, and could be liable to repay some of the grant already 
paid to them. As I hoped, they re-engaged the project manager on contract to write the report. 
This he did, in September 1990, and the report was of very good quality.

The concept  of the  APSE,  Ada Programming Support  Environment,  led to  more  general 
Project Support Environments. PSE became the flavour, not just of the month but of the next 
several years. RSRE on behalf of the UK MoD began to solicit bids for a UK funded PSE. 
This went through a gamut of initial reports evaluating current practice, evaluating options 
and requirements, risk analysis and final conclusions. With a variety of software suppliers, 
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insisting on conformance to a standard development environment would ease maintenance 
across  different  sources,  reduce dependence  on suppliers  and maximise  transport  through 
advancing computer architectures, technologies, development methods and practices for the 
MoD client. We gave a presentation to RSRE to make a claim for our credentials for bidding. 
These presentations were all to have a similar form: we would play back our understanding of 
their requirements, with added detail of our own to demonstrate our insights into not just the 
requirements, but also the technical background quality considerations, relevance of a PSE to 
the client’s business, available options fro the way forward and our own take on the best 
approach and wider social and strategic impacts. These bid efforts, much greater and more 
intense than I had experienced in the research environment of STL, consumed a considerable 
amount of effort. The cost of a sale had to be absorbed into the eventual contract, or if no 
contract ensued, into overheads. Many such bid efforts, like this one, came to nothing. This 
was not necessarily because our bids were not competitive; frequently the client decided not 
to go ahead with the work at all, for internal economic or political reasons. I think also that 
some clients would be doing an elaborate thought experiment in their strategic planning and 
use invited bids to add insight and knowledge to their own ideas.

IFIP,  the International  Federation  for Information  Processing was established  in  1960 by 
UNESCO following the first World Computer Congress in Paris in 1959. IFIP contains over 
one  hundred  working  groups  covering  numerous  aspects  of  information  technology  and 
computing. National computing professional bodies are affiliated to IFIP, which often leads 
international  research  in  knowledge  and  practice.  Every  two  years  IFIP  runs  a  world 
congress,  a  major  event  in  the  computer  science  calendar.  IFIP’86  was  held  at  Trinity 
College, Dublin, and I was invited to give an introductory talk on the scientific aspects of 
software engineering. My talk was one of a pair, the other being given by Professor M. M. 
Lehman of Imperial College, London. I sought to draw parallels between schools of thought 
in the philosophy of science and those in software engineering. Formal methods and the use 
of proof in software development were akin to the theories of Popper3 and Lakatos4, which 
emphasised rationality, whereas metrics and the more sociological studies of the development 
process  were  related  to  the  ideas  of  Carnap  and  Kuhn5.  Professor  Lehman’s  paper 
concentrated on an empirical account of the laws of software development, resulting from 
extensive observations.

The difference in viewpoint between followers of formal methods and advocates of metrics 
evolved into a considerable rivalry, at times approaching hostility, and reflected, I think, the 
differences between the two cohorts of philosophies of science. The metricists would claim to 

3 See Popper 1963.
4 See Lakatos 1976.
5 See Khun 1962.
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have  the  more  scientific  approach  because  they  measured  the  phenomena  of  software 
development, and experimentation and measurement are fundamental to scientific method. 
The formalists would claim that there is no scientific theory without an underlying theoretical 
model of what software actually was. In fact,  I believe,  there is no real need for conflict 
between the two viewpoints.

Working for Praxis, I came across models of business relationships and techniques that I had 
not encountered before. On a visit to London Transport in Acton, I learned that they accepted 
software from their suppliers, GEC and Westinghouse, on a sale or return contract! In other 
words, if the software did not perform to the customers satisfaction, no payment was due, it 
seemed. LT, the customer,  validated the delivered software in parallel  with the suppliers. 
Satisfactory performance was related to calculations of MTBF, Mean Time Between Failures. 
These failure calculations were related to reliability claims. Thus, metrics and reliability have 
relevance  where  the  software  sits  in  an  environment  whose  characteristics  are  not  fully 
defined or understood.

Despite  being  much  nearer  the  commercial  coal-face,  opportunities  for  attending  and 
contributing to conferences, and participating in professional committees continued. I gave 
papers to a conference on Electronics  in Oil and Gas, continued to take part  in the BCS 
Software  Engineering  Task  Force  (renamed  as  the  SE Technical  Committee),  the  VDM 
Standardisation committee, and attended seminars on OBJ, CSP, models of polymorphic  λ 
calculus, the analysis of CMOS circuits. Although Praxis were keen for their programmers to 
learn and use VDM and other formal methods, there were always too many pressing jobs on 
hand for any substantial group of employees to take time away to attend a course. One day 
Mel Jackson and I decided to lay on a brief course at lunchtimes over a few days and we 
simply  notified  all  staff  using  the  local  electronic  news-board  and held  it.  The  manager 
responsible for day-to-day working matters was away and we wondered how he would react 
when he returned. In fact he was very pleased with our initiative and more courses followed, 
in  VDM, proving programs correct,  and discrete  mathematics  -  logic  and set  theory.  We 
began to think about offering these courses outside Praxis to customers as we had done to 
some extent at STL.

RSRE, the government MoD technical research establishment, designed and built a computer 
for high reliability embedded systems,  called Viper. The Viper machine was specified in 
LCF, Logic of Computable Functions originated by Robin Milner at Edinburgh University. 
They had gone to considerable lengths to make it near impossible for the machine to go into 
the kind of error states that  frequently plagued other computers,  endless loops,  deadlock, 
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arithmetic overload, division by zero, array bound violation, et cetera. RSRE also designed a 
language called NewSpeak, primarily for programming the Viper machine. NewSpeak had 
various unusual features: finite types enabling compile-time bound checking, a limited form 
of recursion to prevent infinite recursion at run time, and others. The language design would 
necessitate  a  rather  particular  programming style.  RSRE were inviting  bids for  writing  a 
compiler for NewSpeak, and wanted to have constructive discussions with the implementers 
on the language design. I had some concerns about parts of the language, because I thought 
there was one area where ambiguity might be possible.  Back on Praxis premises we had 
numerous  internal  meetings  to  discuss  the  bid.  Our  proposal  needed  to  emphasise  our 
understanding of the client’s needs, as well as our own skills and competence to do the job. 
The  bid  was scrutinised  in  several  review meetings  by the  most  senior  staff.  The  Viper 
machine already had government funding, and the NewSpeak compiler would be financed 
from the same source. RSRE did not want NewSpeak to be implemented in itself, a process 
called bootstrapping, and for a time favoured Algol68 as an implementation language. The 
whole piece of work would be a cooperative effort between supplier and client.

In the end, once again no project resulted from this bid. As far as I know, NewSpeak was 
never implemented.

The National Computer Centre was preparing to produce a new series of guides for the IT 
industry on current best practice, the STARTS Guides. These were to follow a number of 
successful advisory publications on software development and usage. They were preparing to 
produce a STARTS guide on software development methods, giving a comparative account 
of the various methods available, much in the manner of a Consumers’ Association Which? 
Report, with scores allocated to each method for a list of criteria. Joe Rhodes of EASAMS, 
an IT services and consultancy company, was to be the team leader. Joe was assembling a 
team from different organisations, a common practice for independent government-funded 
institutions like the DTI and NCC. The practice was intended to minimize commercial bias. 
He approached Praxis to provide a team member. The NCC had a fixed consultancy rate for 
this kind of activity, £300 per day, substantially lower than the normal Praxis charge-out rate 
for someone of my grade. But the new Managing Director, David Allen, considered that this 
was  “strategic”  work and wanted to  go ahead with  the  task.  I  certainly wasn’t  going to 
complain, but I was surprised, because I had had to argue strongly in favour of other more 
worthy contracts which were likewise less profitable than desired. So I joined the work along 
with four other recruited team members, most of whom I already knew.

The first thing we had to do was to decide on the criteria against which to score the various 
design methods.  We discussed these at length, Abstraction,  Data Refinement,  Information 
Hiding, Functional Decomposition, Module nesting, Import and Export control, Expressive 
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Power  –  that  one  expanded  into  a  long  list  of  subcategories,  Traceability,  Support  for 
Designers – expanded again, Ease of tool use, Performance...  We reckoned to have a first 
draft  of a scoring scheme with all  the criteria  by the beginning of December 1986, three 
weeks later. One month later we had the scoring scheme and agreed to rate seven methods, 
giving reasons for each score. The methods were to be SSADM, Yourdon (a method based on 
the principles of structured programming), Object Oriented Design as promulgated by Grady 
Booch6, Smalltalk, VDM, Z7 and OBJ. We agreed to spend up to half a person-day for each. I 
set out to score the formal methods, VDM, Z and OBJ.

Like all other work done at Praxis, my contributions to the STARTS Guide work had to go 
through an internal review. My Praxis colleagues had some reluctance to discuss the scores I 
had given. Still their other comments were helpful. When the team began to compare scores 
for the different methods, we found the same difficulty. As the project proceeded, we found it 
necessary to adjust the criteria. Some facets, such as Availability (public domain, in-house 
only, in development etc.) were easier to compare. We allocated different weights to different 
facets in order to obtain an overall score and comparison, and again, we debated and adjusted 
these weights continually through the project.

The project rolled smoothly to its completion at the end of 1987 after just over a year. It was 
one of the most unproblematic projects I have ever worked on, substantially owing to the 
relaxed and capable leadership of Joe Rhodes.

Praxis made a great play of its quality standards. They were a selling point for the company’s 
business. One member of the small management, team, Chris Miller, was Quality Manager. 
He insisted that the programming staff owned the local standards, so that there should be no 
sense of their being a bureaucratic burden. This did not entirely work; the staff struggled to 
meet the standards, but the will was certainly there. Chris asked me if I could draft some new 
standards, as at the time I was not fully engaged on revenue-earning projects. So I agreed to 
write three technical standards on Modules, Data Structure and Metrics.

For a piece of software to be easily manageable, it  should be divided into suitable pieces 
called modules. Each module needs to be as self-contained as possible, with simple interfaces 
to other modules. There should be a clear relationship with the overall specification of the 
software. Much has been written on this topic over the years, from about 1972 onwards. If 
software is  written according to  good principles  of modular  structure,  it  is  easier  for the 
maintenance of the software to be handed on from one programmer to another, inevitable if 
the software will have a long lifetime. Good modular structure helps to make the software 
comprehensible to the next programmer to delve into it. One of the most authoritative writers 

6 See Booch 1980.
7 See Abrial 1996.
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on the subject was David Parnas who has been affiliated to many universities8. Modules can 
be hierarchically nested by which modules make use of the services that others supply.

When constructing a program, designing the data is at least as important as designing the 
operations  that  are to manipulate  it.  The primary data is a model  of the information that 
permeates the problem in the real world that the program is to solve. It is often useful to 
design the data before considering how to design the code that works on it. If one is using a 
more primitive programming language, one has to represent the information with numbers, 
text strings and possibly the Boolean values, True and False. With a more advanced language 
one  can  use  more  elaborate  types,  records  and  arrays,  or  invent  one’s  own  to  suit  the 
circumstances. Michael Jackson’s system development method9 recommends considering the 
entities in the problem in order to reach a useful data design. Data has value, structure (its 
type),  access mechanisms and properties.  Different  modules may have access to different 
pieces of data. So different modules have various ownership and access rights; Dijkstra’s 
principles of information hiding can assist the separation of concerns that help to make a 
program well designed, straightforward to understand and less error-prone.

I had more reservations about writing a standard about metrics. The original starting point for 
software metrics was to help predict the amount of effort it would take to produce a piece of 
software, how fast it would perform and how much storage space it would require. These 
ideas were fairly useful when programmers were using low-level languages, for much of the 
effort would be spent on coding from the design. But with high-level languages, the greater 
part of the effort was spent on the design; coding was largely automated by the high-level 
language compiler and other tools. Consequently, more complex systems could be built with 
the  same  effort.  So  the  formulae  of  software  metrics  were  continually  being  rendered 
obsolescent, and collection of all this metric data over many projects was to my mind, of 
limited  value.  Nonetheless,  large  quantities  of  metric  data  had  been  collected  and  was 
reported in the literature.

I reviewed the available literature,  trade-offs, empirical formulae,  proportions of effort on 
different tasks in the life-cycle, claims of different writers. Putnam10 coined a “technology 
constant” which had a dramatic effect on cost and development time: productivity increased 
if one used more advanced technology. At the same time, observations were made on the 
processes  involved  in  the  building  of  software  and  laws  proposed  for  patterns  in  these 
quantities11. Much of the work reported in the literature seemed to consist of measuring first 
and hypothesising afterwards, which made me very agitated. Experiments and measurements 

8 See Parnas 1972.
9 See Jackson 1983.
10 See Chapter 4 of Putnam 1980.
11 See Lehman and Belady 1985.

182



should be carried out to test  a hypothesis,  preferably by trying  to refute  it.  This was the 
modern view of scientific method12. It seemed to me that only when one had reached a certain 
point in the progress of a project could one make any predictions on its cost. As the state of 
the art  advances,  the less is  the cost  of the later  stages because they become automated, 
hence, the total costs become less predictable. The total costs will also themselves become 
less, of course. So each advance in technology tends to wreck any investment you may have 
made in establishing a prediction method. For example, in one published text13 I found that 
one project had been deliberately omitted from the authors’ analysis  because it showed a 
productivity an order of magnitude greater than the rest! They also admitted that, because 
“understanding the algorithm” is a more substantial cost than the coding, one gets completely 
different  effort/code  ratios  for  “easy”  and  “hard”  algorithms14.  By  “understanding  the 
algorithm”, they must mean understanding the problem and theorising an algorithm to model 
it. At the time I quipped that investment in metrics was a force for sustaining mediocrity. As 
we introduce more technology into the software development process, we automate the parts 
we understand well, reducing the effort and cost required to achieve those parts. This reduces 
the total effort and cost, the remainder of which relate to the parts we understand less well 
and thus cannot predict. Hence, as we bring more technology into the development process 
we reduce total cost but increase our inability to predict it. I dubbed this “the Denvir effect”, 
but the name did not catch on! All contemporary estimation techniques required as an initial 
input an estimate of the eventual program size. I wondered if there was any evidence that 
effort estimates based on program size were any more accurate than direct estimates of effort. 
Conte  et  al  claimed  there  was15 –  but  all  the  subjects  in  their  study  were  students. 
Development environments could cause variations in productivity of factors up to 6 times16.

Of  course,  any  talk  of  productivity  begs  the  question  of  how  to  measure  programmer 
productivity;  the  crudest  measure  was lines  of  code  per  person-day,  but  in  languages  of 
different expressive power, the same number of lines represent vastly different amounts of 
functionality.  There  were  several  attempts  to  devise  more  sophisticated  measures  of 
productivity,  by  Halstead17 in  particular.  Halstead’s  metrics  counted  the  number  of 
occurrences of “tokens”, certain language entities, in a program rather than lines of code, 
among other things. But this can vary considerably with different programming styles, and 
did not take into account the scope rules which most high-level languages possess. Several 
other metric schemes were current, all of them with substantial limitations.

In my report I reviewed the literature and the state of the art of the time. Software metrics is a 
behavioural science akin to sociometrics or econometrics, perhaps classifiable as a “science 

12 See Popper 1972 and Lakatos 1976.
13 See page 179, Conte et al, 1986.
14 See page 210, §2 and footnote 3, Conte et al, 1986.
15 See pp. 217-218, Conte et al 1986.
16 See pp. 242-243 ibid.
17 See Halstead 1982.
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of  the  artificial”  in  Herbert  Simon’s  terms18 rather  than  a  so-called  exact  science.  I 
recommended not spending much on special metrics schemes and support tools, but taking 
some simple measurements to gain a profile of some of our typical projects. On the whole, I 
received positive reactions.

Integrated project support environments had been a strong technical aspiration since 1983. It 
had grown out of previous less focussed research on Computer Aided Software Engineering, 
CASE, tools,  such as  ICL’s  CADES. Researchers  had spent  much time investigating  the 
desired properties of an APSE and of the more general IPSE. Environments became a driving 
obsession in software engineering for the next decade. A coordinated, integrated environment 
of tools for management and development should, everyone hoped, raise the level of software 
quality all over the UK and Europe. At the end of 1990 ECMA published a standard for 
PCTE19 and  in  1993  the  PCTE Interface  Management  Board,  PIMB,  published  the  first 
general introduction to PCTE20. ISO adopted the standard in 199821

The  first  step  to  achieve  this  noble  aspiration  was  to  define  the  interfaces  between  the 
environment and the tools which it supports. The specification of this interface comprised the 
Portable Common Tools Environment, PCTE. With this specification in place, any software 
developer  could produce an environment  which conformed to the specification,  and tools 
could be ported from one proprietary implementation to another. Standardising the interface 
would assist the portability of tools. In 1986 many firms were involved in PCTE and its 
implementations: Bull,  GEC, GIE Emeraude, ICL, Nixdorff, Olivetti,  Siemens and others. 
The  implementation  of  PCTE and the  use  of  it  was  the  topic  of  a  number  of  European 
projects, some of them supported by ESPRIT: PACT, Sapphire, GRASPIN, and others.

Meanwhile across the Atlantic, the USA DoD supported a similar project, CAIS. The first 
version, CAIS 1, provided portability, data sharing and interoperability. CAIS A, the second 
version,  provided  more:  data  types,  database  schemas,  bit-mapped  screen  support  and 
security controls over access. Softech had a contract to implement CAIS A. CAIS was really 
an updating and amalgamation of previous work on the APSE. CAIS was started first but in 
1986 PCTE seemed more technically advanced, although lacking access controls at first, and 
more advanced in development. CAIS had support from the DoD but little from US industry, 
whereas PCTE was getting massive industrial  and governmental  support.  Formalising the 
PCTE interface  and  designing  a  PCTE over  distributed  hosts  and  target  machines  were 
examples of further PCTE projects. A version called PCTE+, providing additional features 
for security of access, was sponsored by the MoD and other European defence ministries and 

18 See Simon 1996.
19 See ECMA 1990
20 See Wakeman and Jowett, 1993.
21 See ISO 13719.
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their  contractors.  PCTE+ would be available  for civilian use,  so civilian  software houses 
could contribute to its development.  I was amused to hear the Italian MoD representative 
assert that they could not afford to fund PCTE without very necessary industrial sponsorship; 
in the UK the boot was definitely on the other foot. The organisations involved in PCTE grew 
to a plethora and the relationships between PCTE and other project support environment and 
CASE tool  projects  began to look like a metro  map.  Implementations  of PCTE were,  of 
course,  themselves  pieces  of  software,  and  so  their  continued  development  should  be 
supported  by  PCTE  where  possible.  Schemes  of  progressing  through  this  bootstrapping 
process were much discussed. A central feature of PCTE was the Repository, a database to 
hold  the  tools  and  services  which  would  interface  with  and  “sit  on  top  of”  PCTE.  A 
purposeful aim of PCTE was to support Object Orientation and Object management.

A PCTE implementation would not normally be produced on a bare machine, but on top of 
an existing operating system, on a host machine. At the time, the probable operating system 
was assumed to be UNIX, since that was favoured by software and other engineers. There 
was much discussion over intricate details, like the hosting of more specialised local tools on 
top of a “normal” collection of tools for software development. The first draft of PCTE+ was 
scheduled for August 1987 and the final one for December. We hammered out procedures for 
its evaluation and recording the result, all to be supported, of course, by PCTE.

Praxis encouraged all its staff to try to “sell”. “We’re all salespeople”, they told us. Selling is 
a skill that does not come to me easily. I feel awkward asking anyone to buy anything, even a 
raffle  ticket  in  an  excellent  charitable  cause.  Nonetheless,  I  got  in  touch  with  previous 
colleagues  and told them of the fine qualities  of Praxis.  Slightly to my surprise, whereas 
many people had listened attentively to me when speaking on my own behalf as a proponent 
of particular methods and techniques, now that I was making a pitch on behalf of Praxis, I 
was mostly met with tolerant cynicism. Still, one of my contacts eventually led to a contract, 
albeit a very short one. A previous manager at STL, David Pitt, had become a director at a 
small  firm,  Renishaw,  operating  in  the  charmingly  named  Wotton-under-Edge  in 
Gloucestershire. Renishaw made mechanical sensors of high precision. The firm has since 
expanded and covers many areas of machine tool components and metrology. I wrote a letter 
to David Pitt outlining the services that Praxis offered. Several months later he telephoned 
and I visited Renishaw. At the time their main business centred round a particular design of 
highly accurate mechanical sensor, based on a patented invention of the managing director. A 
probe  was  held  in  position  by  three  springs  and in  electrical  contact  with  three  internal 
conductors. Any minute disturbance to the tip of the probe broke the circuit and the presence 
of an obstacle was detected. The probe was tipped with an industrial ruby to limit mechanical 
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wear. The internal design was such that the sensitivity and accuracy of the probe was 50 
nanometres.  The  probes  were  typically  attached  to  a  robot  arm  driven  by  servos  and 
controlled by computer software. In the entrance hall to the firm a probe on the end of an 
articulated arm was feeling its way round the surface of a teddy bear, and linked by software 
to a machine tool that was carving out an identical teddy bear – in brass. This demonstration 
was running continuously without supervision to impress visitors.

The  manufacturing  plant  made  use  of  Renishaw’s  own probes  and software,  in  order  to 
duplicate their own products. I was impressed by how few staff were needed to oversee the 
whole manufacturing process. There seemed to be just a handful of people watching over the 
automated processes, most of them eating sandwiches or reading magazines while keeping an 
eye  on things. David explained the product and general  design of the whole facility,  and 
spoke with some admiration of the very clever software that their programmers produced to 
drive it all. I did not visit the software group on that occasion.

Fourteen months later I heard from them again. They wanted to talk to us urgently about their 
software team and its product. This time, Martyn Thomas, Praxis MD, and I went to speak to 
Renishaw’s MD, David McMurtry and other senior members of the company. They wanted 
to know how much the software produced by their team was worth. During the conversation I 
began to understand that the software team was “out of control”, doing what was required but 
not under control of the management simply because the management did not understand 
what  software  engineering  was  about  or  what  the  team were  doing.  A few days  later  I 
returned with two other Praxis software engineers and we spoke again with one member of 
management and then with the team. Relations between the two were clearly not good; some 
individuals were scarcely on speaking terms. I was almost certain I knew already what the 
answer to the question would be.  The team were highly competent  but  lived a  maverick 
existence. Standards of software development were almost entirely absent, because there was 
no member of management who understood the pressures and needs of software production. 
For  the  same  reason  the  team  felt  isolated  and  consequently  made  their  own  rules: 
idiosyncratic decorations and habits of dress, a pet tarantula in the team leader’s office, and 
no tedious regimes of documenting their software products and processes. They were also 
able to purchase all the latest high-tech equipment, for no-one above them in the hierarchy 
was in a position to judge whether it was really necessary.

The  management  was  anxious  that  the  software  team would  not  cooperate  in  giving  us 
information. In the event, they talked to us fully and frankly. Their relief at meeting someone 
outside their own group who understood their language was palpable. The team leader was an 
intense man of great charisma. He told us how they had decided to construct their own office 
furniture in order to acquire exactly what they wanted. They took a week to do so and I have 
to say the results were excellent. The meeting was a steep learning curve for those of us from 
Praxis, for process control, the use of embedded computers in manufacturing processes, had 
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its own terminology and technical culture. For example, when they referred to a PC, they did 
not mean a Personal Computer, but a Process Controller, which could be a programmable 
logic array or other small device that was essentially a small computer designed for process 
control. We spent most of the day with the software team before returning to the management 
later in the day, when Martyn Thomas, Praxis’ MD, rejoined us.

Like anything else, the value of software is how much someone is prepared to pay for it. 
Without supporting documentation explaining how it should be used and how it works so that 
it can be maintained and upgraded, no-one would be prepared to buy it. Reconstructing the 
detailed  knowledge  of  the  software  would  probably  need  more  effort  than  rewriting  the 
software itself. Hence I had a highly unwelcome message to deliver: despite the firm having 
spent half a million pounds on the software, and despite the fact that it worked fairly well, it 
was worth nothing at all.

The meeting with management was a little uncomfortable, but they accepted our judgement. 
The reason they wanted to know was that they suspected that the software team might go 
AWOL taking the software with them or selling it.  I  thought and said that  there was no 
danger of this, and that the team would probably get the software working well enough for a 
forthcoming exhibition which the firm regarded as a showcase for their products. We also 
recommended that they make organisational changes that brought the software team more 
under control and more recognised by having representation in management.

All  these  events  happened  in  1987,  over  twenty  years  ago.  Today Renishaw are  a  high 
achieving company who give their considerable software expertise a high profile, being an 
essential  part  of  their  product  range.  I  continue  to  be impressed  by this  UK firm.  Their 
products  are  of  great  expertise  and  fine  up  to  the  minute  technology.  Their  record  of 
innovation and expansion to a world wide market is inspiring.

The British Computer Society, the professional society that had represented the interests of 
those  working  in  software  and  hardware  research  and  development  for  over  twenty-five 
years, was changing to move with the times. They were deliberately seeking an industrial 
input to their policy making. They established a “Young Professionals” group. They started 
Quality Control and Career Development plans to fit with industrial employers’ schemes. In 
all  this,  the  society  was  moving  away  from  its  previously  exclusive  academic  stance. 
However, membership of the BCS was to be an academic qualification and would lead to the 
opportunity of becoming a Chartered Engineer. Membership was by examination, but there 
was to be a route for “mature” candidates with some ten years experience after an honours 
degree exempting them from the examination. Anyone whose membership had lapsed could 
rejoin with no formality by paying a year’s membership fee.
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I left the BCS in 1964, but thought that I might rejoin. I telephoned their headquarters and 
was assured that all I had to do was give details of when I was last a member. When I gave 
the date, 22 years earlier, there was a pause on the end of the phone. All membership details 
older than ten years were kept in the basement; they would phone me back. They called back 
later to tell me that archives had only been kept since 1965. I would have to reapply using the 
mature entry rules. This I subsequently did and resurrected my membership.

Most  of  Praxis’  work comprised  relatively  short-term projects.  As a  result,  we all  spent 
considerable time seeking new work, approaching potential  customers and preparing bids. 
Sometimes other consultancy firms approached us with an opportunity for which they did not 
have all the requisite skills. Enator had spotted an opportunity. IBM Vienna Laboratories had 
implemented an interpreter for the language PL/1 and wanted a compiler developed for it. All 
Enator’s compiler people were occupied on another project for the next six months. They 
proposed that, if we won the contract, Enator would take commercial responsibility for the 
job while Praxis would provide the technical effort. Praxis would have to agree not to pull out 
and bid via any other route. Enator would take 20% of our fee rates as a commission and 
administrative overhead.

I had a number of questions for IBM, mainly technical, about what subset and features of the 
language  were  to  be  included,  the  host  and  target  machines,  and  why  they  were 
subcontracting  the  work  anyway.  After  all,  IBM  Vienna  Laboratories  were  a  research 
institution with an international reputation for their technical expertise. I wanted to know if 
there was a definition of the language subset available at the time we were to make the bid. 
Numerous  questions  occurred  to  me,  to  none  of  which  Enator  had  answers.  What 
implementation language should we use? It might be possible to use PL/1 itself given that 
there  was  already  an  interpreter;  the  implementation  could  be  bootstrapped.  Was  there 
already  a  run-time  library?  What  documentation  were  we  to  produce,  for  example,  user 
manuals? Did they have a validation suite (a suite of PL/1 programs which when successfully 
run on the compiler would constitute a criterion for accepting it)? A compiler is a complex 
piece of software and I had numerous other technical questions. We arranged to meet IBM at 
their Vienna Laboratories.

There was a lot of snow in Vienna in late November. Cars parked at the side of the road 
appeared  as  just  large  car-shaped snowy mounds.  I  thought  they would  be there  for  the 
winter, immovable. Eighty technical people worked at the laboratories in the Programming 
Product Development Centre. They were subcontracting the work because, once again, all 
their compiler people were engaged on other projects. They still had to get internal approval 
for the contract; it could yet be cancelled! Clearly, the whole proposed project was at an early 
status and subject to change. Various ambiguities in the work plan meant that we would be 
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best advised to do the work charging for time and materials spent as we went along, rather 
than as a fixed price job. The customer envisaged three or four people from Praxis and one or 
two from Enator, all working in Vienna for three months. They were agreeable to a time and 
materials contract, at least at first. They wanted corrections of errors after delivery guaranteed 
and fixed free of charge. This was unusual for a time and materials contract, but they were 
willing to negotiate; higher rates could be charged to compensate, or some such arrangement. 
Some  flexibility  could  be  accommodated.  As  for  documentation,  they  would  require  an 
implementation guide and a user guide, but IBM had their own publication department who 
could  produce  finished  manuals.  I  suggested  that  we  could  provide  some  part  of  the 
implementation  guide  in  VDM,  knowing  that  VDM  had  originated  at  IBM  Vienna 
Laboratories. This produced some embarrassed shuffling of feet and an admission that no-one 
working  there  had  any knowledge  of  VDM any more,  and  they’d  rather  not,  please.  Of 
course, we could use other means!

More  meetings  and  discussions,  mostly  by  telephone,  ironed  out  issues  of  quality  and 
commercial  confidentiality,  which were considerable.  That  was why they insisted on our 
doing the work on their premises. It was not even clear that the customer would allow us to 
produce any documentation in our own offices at Praxis. IBM had their own quality and test 
plans and these would have to be coordinated with those of the Praxis quality system.

Over the next few months and more telephone calls, after all the effort, nothing transpired; 
we had no contract. If IBM ever did the work, I think they carried it out using internal staff. 
This was a typical story and happened many times with many different customers; IBM was 
in no way exceptional, but these procurement efforts that led to nothing could leave one with 
a sense of some frustration.

ESPRIT had been operating for several years. Those of us who were enthusiasts for VDM 
sought some sponsorship from ESPRIT to set up an international special interest group to 
promote VDM. We thought that an international, Europe-wide group could accelerate the use 
and understanding of the method. We found a champion within the ESPRIT organisation, 
Karel de Vriendt, and his support enabled the initiation of a group that flourishes today, now 
independently of EC support and with a wider focus on formal methods generally. Formal 
Methods  Europe  continues  to  hold  international  symposia  and  itself  funds  a  few  small 
projects.

At the end of 1986 we had our first meeting in Brussels We drafted our terms of reference, a 
list of proposed activities, and planned the first VDM Europe symposium. This was held in 
Brussels  in  March  1987  and  covered  the  history,  experience  of  use,  support  tools, 
standardisation process and some foundational questions such as the precise mathematical 
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model of types in VDM. There were also a few tutorial papers. For a first symposium, this 
was a mature and balanced event22.

Very soon after I joined Praxis I found that I was once again working on multiple projects: 
twelve in March 1987. We found email a great facilitator for communications, at least within 
the company.  People would sit  silently at  their  desks,  exchanging notes with others who 
might be only a few yards away. It enabled the regimen of staying silent within the open plan 
office area; those who wanted face-to-face discussions were urged to book a small meeting 
room.  But  the  teething  technology  of  email  was  less  reliable  hence  less  useful  between 
companies.  Frequently  messages  would  bounce  back  with  spurious  error  reports  like 
“unknown host” when one knew very well that the host was definitely present.

The  British  Standards  Institution  and  the  International  Standards  Organisation  published 
standards  in  a  huge  variety  of  fields.  Computer  science  and  software  engineering  were 
becoming  increasingly  the  subject  of  standards.  Languages,  protocols,  and  methods  of 
development  and  quality  assurance  were  being  standardised.  Many  of  these  standards 
included definitions of languages and other technical items. What better means of expressing 
definitions could there be than formal methods? In the spring of 1987 the BCS held a meeting 
on the use of formal methods in standards. This meeting gave birth to a working group and 
Springer-Verlag together with the BCS published this working group’s conclusions in 199023. 
“Standard” practice and the technological avant garde were catching up with each other.

There was a lively exchange of messages on the local electronic news-board at Praxis. These 
days one might call this facility a blog. From time to time a discussion sparked off some hurt 
feelings, which time usually healed. One day someone reacted rather upset to a charge of 
sexism in something he had written. I thought I might mollify this upset by saying how we all 
found it difficult to change our linguistic ways after years of habit and avoid gender specific 
turns of phrase. I had distributed my own book on discrete maths for software engineers24 to 
those members of Praxis who attended the various courses that Mel, Roger and I had given 
on formal methods. I said that I had tried hard to be gender-inclusive in my book, but I would 
buy anyone a drink if they found examples where I had not done so, the first in each case (I 
slightly  feared  an  avalanche  of  discovered  transgressions).  I  had  an  ulterior  motive,  to 
encourage people to reach for my book and read it! I began to be alarmed as I received three 

22 See Bjørner et al, 1987 for proceedings.
23 See Ruggles, 1990.
24 See Denvir 1986.
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emailed examples within ten minutes. Fortunately no more arrived, so there was no serious 
damage to my wallet.

IPSE 2.5,  in which the software research department  at  STL had shown an interest,  was 
moving  forward,  with  ICL,  STL  and  the  Universities  of  Manchester  and  Newcastle  as 
partners.  Praxis  was  fairly  easily  persuaded  to  join  the  consortium.  The  proposed 
environment  in  IPSE 2.5  would  support  both  informal  and  formal  methods  of  software 
development, management, formal reasoning, and the integration of all these activities. These 
five themes were allotted to different partners, with Praxis handling the management support. 
Bob Snowdon from ICL was chosen as the project architect and Anthony Hall headed the 
Praxis effort. Anthony was keen on, and knowledgeable about Object Oriented methods, and 
we determined to use an object model as a language to describe the management activities in 
a software project. In the process of a development, people carry out different rôles which are 
responsible for various activities. Activities can interact with each other, waiting for another 
activity to finish before being able to start, sharing information and so forth. Clive Roberts, 
ex-STL, had joined Praxis a the same time as I had, much to my surprise; I had no idea he 
was considering a change of job. Clive, also an enthusiast of Object Orientation, defined the 
language  in  which  a  development  process  could  be  described,  having  considerable 
discussions with Anthony and me along the way. We called this language PML – Process 
Modelling Language. I was to provide a definition of the semantics of PML.

If we were carrying out this project today,  UML – Unified Modelling Language – would 
spring to mind as an obvious choice for the process modelling language that we wanted. But 
UML did not come into being until 1997, ten years after the IPSE 2.5 project.

I had great difficulty in persuading Praxis of the amount of time that defining the semantics 
of  a  new  language  under  development  would  require.  I  managed  to  get  the  originally 
proposed six days increased to ten, and in that time I produced a first draft, much of it hand 
written on account of the extensive mathematical text involved. I could happily have spent 
three or ten times that amount of time and produce a more polished result,  but the other 
partners in IPSE 2.5 seemed to find what I produced acceptable. I was particularly relieved 
that the academic partners approved of it. To this day I feel it may be the most intellectually 
demanding piece of work I have ever done, so to have had to squeeze it into ten days was a 
considerable rush. Parts of my handwriting betray my writing the script on high speed trains. 
A  tip:  sitting  in  the  centre  of  the  carriage  equidistant  between  the  wheels  reduces  the 
vibration considerably.

VDM was coming of age. Three main academic centres spearheaded the development at the 
Technical University of Denmark, the University of Manchester and Trinity College Dublin. 
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Industrial organisations were using VDM in live developments and researchers were starting 
to  write  computer-based  support  tools.  The  VDM  language  was  originally  designed  for 
human  readers,  and  contained  many  mathematical  symbols  that  you  cannot  find  on  a 
computer keyboard: logical symbols like “and” ∧ “or” ∨ , “not” ¬ , and set theory 
operators like “subset” ⊂ . Dialects of the language were beginning to emerge, including 
computer-readable variations. It was time to standardise on the language so that publications 
used the same notation with the same meanings,  and so that specifications written in the 
VDM language  could  be  moved  across  tools  without  too  much  recasting.  We formed  a 
committee under BSI rules and set about defining a standard that would be published by the 
BSI. The language would be known as VDM-SL – the VDM Specification language.

All the tool designers would need to be involved in the standardisation effort, as well as the 
universities that were teaching VDM on their undergraduate and graduate courses. Industrial 
users  contributed  to  the  committee’s  work,  notably  CEGB  –  the  Central  Electricity 
Generating  Board,  who  were  the  nationalised  predecessor  to  the  now  multiple  private 
electricity companies in the UK – ICL and STC. We needed to agree on the use of terms, 
often with duplicated meanings,  circulated working papers and notes,  and met  every few 
months.  Because several  institutions  were writing support  tools,  we also needed to  agree 
about  the meaning of the language elements,  that  is  its  semantics,  so that  different  tools 
would agree about the validity of VDM-SL scripts  and their  properties.  One of the most 
important properties of a VDM specification is its context conditions or proof obligations; 
these  are  the  set  of  conditions  that  have  to  be  proved  in  order  to  demonstrate  that  the 
specification is self consistent and that a given implementation satisfies it. People were trying 
to produce tools that would generate these conditions. Academics in several countries were 
prominent in the attempt to define the semantics of VDM, and some of the meetings went 
into deep mathematical discussions, including over just what flavour of mathematics was best 
for  modelling  some of  the  concepts.  The  work  on the  semantics  became the  focus  of  a 
subgroup,  a  semantics  review board,  which  gave  advice  and input  to  the  standardisation 
committee.

The British National Physical Laboratory worked hand-in-glove with the BSI and two of their 
own researchers became interested in VDM too, contributing to the standardisation work and 
providing a useful link to the BSI as well. We explored new features too. To specify a large 
system,  the  VDM  script  could  become  awkwardly  large  to  manage.  Some  features  for 
breaking a specification up into modules would be an asset,  but had not been part of the 
original language.

The technical work leading to standardisation mostly took place in 1986 and 1987, but final 
details lingered on, together with the procedural processes that seem to dog all international 
efforts of this kind. Promoting the standard from a British one approved by the BSI to an 
international, ISO standard added a few more months to the process and it was not until 1990, 
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after  more than 130 working papers and many discussions,  that  VDM-SL became a BSI 
standard and 1996 when it achieved ISO status25.

FACS held its AGM every May and in 1987 its membership was still  fairly small.  But it 
subsisted with a grant from the Alvey Directorate and £500 worth of services from BCS. We 
remained solvent and the newsletter, FACS Facts, continued to improve under the editorship 
of Roger Shaw. At Professor Bernie Cohen’s request FACS were editing a special issue of 
the Software Engineering  Journal  on formal  methods.  We agreed to hold events  on term 
rewriting,  algebraic  approaches  and  the  specification  and  verification  of  communication 
systems during the forthcoming year. We proposed and agreed on fees for membership and 
attending  meetings.  We decided  to  negotiate  with EATCS, the  European Association  for 
Theoretical  Computer  Science,  for  reciprocal  arrangements,  reduced  mutual  membership 
subscriptions  and such-like.  These  were  entirely  typical  matters  that  were  agreed  at  any 
FACS AGM. I became secretary at the 1987 meeting and remained so for some years. I had 
been secretary of VDM Europe for some months and felt that doing the two tasks would be 
much less effort  than twice that  of doing one of them. I  had made a  routine for writing 
minutes and establishing actions and recording their progress that would work for both.

VDM Europe itself pressed on, coordinating the British standardisation effort with bringing a 
focus on VDM into the next year’s ESPRIT work-plan, education material, and topics for 
subsequent VDM conferences. We held the second conference, VDM88, again in Brussels, 
complete  with  an  exhibition  of  tools,  computer-based  demonstrations,  applications, 
information stands and posters.

In September John Cooke and Roger Shaw approached the publisher Springer-Verlag UK to 
propose starting up a new international journal on formal methods, specifically as a flagship 
publication of FACS. We already had a newsletter, FACT Facts, but this was not a journal of 
serious refereed papers; it was more like a parish magazine with news items and so forth. 
Springer  were enthusiastic  about  the idea,  so several  of  us  set  about  making the  journal 
happen.

Of course, Mel Jackson, Roger Shaw and I continued to give VDM courses at Praxis, and to 
“the public” through and on behalf of the NCC. The arrangements for doing this took some 
negotiating, but after a few meetings were agreed and we gave the courses. These usually had 
a small number of delegates, but were an interesting change from giving courses to mostly 
one software organisation.

25 See ISO/IEC 13817-1 1996.
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The British  Computer  Society has  many Special  Interest  Groups.  I  was  interested  in  the 
Disability SIG because I believed that computers and software provide a great but unrealised 
potential for assisting and enabling disabled people. I met the group chairman, Geoff Busby, 
who was himself disabled with cerebral palsy and who was seconded from GEC to the BCS 
Disability SIG. The group aimed to increase awareness and to enable disabled people to be 
employed in IT, using specialised equipment such as specially adapted keyboards and user 
interfaces.  Where  possible,  however,  they  preferred  to  use  standard  equipment,  since  in 
general  it  was difficult  to  modify.  There was cooperation between different  disciplines  – 
robotics,  optics,  computing,  AI,  software  and electronics.  There  was £¾ million  funding 
offered by the EEC but at the time that was not matched by any UK grants. Some simple 
facilities were needed: page turners, text and graphics input on to disc, feeding machines, 
machines to assist in driving a car, simulation software and even arcade games.

The computing industry at large was concerned with the issue of software quality. Praxis was 
one of many software engineering houses that had its own quality system, procedures which 
had to be followed when building a product. “Quality” was defined variously as “Conforming 
to the Specification” and “Fitness for Purpose”, a phrase which has recently been applied 
negatively by politicians and some media to institutions and individuals. Setting up a quality 
system requires  substantial  investment  in  training  and establishing  practices.  The cost  of 
developing  software  could consequently  increase.  Was the  payback  worth  this  cost?  The 
benefits could be reduced by risk of failures and all the consequential damages. The BCS 
Software Engineering Technical Committee held a meeting where some experienced speakers 
talked about these questions. How can one measure these costs and benefits,  time-scales, 
levels of reliability, maintenance efforts? The meeting sparked off considerable debate.

Honeywell got in touch with Praxis, wanting to hear what we could tell them about formal 
methods. They might want to become capable in formal methods themselves. I prepared a 
short talk, explaining the underlying theory, the kind of mathematics FM practitioners would 
need, and compared different methods against some criteria. Some worked at a greater degree 
of abstraction than others, which usefully defers design decisions to later in the development. 
Some could cope with developing large systems better than others. The experiences of actual 
use varied. User manuals and texts were more supportive for some than others. Some could 
define concurrent and communicating systems, others only sequential ones. The route from 
specification to design could be well documented or not at all.

Honeywell described their organisation structure and were attentive listeners. But two months 
later they telephoned to say that they had not won the work they were bidding for, so would 
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not be going ahead for the time being. They acknowledged that they would need to know 
more about FMs in time.

At one of their meetings, the BCS Software Engineering Technical Committee rather casually 
nominated me as vice-chairman, and without any other contenders, suddenly I was appointed. 
Various specialist groups were represented on the committee, the Database group, the Object 
Oriented  group  and  others.  The  SETC  attempted  to  coordinate  matters  between  them: 
streamlining the production of the SIG newsletters and so forth. Other groups not connected 
to the BCS carried out related work. The IEE in particular had a subcommittee on software 
engineering, which had a parallel rôle to the SETC. Indeed, I was a member of that too, so it 
was natural  for me to be a BCS representative on it  and to report  back when necessary. 
Independently of the BCS and the IEE, a UK Logic Programming group was being set up as a 
branch of a wider international group. We asked them to consider being affiliated to the BCS. 
The CCTA, a quango, supported the use of SSADM, a structured systems analysis method 
developed a few years  earlier.  Then of course there was the DTI Alvey Directorate.  The 
SETC  prompted  joint  working  parties  between  these  several  organisations  and  itself,  to 
reduce duplication and encourage coordination. It was better if we all told the same story.

The  Alvey  Directorate  sponsored  several  projects  to  develop  and  propagate  the  use  of 
software tools to assist different phases of development. From time to time they would hold a 
conference at which these various projects described their work and exchanged news of their 
progress.  Alvey  sponsored  projects  on  predictive  software  metrics  based  on  formal 
specifications,  building  software  libraries,  quality  assurance  and  reliability  and  project 
support environments and metrication. The aim of metrics are in general to predict useful 
properties of the development, such as how long the work will take and how likely it is to 
have  faults,  from characteristics  available  at  the  beginning  of  the  project.  In  a,  perhaps 
oversimplified, view of a project development the drafting of a formal specification precedes 
the design and coding in a programming language. Traditionally metrics are derived from the 
code or its design itself, so basing these on a specification should enable predictions before 
quite so much of the work has been done, a clear advantage if one is trying to predict features 
like the total effort. Other projects examined the overhead, if any, of effort if formal methods 
are used.

The  corresponding  committee  on  Software  Engineering  in  the  IEE  organised  their  own 
colloquia,  something  that  the  IEE  effectively  did  and  does  a  great  deal.  High  integrity 
systems, the costs and benefits of quality assurance were typical topics. They advised the DTI 
on criteria for assessing research proposals for the second phase of the Alvey initiative and 
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regularly discussed engineering educational issues with British universities. They welcomed 
the invitation from the BCS Software Engineering Technical Committee to collaborate.

One of the most compelling reasons for using formal methods in software development is to 
prove that a program is correct. This means proving that the program does what it is supposed 
to do; for this one needs a watertight, unambiguous description of what the program is to do, 
that is a formal specification. The specification needs to be formal, that is mathematical in 
form, to be unambiguous and for a logical proof to relate to it. This is one of the principal 
motivations for methods such as VDM, Z, CSP and the like.

There  are  different  kinds  of  formal  methods.  VDM and Z are  examples  of  model-based 
specification languages. In these languages one defines what the program is to do by making 
a model  of the program’s  function in terms of set theory and logic.  One can then prove 
whether or not a given program truly fulfils the function defined by the model. One difficulty 
is that considerable mathematical  skill is needed to derive proofs of correctness. The vast 
majority  of software engineers do not  have these skills.  A dream of adherents  of formal 
methods  is  to  produce  an automatic  system which  can  generate  a  proof,  given  a  formal 
specification and a program which is claimed to implement it. This is particularly difficult 
with model  based methods,  partly because there is an wide choice of ways in which the 
actions of a program can be modelled, even in set theory and logic. The best that can be done 
is to produce a “proof assistant”, a program which interacts with the user to generate a proof. 
The user gives hints and guidance to the program, which does the mathematical  donkey-
work.

There are other kinds of formal method, in particular, algebraic methods. These are based on 
the mathematical topic of Universal Algebra26. Instead of modelling the program’s functions 
with set theory and logic, an algebra is defined whose data types and functions model those 
of the desired program27. It is much more feasible to design automatic proof systems which 
generate proofs of program correctness related to algebraic specifications, although it is by no 
means easy. Such proof systems rely on rules of term rewriting: a term in algebra or logic is 
an expression, which can be a proposition. With a defined algebra it is possible to derive rules 
for rewriting terms without changing their meaning. If the term is a proposition, this means 
that the truth or otherwise of the proposition is unchanged, i.e. it is deducible from the initial 
term. By using various strategies a sequence of term rewrites can be generated that proceed 
from the axioms of the algebra to the desired target term, that is the theorem.

Automatic term rewriting systems have been devised and are continuously researched. Some 
of the first canonical systems were based on the Knuth-Bendix completion algorithm28. There 
26 See Cohn 1981, for a comprehensive text on Universal Algebra.
27 See H. Ehrig and B. Mahr, 1985 for a tutorial text on algebraic specifications.
28 See D. Knuth and P. Bendix, 1970.
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is, however, a very large step to take from a mathematical algorithm and a computer system 
which  uses  it  for  such  a  sophisticated  purpose as  a  proof  generator,  and a  great  deal  of 
research work was done and continues on this problem. Nonetheless Knuth-Bendix, term-
rewriting and algebraic specifications were of intense interest in the late 1980s, and continue 
to be so. The University of London Royal Holloway and Bedford New College in association 
with the London Mathematical Society,  Hewlett Packard and the Science and Engineering 
Research  Council  held  a  stimulating  conference  on  this  topic,  “Algebra  and  Automated 
Deduction”,  in  January  1988.  Not  only  academic  institutions  were  active  in  this  quest. 
Hewlett  Packard  and  the  Rutherford  Appleton  Laboratory  were  both  developing  proof 
systems for algebraic specifications - AXES from HP and ERIL from RAL.

One snag persists. Devising model-based specifications comes more easily to most software 
engineers than devising algebraic ones. An abstract algebra is a step more abstract than a 
model in set theory and logic. The latter is not far away from a specification written in the 
more traditional methods of database technology or systems analysis.

I was flattered to receive an invitation to give a seminar at  Queen’s University Belfast.  I 
talked about the uses of mathematics in software development, in modelling the problem area 
that  the software  addressed,  the  semantics  of  the  program languages  used,  the  deductive 
system needed for proof by construction and the theories of computation.  My employers, 
however, were not impressed. Please consider what use this is going to be for company, they 
said. I offered to visit some firms in Northern Ireland with whom we had so far not made 
contact, such as Harland and Wolff, the shipbuilding engineers. All engineering firms were 
using computers for various purposes by then. But Praxis were not interested. This surprised 
me, since they frequently said that all their software engineers should also be salespeople for 
the company. I considered, decided that the trip would be good exposure for the firm, and 
went anyway, but without contacting Harland and Wolff or any other potential clients. My 
audience  came  to  life,  taking  notes  assiduously,  when  I  concluded  with  a  mathematical 
syllabus that would be useful for industrial programmers.

In 1988 Praxis took part in an ESPRIT project called VIP, VDM Interfaces to PCTE, along 
with other institutions from Britain and the Netherlands. Both PCTE and its interfaces were 
subject to international standards, the latter being managed by PIMB, the PCTE Interfaces 
Management Board. Praxis made contributions mainly during 1988.

At this point after numerous collaborations with academic institutions, I frequently wondered 
whether the grass was greener on the other side of the fence. Bernie Cohen had crossed over 
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from industrial STL to Brunel University, and asked me if I would like a visiting position 
there.  Mel Jackson had long previously crossed the other way,  from Hatfield Polytechnic 
(later  the University of Hertfordshire) and advised me against  the idea. But I thought his 
experiences were probably not altogether typical, involving a very heavy teaching load in a 
non-research environment. I would have limited duties and would be on release from Praxis 
for one day per week. I discussed the arrangements with Professor Pat Hall, who had been 
chairman of the BCS Software Engineering Technical Committee. He explained the details of 
my proposed post: half a unit or one unit of the fourth year undergraduate and MSc Course, a 
lecture course on the formal development of software, my position as an Associate Reader. 
So I started on the second Thursday in October 1988, and would carry on for a year. There 
were  related  courses  on  System Software  and  Automated  Reasoning.  My course  was  to 
include  “practical  skills”:  writing  specifications,  refinement,  VDM,  Z  and  Equational 
Reasoning,  Denotational  Semantics  and  Concurrency.  My first  lecture  would  be  on  13th 

October and I had to define an exam paper by Christmas.  This was to be a 3-hour paper 
comprising eight questions of which the candidates had to attempt five. The MSc students 
would also do projects  in  their  third term.  These could arise  out of the course.  I  was to 
produce sample exam questions for the students in addition to the real exam. The exams had 
to be reviewed and subject to scrutiny by an external examination board, which also reviewed 
the assignment of resulting marks and degree classes. I was irritated by the insistence of the 
department head, who had a philosophical rather than a scientific background, that I could not 
award a  mark  of  over  90%. Only an Einstein  could get  such a  mark,  he said.  I  resisted 
reminding him that Einstein had difficulty with being accepted by academia in his early days, 
and presumably did not do well in his exams.

So I designed the lectures, gave them, set the exam, reviewed students’ projects, attended 
meetings including a near-vitriolic one with the external exam board, marked and classified 
the students’  submitted papers,  and supervised several  students.  I  found it  a considerable 
strain, for I felt strongly that the career future of these students depended on the quality of my 
lectures and the accuracy and fairness of the exam paper and my marking of them. The range 
of performance by the students was very wide, the worst showing that the individual had 
profound depths of misunderstanding and the best performing better in the exam than I could 
have done myself, even though I had set the questions. The Computer Science department 
also held regular seminars  which I usually attended.  Many years  later  I was delighted to 
observe that one of the former students on my course had progressed to being a professor in 
the very topics that I had taught.

Several people in Praxis thought that my being away for one day a week had detracted from 
my career prospects within the company, but I was glad to have had the experience.
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I continued as a member of the committee of BCS FACS while I worked at Praxis. As a 
special interest group of a professional society,  FACS organised several events each year, 
including a regular Christmas workshop. We held meetings on Formal Methods in Software 
Engineering  Education;  Concurrent  Systems;  Term  Rewriting;  Graphs,  Grammars  and 
Automata;  Refinement;  B;  OBJ;  AXES  and  ERIL;  Temporal  Logic;  LOTOS.  The 
Refinement  meetings  became  a  significant  series  of  workshop  events,  continuing  for  a 
decade. We published a newsletter, FACS FACTS, at rather irregular intervals. It still thrives, 
now being published on the web. We established relationships with other organisations, such 
as EATCS (European Association of Theoretical Computer Science) and the IMA (Institute 
of Mathematics and its Applications). Perhaps the most significant achievement of FACS in 
the  years  1988-1989 was the initiation  of  a  scientific,  peer-reviewed journal,  the  Formal 
Aspects of Computing Journal, FACJ. It was largely the inspiration of John Cooke, and Cliff 
Jones rapidly added his drive and influence. John Cooke became the Associate Editor and 
Cliff Jones the Editor in Chief. Professor David Gries was the initial North American Editor. 
I was privileged to be invited on to the thirty-strong Editorial Board. The first issue came into 
print at the beginning of 1989, and the journal thrives to the present day, the flagship journal 
of BCS-FACS and, now also, FME, published by Springer London.

In March 1988 I visited the firm Program Validation Limited on behalf of Praxis, to find out 
what were their technical offerings. At the time their main product was the SPADE proof 
checker, available then for £5750. The price included a two-day course for two delegates. A 
language called FDL, Functional Description Language, was integral to the SPADE proof 
checker.  FDL  was  essentially  an  algorithmic  programming  language  with  provision  for 
assertions. The methodological approach of SPADE was post-hoc proofs on code. On my 
visit the presenters from PVL put some emphasis on their experience of proving assembly 
code programs. They seemed to have less experience then of proving correctness of high 
level language programs, although it looked as if that should have been easier. It also seemed 
to me that one should quite easily use the proof checker to generate proofs of other kinds of 
theorems,  such  as  some  of  the  proof  obligations  resulting  from the  writing  of  a  formal 
specification or doing a refinement of one. (In fact some years later the SPADE principles 
were successfully applied to Pascal and Ada).

The method used with SPADE consisted of six steps:

1. Produce  a  FDL  model  of  the  source  text.  An  automated  tool  was  provided  for 
translating SPADE-Pascal into FDL. SPADE-Pascal is a subset of Pascal,  omitting 
those features which were considered to mitigate against proof generation, such as 
variant  records,  and  functions  as  parameters  to  procedures  and  other  functions. 
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Assembly code could be translated using a combination of manual translation and 
machine assistance using a tool constructed for the purpose.

2. Perform a flow analysis using the SPADE tool.

3. Construct pre- and post-conditions and assertions. The pre- and post-conditions can be 
derived from the formal  specification,  if  one exists.  All  program loops must  have 
invariants stated for their bodies, which must be sufficient for the prover to deduce the 
post-condition for the loop. These are embedded in the FDL text.

4. Auxiliary  functions  and  intermediate  assertions  (“lemmas”)  can  be  defined  to 
facilitate  the path of the theorem prover and the statement  of the assertions to be 
verified.

5. The  resulting  FDL text  is  processed  by  the  verification  condition  generator.  This 
produces conditions to be proved, in order that the proof of the program follows from 
the stated pre- and post-conditions.

6. The  proof  checker  is  then  used  to  prove  all  the  conditions  generated  by  the 
verification condition generator.

The proof checker was interactive.  It  worked on one verification condition at  a time.  As 
individual  conclusions are proved, they can be added to the list  of hypotheses,  under the 
user’s control. If the prover gets stuck, the user can define a sub-goal to be proved. When that 
is proved, it can be added to the hypotheses in order to help prove the main conclusion. The 
proof  checker  used  first-order  predicate  calculus  employing  classical  logic  in  a  natural 
deduction style of inferential reasoning.

The inference engine within the checker operated on a database of rules. There were about 
twenty files of rules in the database. To be adept at using the checker one would need to 
know about most of the rule-bases and when they were likely to contain a rule that  was 
applicable  to  the  proof  being  constructed.  For  example  there  was  quantifier  elimination, 
substitution,  induction  etc.  The rule-base could be extended.  By defining  an “undefined” 
data-type, defining functions over it and then defining rules over those functions, one could 
effectively  produce  one’s  own  algebraic  data-type.  In  that  way,  the  type  system  was 
extendible, but with some constraints. Higher-order functions were not possible because the 
prover uses first order predicate calculus. PVL hoped to establish a user group who would 
exchange  libraries  of  proof  rules.  Using  the  prover  produced  a  proof  log,  showing  the 
conditions  and  conclusions  being  proved  and  the  rules  used  at  each  stage.  There  were 
restrictions on the use of the prover, for example the verification generator could not handle 
recursive functions. This would have caused the system to have only limited application to 
compilers, for example. But I believe that later the proof rules for induction were extended so 

200



as to incorporate proofs of recursive functions. Some components of the proof checker itself 
had been proved correct.

On my visit, the proof checker was demonstrated. It operated with, to me, surprising rapidity. 
On the whole I was impressed. The system seemed to be quite effective, efficient and easy to 
learn within its rather limited constraints.

The audience at this seminar were all concerned with safety critical applications. Indeed, only 
one person apart from myself, someone from the UK CAA, was not either from a military 
organisation or a military contractor. In conversation with these people I learned that there 
was  a  general  consensus  in  safety  critical  applications  that  a  number  of  programming 
techniques  taken  for  granted  elsewhere  should  be  mistrusted  or  avoided.  These  included 
compilers, recursion, even procedures and functions, and high-level data types. “Straight-line 
code” was to be achieved if possible. One attendee said that where he worked, one had to get 
a high-level signature to program a loop! I thought that this was surely barking up the wrong 
tree as a means of seeking confidence in the correctness of programs. One may be able to 
prove a program correct with respect to a low-level specification, but one is just shifting the 
lack of confidence to a different part of the development process, and furthermore one which 
is less amenable to machine support. In another conversation I raised the question of how the 
user had to have a considerable understanding of mathematical proofs in order to use these 
tools effectively. People generally agreed, and considered that it was probably necessary to 
have a mathematics degree or to have gained the knowledge in some other way. This is a 
conclusion I had been reaching from reading the literature on a number of other theorem 
provers, and SPADE seems easier to use than most.

SPADE  was  subsequently  developed  further  and  evolved  into  the  SPARK  system,  and 
included SPARK-Pascal and SPARK-Ada.

At this stage there were eight current or completed projects being done by Praxis which used 
VDM and other formal techniques. They were:

• Daffodil, an office communication system done under contract for ICL;

• IPSE 2.5:  Praxis’  part  in  this  project  included  the  formal  definition  of  a  process 
modelling  language.  The  definition  used  some techniques  from VDM, and others 
from denotational and axiomatic semantics.

• VIP: VDM Interfaces to PCTE. This ESPRIT project to define the interfaces to PCTE 
was done entirely using VDM and was one of the largest VDM specifications ever 
produced at that time.

• PCTE+, enhancements to PCTE: a collaborative project in which Praxis was to define 
the semantics.
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• Factory Controller: a project under contract from ICL. CSP was used for defining the 
interfaces of the distributed system and VDM to specify one component.

• ELLA  VLSI  simulator  and  development  system.  ELLA  was  Praxis’  proprietary 
language for simulating electronic hardware systems. Part of the development system 
was defined in VDM.

• NEA (Northern Examining Association). Praxis was implementing a new examination 
administration system for the change-over to GCSE exams. The system test was being 
specified in VDM.

• CASE (Support  system for  SSADM for  the CCTA).  The  ‘Z’  formal  method  was 
being used to specify the infrastructure, that is, the underlying database support.

As regularly happens with industrial projects of any kind, not all of these projects came to 
fruition, nor did all of them continue to use the same methods that they did at the outset. But 
a  decent  proportion  of  them were successfully  concluded  and delivered.  Also,  of  course 
Praxis was not the only industrial firm to use formal methods. Even at the time (1988) other 
firms were contributing significantly to bringing them into practice, notably IBM, the Danish 
firm IFAD and others. By 2003 some thirty firms formed the initial founding membership of 
the Formal Techniques Industrial Association.

From industry’s point of view, the whole purpose of using formal methods was to improve 
the quality of delivered software. The costs of correcting errors was becoming massive. The 
US Department of Defense had produced a statistic of $1009 per line of delivered, correct 
code.  In  June  of  1988 I  contributed  a  paper  to  an  IEE colloquium on Software  Quality 
Assurance. Brian Oakley, who then headed the DTI Alvey Directorate, led with issues of the 
day, and other papers were given by people from several supplier and user organisations (the 
latter  including  a  speaker  from  the  London  Stock  Exchange).  The  event  included  an 
exhibition of software tools supporting quality management. The next month I was chairing a 
session  in  the  Software  Engineering  1988  conference,  where  Praxis  had  a  poster  in  the 
exhibition.

The work of the Alvey Directorate ran for five years from mid-1983 to 1988. The total cost of 
£350M was funded jointly by industry and government. Many projects involved academic 
partners, whose contribution was funded by the SERC. The Alvey Programme had come to 
an end. David Morgan, whom I had met twenty years earlier when I was at Elliotts, was the 
director in charge of the Information Technology division of the DTI, which division had so 
to speak hosted the Alvey Programme. All the projects had been concluded and their results 
delivered and reported on. But a rationale of the programme was that the communication 
between industrial and academic partners, which had perhaps only been rivals before, would 
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produce informal communities, with less tangible benefits to industry. David wanted to know 
what “secondary achievements”, not yet published, had resulted from the programme. Were 
there perhaps themes across projects, or had duplicate work been avoided? David brought 
together a team of four to study this question and report back after three months. Naresh 
Mohindra from PA Consulting,  already seconded to  the DTI,  was experienced in human 
factors. John Llewelyn, ex-STC, specialised in industrial applications. I would cover formal 
methods and software engineering. Professor John Buxton, later at Kings College, London, 
would be  wide ranging,  determining  the  general  structure  of  the project  and  defining  its 
overall roadmap. Our reporting point in the DTI would be Graham Mackenzie-Washington, 
someone I would come to know very well.

Although David Morgan gave us no instructions as to how we were to organise ourselves, we 
immediately fell into a tacit, mutually agreed working structure. John Buxton took the lead, I 
adopted a second in command rôle, and the other two members arranged themselves in order. 
I  had  a  strange  feeling  of  instinctive  compulsion,  as  if  we  were  a  small  pack  of  dogs 
inevitably following our inner evolutionary imperatives. We worked together very well. We 
would look for “secondary achievements”  in  four categories.  Did any new projects  arise 
involving the same partners in cooperation or in consultative rôles? Did any technical transfer 
arise, in particular of people from the partners to other parties? Was there any stimulus to the 
partners’ infrastructure? Was there any technical spin-off? Technical transfer could take place 
through  the  giving  of  courses,  distributing  tools,  transfer  of  people,  and  other  Alvey or 
ESPRIT projects. Cooperation could take the form of conferences, workshops, papers, special 
interest groups, consultancy. Additionally, we would enquire if the initial aims of the project 
had changed. We would focus on a few projects, visiting them in pairs at first, then singly as 
we became more adept and established a firmer modus operandi. We devised a list of seven 
criteria for selecting projects to investigate. As well as visiting the projects, we would study 
the deliverables which they had sent to the DTI and which resided in files in the Department.

The DTI finally approved the contracts to engage the services of the four of us some while 
after we had started the work. Praxis, as would any software house that need to maximise the 
revenue-earning effectiveness of its staff,  had by then put me on other work. So I had to 
announce that I would now be otherwise engaged for the next two weeks, something the other 
members of the team accepted with understanding. And of course, being a senior member of 
staff, I had to draft the letter of acceptance from Praxis to the DTI.

The project  was  to  go for  three  months.  We agreed  with  David  Morgan that  we would 
produce  an  interim  draft  of  our  report  in  two  months.  We  could  then  make  a  case  for 
extending the work if necessary. We selected the projects to visit, drew up a questionnaire to 
send them in advance, decided on a calendar. David Morgan wrote a standard letter to the 
project managers to ease the way for our contacts.
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We carried out this project quite intensively over the next few months. I visited half a dozen 
projects or more,  which was quite a fascinating experience.  At one point there was some 
dilemma over issues of confidentiality. The Praxis quality system demanded that my reports 
to the DTI should be reviewed by another Praxis staff members in order to ensure its quality: 
accuracy, professional integrity, conformance to our contract with the customer (the DTI in 
this case), etc. But because my reports were relating to work done by other parties funded by 
the  DTI,  I  was  also  under  obligations  of  confidentiality  to  the  DTI  and  had  signed  an 
agreement not to reveal any information about the project to anyone apart from the DTI. This 
latter obligation indeed had implications for the confidentiality relationship between the DTI 
and the partners in the projects which were the subjects of the study. Praxis and the DTI 
struggled with this issue for some time, both sides digging their heels in to a degree. I felt that 
this project was unusual in this respect and that Praxis ought to relax their normal procedures, 
but they did not agree. In the end one other member of Praxis staff signed the confidentiality 
agreement with the DTI for the Secondary Achievements project, our Quality Manager Chris 
Miller, and he rapidly reviewed my reports before I sent them to John Buxton and on into the 
DTI management. As far as I remember, Chris himself was very relaxed about the process, 
and never needed to query any issues in my reports. All along I felt that the “problem” was a 
storm in a teacup.

We finished  the  project,  and  our  conclusions,  reluctant  I  think,  were  that  there  were no 
significant “secondary achievements”. In looking for them, we found ourselves scraping the 
barrel  to find anything.  There was a telephone conversation here and there, a few papers 
published, but nothing amounted to very much. John Buxton’s leadership helped us come to 
an honest conclusion of a pretty much nil result. I must admit, left to myself I would probably 
have strayed a little way into the error of saying what the customer wanted to hear.

At the 1988 AGM of BCS FACS, we celebrated the group’s tenth anniversary. Dan Simpson, 
a former chairman of FACS, gave a short talk on its history, describing it as a ginger group. I 
liked  this  description:  FACS  was  indeed,  I  thought,  in  the  avant  garde  of  software 
engineering, and I had always enjoyed being in the vanguard of any movement, ready and 
willing to stir up controversy and shake people out of their comfortable, conventional ways of 
thinking.  At  the next  Christmas  workshop,  Mike Shields  gave a  day-long account  of  his 
research into automata theoretic models of parallelism. His work was in later years to lead 
into significant advances in unifying theories of parallelism29. FACS were also conscious of 
the need to teach formal methods, and the difficulty found in doing so, so we held another 
meeting that year on “Explaining Formal Methods”.

29See Shields 1997
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The  process  of  deriving  a  specification  or  design  from a  more  abstract  one  was  called 
“Refinement”, a term coined, I believe, in the early 1980s by Michael A Jackson30, who is a 
visiting professor at the Open University and the University of Newcastle. The process of 
refinement was very important, one could say the raison d’etre of formal specifications: they 
were  there  in  order  that  they  could  be  refined  into  correct  designs.  The  steps  taken  in 
refinement are mathematically based processes, all preserving correctness with respect to the 
more  abstract  specification.  FACS  decided  to  hold  an  event  on  refinement  at  the  1989 
Christmas workshop, and this was successful enough that it became the first of a long series 
of Refinement Workshops that is still extant, the most recent at the time of writing being held 
in November 2009 in Eindhoven.

In the widespread effort of propagating formal methods, Praxis in collaboration with Rolls 
Royce, with funding and support from the DTI, produced a video explaining their benefits 
and a broad brush description of their processes. The text was narrated by Eugene Fraser, 
whose  voice  was  extremely  well  known  to  radio  listeners  in  the  UK  and  instantly 
recognisable.  Before  the  days  of  the  DVD  (and  any  successor  medium),  the  video  was 
produced on VHS cassettes.

On 23rd June 1988 the Management Services Division of HM Customs and Excise in London 
asked Praxis to bid for a piece of work. This Management Services Division was in effect an 
internal software house. They wanted a requirements analysis done for a particular project; 
they  would  continue  with  the  design  and  implementation  themselves.  Their  own project 
management  of  their  internal  projects  was  impressive:  they  were  using  a  variety  of 
sophisticated  computer  based  tools  to  support  project  management.  They  wanted 
comprehensive  information  from  Praxis  in  our  bid:  a  profile  of  the  company  and  its 
experience, CVs of the staff who were to assigned to the job, our business methods used to do 
the work,  a full  proposal with a variety of cost  options,  recommendations  of procedures, 
software packages and hardware needed to do the requirements analysis, and what method of 
business analysis we would use. This last item somewhat nonplussed me, because we didn’t 
use a “business analysis method”. We just talked to the client and produced a plan of how we 
proposed  to  do  the  work.  I  had  questions  for  them:  how  did  they  determine  the  cost 
effectiveness of their current projects? What recording systems did they use, e.g. time-sheets 
etc.?  Did  they  use  systems  of  project  budgeting,  estimating  and monitoring  expenditure, 
assessing progress, setting milestones? They in turn wanted to have a list of our people and 
their availability, skills, projects and resources. They wanted our bid by June 10th, two and a 

30See e.g. M A Jackson 1983
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half  weeks away.  I have found that government departments and agencies are among the 
most demanding of clients, and this response from the HMC&E was quite typical.

As usual we didn’t get the job, probably because the work was never carried out.

One credential of the maturity of a computer language is that it becomes the subject of a 
standard, approved by one of the standardisation bodies such as the BSI or the ISO. From 
mid-1988 after a great deal of preliminary work a number of us began to prepare a draft 
standard for VDM for submission to the BSI. This required agreeing with users and suppliers 
of VDM tools the exact syntax and semantics of the language. This was no easy task, not 
least because there were three or four developments in usage and tools for the language all 
going on simultaneously, in Denmark, the UK, Ireland and more recently Japan. There was 
an imminent danger of up to four different dialects, something none of us wanted! Technical 
meetings  and  discussions  had  been  going  on  since  1986  and  finally  in  October  1988  a 
proposal was put before the ISO (BSI and ISO work hand in hand with many standards). The 
ISO meeting rejected the first proposal, but with VDM Europe’s support we were reasonably 
confident of its passing the next time. At least two forms of the syntax were defined ,one for 
publication  of  specification  texts,  called  the  mathematical  syntax,  and  the  other  being  a 
machine-readable ASCII version for input to support tools. The discussions within the VDM 
BSI committee revealed areas where the intended meaning was not altogether clear, and there 
was much argument over whether extra features with which there was less experience, such 
as the ability to write specifications in modular  form,  should be included.  Could the two 
forms of syntax be mixed within a single specification, for example? An abstract syntax was 
defined  which  expressed  the  syntax  of  VDM,  shed  of  any  lexical  decisions  about  how 
elements were printed on the page.

By the spring of 1989 three parsers for the machine-readable VDM syntax had been written, 
in yacc by the DDC, in Bison (a compiler-generating tool) by NPL, and in ProLog by Brian 
Monahan. All these parsers reduced the concrete syntax to the abstract form before further 
analysing it. LPF, the Logic of Partial Functions, was used to define the semantics of pre- and 
post-conditions of functions and operations in VDM. LPF is a logic devised by Cliff Jones 
for VDM, and indeed was inspired and necessitated by the ideas in VDM.

In August 1989 a separate subcommittee, the VDM formal semantics review board, began to 
concentrate on the semantics and met for the first time in Lyngby, Denmark. Andrzej Blikle 
and Dines Bjørner were the leading lights of this effort. Some advanced mathematical ideas 
were needed to cater for some of the features of VDM, and extensions were defined to Scott 
domains31. The wheels of the standards bodies ground slowly, but VDM became a BSI and 
later an ISO standard in 1990.

31See Scott 1976 and 1982

206



In  several  of  the  bids  for  contracts  submitted  by  Praxis,  the  client  asked  what  business 
analysis method we used. We did not have a defined method, but just interviewed the client, 
formed a view of the requirements and drafted a statement of them, then replayed that back to 
the  client,  discussing  and  amending  it  until  an  agreement  was  reached.  Then  we  would 
mutually sign this requirements document and refer to it in the contract. I had several times 
been in a meeting with a prospective client in which they asked what method of requirements 
analysis or business analysis we used. Having to waffle in reply was embarrassing, so we 
tried to find out what other software houses did at this stage of a development task. The firm 
Oracle had a method of business analysis which used Entity-Relation modelling, a technique 
used  in  database  work,  incorporating  a  pictorial  data  model  and  a  data  dictionary.  The 
“Requirements Capture” process consisted of interviewing the client and a series of feedback 
meetings.  There  were  no  fixed  questionnaires  or  forms.  They claimed  that  the  feedback 
produced a reliable  model,  and they would then go and write the system specification.  It 
seemed to me that Oracle did not do anything much different from Praxis, except that they 
had names for the various components of the process and used a database paradigm, not 
surprisingly since databases were the principal technical offering of the company. Praxis used 
SADT-SSADM as an in-house design method, so I wondered if we could similarly use that 
as the basis of a business analysis method, or indeed use the set theoretic and logical methods 
of formal methods as a basis. I worked for a time trying to devise such a business analysis 
method based on set theory and logic, but never got very far. It would have been a substantial 
task.

Meanwhile I continued to give formal methods courses along with Mel Jackson, Roger Shaw 
and Anthony Hall. We gave some courses through the NCC to all-comers, not necessarily 
Praxis  customers  or  collaborators,  and  occasionally  in  conjunction  with  Manchester 
University.  We constructed a variety of courses: Overview of VDM, Overview of Formal 
Methods,  VDM  for  Software  Engineers,  VDM  Workshops,  Z  for  Software  Engineers, 
Discrete  Mathematics  for  Formal  Methods.  During  the  construction  of  these  courses, 
Anthony Hall formulated his “Seven Myths of Formal Methods”, which became the subject 
of a paper in IEEE Software32 and acquired some fame. We gave in-house courses to IBM, 
Honeywell,  the  Civil  Aviation  Authority  and  CEGB.  The  IBM  training  department 
incorporated our FM courses into their own training programme, offered on demand to their 
internal departments.

32 See Hall 1990.
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One can go to  great  lengths  to  make sure that  the  software that  is  designed and written 
conforms  to  stated  requirements.  What  often,  and especially  today,  remains  a  significant 
problem is that the stated requirements don’t meet the real need. The customer frequently 
underestimates or simply misunderstands what the end users are expecting or how they will 
try  to  use  the  product.  This  can  be  a  technical  issue,  where  the  amount  of  “traffic”  of 
enquiries to be handled by a system is underestimated, or a more human one of how operators 
work  in  reality,  for  example.  Either  way,  the  problem  is  that  of  knowing  what  is  the 
environment  in  which  the  system is  to  operate,  and  this  determines  what  are  the  actual 
requirements  for  the  system.  Discerning  this  at  the  outset  of  a  development  becomes 
increasingly  difficult  as  we  become  more  competent  at  the  specification,  design  and 
implementation  phases.  The  distinction  between  the  two  areas  was  dubbed  by  software 
people in the USA as “building the software right” and “building the right software”. With 
our increasing competence in the later stages, larger and larger projects become undertaken 
and the cost of failure of the delivered system to meet requirements has risen dramatically 
and notoriously. Requirements Engineering has become of paramount importance and is still 
a less understood area. Procurers of large systems, especially in government, seem reluctant 
to  learn  that  incremental  developments  are  a  way  to  avoid  these  massively  expensive 
disasters, but still they try to seek “big bang” solutions. Suppliers too should refuse to enter 
such  contracts,  but  offer  incremental  solutions  with  usability  checkpoints  and  frequent 
deliveries.

I gave papers at two conferences in 1988, one on Achieving Software Quality held at the 
Wembley conference centre and organised by Blenheim Online, and the other on Prototyping 
held  at  the  European  Commission  as  part  of  the  PCTE  (Portable  Common  Tools 
Environment) project. The first paper33 tried to explain how formal methods and proof were a 
necessary ingredient of top quality, but not a sufficient one. Validation activities are needed 
at every stage to check the what is being produced meets requirements. In a context of formal 
methods, validation is a form of prototyping, in that a skeletal or abstract form of the final 
product is shown to the customer for checking against requirements: “Is this what you really 
want?”

Advances in mathematics have been driven by applications of the subject over the ages. In 
the  seventeenth  and  eighteenth  centuries  the  needs  of  navigation  inspired  much  of  the 
advances  in  the  mathematics  of  the  time,  and  in  much  earlier  centuries  the  Greek 
civilisation’s urge to build monumental religious and civic buildings inspired the geometry of 
Euclid. FACS had several members in common with the IMA, Institute of Mathematics and 
its  Applications,  and  at  one informal  meeting  a  few of  us  mused  whether  computing  or 
computer science was having an influence on the development of mathematics, right at the 
33See Denvir 1988
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present time. For example, in mathematical logic, proofs have always been meticulous, step 
by step constructions. When we have proofs of correctness of computer programs, a proof 
starts to have much in common with the proofs in mathematical logic; that is, they are more 
rigorous than traditional proofs in “ordinary” mathematics, where one might have phrases 
like “without loss f generality” and “extending the notation in a natural way”, without going 
all the way to the formality of mathematical logic. However, as soon as we start to try to 
construct  computer-supported  provers  and  proof  checkers,  the  proofs  have  to  be  totally 
meticulous and formal, and they can become exceedingly long, thousands or even millions of 
lines. Mathematics has no tradition for handling or manipulating proofs of this size.

Another example is the use of category theory to provide a model of some of the more arcane 
features of programming languages, such as polymorphic and recursive data types. Indeed, 
the types and functions used in computing are similar to, but in their fundamentals, different 
from  types  and  functions  in  mathematics.  Everything  in  computing  is  computable  and 
countable.  The  so-called  real  types  in  programming  languages  are  in  fact  computable 
numbers, because they can only be generated by computable processes and functions.

We decided to have a joint conference, organised jointly by FACS and the IMA, to explore 
the idea that computing has inspired a revolution in mathematics. It was and is a debatable 
assertion  and  the  title  of  the  conference  was  deliberately  provocative.  The  result  was  a 
conference in 1989 at which mathematicians and computer scientists presented twenty-three 
papers34.

Apart from work on the regular contracts for Praxis and its technical infrastructural support, 
such as inter-project reviewing, I found myself being asked to chair sessions at conferences 
and do other “professional” work: Software Engineering ‘88, Discrete Structures for Software 
Engineering, Modula 2. In general employers were willing for their staff to spend some time 
on activities of these kinds, in the hope that it would improve the company reputation in the 
longer term. Certainly,  the general exposure is helpful, and if nothing else will encourage 
staff recruitment.

Praxis spent some time in internal meetings discussing its own strategy, future and business 
policies. This was reminiscent of the software research group in STL and of RADICS, only 
the discussions in Praxis were more “commercial”. We reviewed the monthly revenue against 
targets, sales orders to date, sales prospects, staff numbers and whether and how much to 
grow. Some managers considered a target of 30% per year was desirable, arguing that greater 
numbers  enabled  “big,  exciting  projects,  opportunities  for  staff  growth,  and geographical 
spread into Europe”. A growth plan of 30% annually would bring us to 500 plus in five years 
time (it did not happen). We discussed types of projects (developments, research), and how to 

34See Johnson and Loomes, 1991.
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get them funded. Having identified a desirable project, the construction of a formal methods-
based systems analysis method, say, we could approach potential funders, such as CCTA. At 
the  time  our  technical  policy  was  in  effect  determined  by  the  sales  group  and  the 
opportunities  they  sought.  This  was  not,  we  thought,  the  best  way  to  set  the  technical 
direction  of  a  group.  We  discussed  the  rôle  of  consultants,  of  which  I  was  one.  Our 
understanding of business sectors,  the company,  technologies  and markets  should lead to 
obtaining  further  business.  We  should  consider  expanding  into  the  government  sector, 
telecoms, transport, critical systems and medical electronics. For these we would need new 
skills in telecoms, secure databases, encryption etc.

John McDermid, Professor of Software Engineering at the University of York, asked me if I 
would contribute a chapter on discrete mathematics, the subject of my own book and of the 
first FM course I constructed, to a substantial volume he was editing, the Software Engineer’s 
Reference Book35. I agreed, and when I sent him the first draft, he replied that part of my text 
would fit better into the Introduction, which he was writing. So John and I co-authored the 
introduction and I wrote the discrete maths chapter, one of sixty three contributed chapters. 
The Software Engineer’s Reference Book, now perhaps a little dated from a technical point 
of view, was a thoroughly informative and useful volume. I felt that if one read a chapter 
each evening one could get an excellent understanding of software engineering in less than 
three months. I found several of the other chapters most instructive myself.

One  of  the  more  interesting  opportunities  we  explored  at  Praxis  was  with  the  EFTPOS 
consortium. EFTPOS is Electronic Funds Transfer at Point Of Sale, the system now familiar 
to us all, where one can pay for goods at a shop or supermarket with a credit or debit card. To 
start it all off a UK consortium was formed consisting of four banks and the national debit 
card  company.  They were to  begin  with  a  pilot  study.  Hardware  for  the  trial  was  to  be 
supplied by IBM, terminals  by Ericsson and Ormeron,  a Japanese firm with an outlet  in 
Chessington, and IMI. Cryptography was to be supplied by Plessey, their Base 24 standard 
networking product. Praxis was never involved, but the ubiquitous presence of these systems 
today shows that the trials and studies all took place successfully back in 1989.

Lucas developed and supplied the control systems, including the control software, for Rolls 
Royce  aero  engines  that  powered  many  civil  passenger  aircraft.  The  target  embedded 
microprocessor  was  the  Motorola  68000.  The  software  was  developed  on  a  micro-VAX 
development environment. At that time (1989) Lucas were using a local language, LUCOL, 
for the code development phase and a method called Auto-G for the design. Auto-G was 
35
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based on Yourdon and data flow diagrams. Lucas were under contract from Rolls Royce to 
build the control software for the next generation engines to be produced in the late 1990s, 
with  new  control  systems  using  the  Z8002  as  target  machines.  Lucas  had  promised  to 
produce  a  new controller  within  the  next  eighteen  months,  delivering  the  first  prototype 
within  three  to  four  months.  They  were  expecting  to  write  about  10,000  lines  of  code. 
LUCOL was an autocode-level language, but I recognised that it was designed in the tradition 
of analogue computers, a thirty-five year old technology. They were in effect using digital 
computing techniques to simulate analogue computing, even electronic servo systems. The 
code  structure  was  linear  with  modules  being  repetitively  executed  every  so  many 
microseconds.  The modules  were equivalent  to macros  in  a  more  conventional  language. 
Within each module there were determinate loops. About 40-90 modules had to be produced. 
Previous versions had to be rewritten for the Z8002. Rolls Royce had commissioned Lucas to 
do a static analysis of the code for the 68000 using Spade. Both parties proposed to do the 
same for the modules designed for the Z8002. I could see that translating the LUCOL code 
into FDL would be feasible,  which would enable using the more powerful SPARK proof 
system.

All in all, an interesting project, and encouraging to some degree, that new techniques were 
being  explored  to  increase  the  confidence  in  the  safety  of  this  kind  of  critical  software. 
Although  some  of  the  methodology  in  the  project’s  technology  was  a  little  retrograde 
(analogue computing traditions, and little separation of concerns in the design), the team were 
now  taking  a  considerable  leap  forward.  A  concern  I  had  was  that,  with  different 
organisations being responsible for the controllers, the engines and the plane, Lucas, Rolls 
Royce and the aircraft builder, no-one seemed to have responsibility for the overall cohesion 
of the architecture of the control system from the pilot to the engine. This continues to be a 
feature  of  today’s  urge  to  unbundle  responsibilities,  for  example  on  the  railways,  with 
different firms taking charge of the rail network, the stations, the trains and their schedules: 
who takes care of the coherence of passenger safety from entering the station, alighting from 
and to the platform, having enough time to board and disembark from the train safely, and 
safety throughout the whole journey?

A  short  time  afterwards  we  spent  time  with  Marconi  considering  another  consultancy 
opportunity.

Those of us who gave courses also attended them, both technical ones and “management” 
courses. I personally attended management courses on appraisal interviewing, leadership and 
recruitment interviewing. As well as the many FACS events that I went to in my rôle as a 
FACS committee member, I attended courses on Type Theory, Theorem Proving and Frame 
Theory. Type Theory is the mathematical theory which can form a model of the data types 
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that  one can use in programming languages.  This is especially tricky where the language 
allows the programmer to define their own types. Theorem proving and logic is one of the 
most abstruse topics in mathematics, left only until part III of the Cambridge mathematics 
tripos when I took it in 1962, and hence a post-graduate course. To design and even use an 
automatic theorem prover or proof assistant, which is an aid to proving programs correct, one 
needs to know about mathematical logic, which underpins formal proofs. The course was 
held at Leeds University.

The Ministry of Defence standard DS0055 is related to BS5750, to which Praxis had recently 
been certified. With our propagation of the use of formal methods, we investigated how these 
standards should be applied to projects using FMs. There are in DS0055 a number of rôles, 
organisational structures, records, notions, documents and life-cycle activities. It was possible 
to relate most of these features to the activities specific to a safety critical project, in which 
formal methods were most likely to be used.

In  the  context  of  safety  critical  systems,  whether  or  not  they  have  an  IT  component,  a 
technique called “Hazard Analysis” was developed, became a mature, well defined approach 
and the subject of standards itself. It would cover an initial review of the contract for the 
project under scrutiny, its technical validity, a review of system safety, operating and support 
analysis, review of system safety during maintenance, and more.

The IEE was becoming more  interested  in  computing,  seeing it  as  a  branch of electrical 
engineering.  It  began to  rival  the BCS as the professional  society that  supports  software 
engineers, and does so to this day.  In 1989 they got together with the NCC and awarded 
certificates in software engineering. Ten polytechnics and higher education colleges offered 
courses  that  would  lead  to  accreditation.  Today  ET,  the  fortnightly  Engineering  and 
Technology magazine of the IET, and the frequent regional meetings of the IET, are often 
dominated by articles and lectures on information technology matters.

Maybe  there  is  a  parallel  between  this  movement  in  the  IEE/IET  and  in  the  software 
engineering  industry.  One  could  see  it  as  a  movement  away  from the  coalface  of  hard 
engineering  work,  the technology of materials  and their  manipulation,  to the more arm’s 
length control, where software prevails. At about this time I went to the Praxis library and 
looked up the archives of the twenty most recent projects. (The practice of keeping an archive 
of  completed  projects  can  lead  to  many  useful  insights  afterwards  and  is  much  to  be 
commended). Only five out of the twenty projects were required to deliver an implemented 
program. It seems that customers needed most help in the early stages of the development 
cycle. Three delivered project plans, two requirements analysis, four produced designs, five 
were more general consultancy projects and two were software or system audits. Having said 
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that,  the implementation projects were generally among the longest in terms of effort and 
duration.  I  personally  came  across  customers  who  wanted  to  retain  control  over  the 
implementation of their projects, and they perceived that they could do so most easily by 
“doing it themselves”, after help with the tricky early stages.

The  BSI  standardisation  of  VDM  continued  to  progress.  ISO voting  was  positive,  STC 
copyrights of certain key documents were expected to be released, a contribution on good 
style  of  writing  VDM  was  included,  and  the  committee  considered  issues  relating  to 
polymorphic and recursive types. The process of defining the standard uncovered quite a few 
areas where different uses and meanings had been assumed by different VDM writers. We 
decided that the standard VDM should not permit any language extensions and only admit 
changes necessitated by problems in the semantic definition. At the same time, funding was 
needed for the whole process of standardisation, and we pursued funding opportunities from 
the DTI. The DTI had an initiative called TickIT for certifying software quality.  The DTI 
used BSI as a  certification  agency for TickIT,  and so funding for IT standards could be 
obtained through this route. Some eight intensive meetings over twenty months later and the 
standard went to the BSI and ISO in “draft” status.

FACS held the Third Refinement Workshop in Oxford in January 1990. The topics included 
the  refinement  calculus,  originated  by  Carrol  Morgan,  refinement  applied  to  CCS,  CSP, 
Action systems, the proof of a compiler, ML, RAISE, and VDM. I continued to be heavily 
involved in BCS FACS. The committee meetings generally took place in the evenings, or 
occasionally over a weekend. So on the whole this did not impact my work at Praxis very 
much, although responding to emails, organising further meetings and the like took up a little 
time during “normal” working hours. This time had to be recorded as an overhead, and I 
found it  quite difficult  to keep this  to an acceptable  minimum.  Staying late at  work was 
frequently necessary. FACS got close to the London Mathematical Society,  as well as the 
Institute  for  Mathematics  and  its  Applications,  the  IMA.  We  held  events  on  functional 
programming, concurrency, LOTOS and the formal definition of specification languages. We 
decided to include a tutorial event once a year on a subject such as denotational semantics. 
During those years, 1990 – 1991, we often held committee meetings in a booked room in the 
City Pipe, a Wetherspoon pub in the City of London. There was no charge for the room, the 
proprietors reckoning that hosting a meeting on their premises would stimulate sales. They 
were probably right! Various industrial and other organisations supported or sponsored some 
of the FACS events, such as BT for LOTOS, IBM for the Third Refinement Workshop and 
the Logic for IT initiative of the SERC for the Concurrency workshop. The FAC Journal was 
in its second year of publication (1990) and a line-up of future issues in the pipeline. I edited 
a  special  edition  on  the  modularisation  of  specifications.  Almost  all  formal  specification 
languages were “flat”, that is, had few facilities for expressing a specification of a system in 
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terms of the specifications of its parts, unlike most modern programming languages. This was 
a deficiency. So we invited papers on the subject for FACJ.

There was a tradition that had grown up in FACS to hold an event over a day or two in late 
December, which we called the Christmas meeting. On 20th December 1990 the topic of the 
Christmas meeting was formal aspects of databases. Databases were normally associated with 
commercial applications, where formal methods were less in evidence. Although this meeting 
went  off  well  enough,  I  felt  that  it  was  used  by  some  of  the  database  devotees  as  an 
opportunistic platform for advocating database techniques rather than formal ones. We held a 
weekend committee meeting in January 1991 and did a lot of forward planning, plotting out 
events for the next two years into 1993, with proposed events on B, Measurement, Databases 
again, RAISE, Domain theory, and Process Algebras. We drew up guidelines for organising 
events  and  established  a  working  arrangement  with  Springer  in  London  to  publish  the 
proceedings of the more significant events in a dedicated workshop series. One of these was 
on the topic of formal methods applied to measurement. There had always been a tension 
between  formal  approaches  to  software  development,  where  a  solution  is  derived 
progressively by logical steps from an initial specification, and a by then burgeoning school 
of  thought,  software  metrics.  The  latter  regarded  the  software  development  process  as 
something  subject  to  experimentation,  measurement  and theorisation  about  resources  and 
error rates. On the face of it, these two schools are in opposition: formal development asserts 
that the use of proof must eliminate errors, whereas metrics asserts that errors will always 
happen,  so the  way to  control  them is  by experimental  observation  of  trends  and thence 
prediction of reliability.  Robin Whitty,  professor at South Bank University,  London, and I 
believed that these two positions were too stark and there had to be common ground. We 
started to plan a FACS event on Formal Methods applied to Measurement.  The resulting 
event  in  May  1991  at  South  Bank  University  was  particularly  successful,  avoiding  the 
traditional clichés of the opposing positions, and with several speakers (Austin Melton and 
Horst Zuse in particular)  putting forward thought-provoking ideas on abstract models and 
measurement theory.

Meanwhile we were planning the Fifth Refinement Workshop, to take place in London in 
June 1992. Lloyd’s Register, Program Verification Ltd. and the DTI had agreed to sponsor 
the event. The Refinement Workshops had by now become the major annual British formal 
methods event.

Towards the end of 1991 the BCS came into some temporary financial problems, owing to its 
difficulty in selling its London headquarters in Mansfield Street. FACS was in a very good 
financial state, having its own bank account and facilities, but constitutionally we were part 
of BCS and so there was a possible danger to our own financial autonomy. We seriously 
considered setting up a company owned by the committee and at the committee’s risk. In 
fact,  this  never  happened.  BCS  recovered  extremely  well  largely  by  mounting  a  very 
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effective recruiting campaign, holding out benefits of status, qualifications and facilities for 
new members. The Mansfield Street headquarters were sold, BCS moved to Swindon where 
costs were lower, but in due course moved back to London to substantially superior premises 
in Southampton Street. BCS is in 2011 a financially and scientifically thriving professional 
society.

Of  course,  I  was  working  for  Praxis  all  this  while,  and  supporting  FACS  and  the 
standardisation of VDM had to be done mostly in my spare time. It was acceptable to use 
some  of  the  firm’s  resources,  secretarial  and  communications,  for  these  “professional” 
purposes,  since the involvement  enhanced the company’s  technical  reputation and image. 
One Praxis project I carried out was for a London finance company client. Their business was 
with  real  estate,  mortgaging,  insurance,  valuations  and the  like.  The  project  was  named 
“Abacus”. I was chosen to do this project because I lived in London; Praxis was based in 
Bath, an hour and a half’s train ride away. Anthony Hall at Praxis wrote the bid for the work. 
Anthony was experienced with Z, the formal method developed at Oxford University and 
used in projects at IBM and INMOS. In his bid he proposed using Z in the Abacus project. I 
had not used Z before, although I was familiar with it; I had concentrated on VDM, which 
had broadly the same characteristics. So I had to get up to speed rapidly with Z, which I did 
with little difficulty. In the project I used a simple support tool for Z written by Mike Spivey 
at Oxford University, called fUZZ. The firm wanted to produce a database which reflected the 
structures of their clients, properties and users, with their rules built in to the database. The 
firm were extremely concerned with security and commercial confidentiality, and wanted a 
secure database for these reasons. They were adamant that their name should not be recorded 
in any of our documents, for fear of their competitors learning of their use of formal methods 
in the project. Although I spent some weeks on the customer’s premises, constructing the 
specification in Z using fUZZ, I’m to this date not sure what the firm’s name was.

The  usual  process  with  any project  of  this  kind  is  to  start  with  eliciting  the  customer’s 
requirements. They had a large rule book, which was full of a mixture of technical and other 
requirements.  By making experimental  formal  fragments of aspects  of these rules in Z,  I 
unveiled numerous uncertainties and produced lists of questions for them. My main contact 
within the firm was two software engineers, who were the two most IT technically oriented 
people in the company. We had a string of meetings where I asked questions. Do the users 
form a hierarchy? Is it the case that no property can belong to more than one property group? 
And  so  on.  Within  a  few  weeks  I  was  writing  copious  quantities  of  Z,  checking  its 
consistency with the fUZZ tool, and giving small presentations to my contacts in the firm. The 
project was delivered after six weeks, with apparent satisfaction on the part of the customer.
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My manager at Praxis, John Thornton, spoke to me about a prospect, some consultancy work 
for a firm called Headland. They had bought out four other companies and wanted to unify 
the five different accountancy packages. All were product -oriented. The R & D functions of 
three of the companies had been brought together under one roof near Basingstoke. Research 
was separate from development, but all were innovative enterprises. The packages in question 
were wide-ranging, covering variously Planning, QA, Methods, Configuration Management 
and  Documentation.  The  customer  offered  a  fifteen  day  contract  to  analyse  what  was 
required, leading to a feasibility study, an action and cost plan. They wanted a 10-15 page 
report with a plan for further work, including networks and bar charts etc. The company had 
480 employees.  I  could do the work from home.  But  it  was another  prospect  that  never 
matured into a contract. Once again, I suspect that the company issued an invitation to tender 
to a number of consultancy companies like Praxis, surveyed the resulting bids and used them 
as the starting point for the feasibility study, which they then carried out in-house. That way 
they got several considered top-level analyses for free.

John Thornton, who was in charge of the Consultancy group in Praxis, searched for possible 
contracts that I could do. I still lived in London and still worked under an arrangement where 
I was considered to be based at home, charging my fares to Praxis headquarters in Bath and 
taking any London based contracts I could. John had been negotiating with the DTI for me to 
be seconded there, in the Information Technology directorate, for a lengthy period. I went to 
the DTI in London for an interview with the directorate’s head, Professor John Buxton, with 
whom I had had several earlier associations. John Buxton was also on secondment; indeed, it 
was a  policy of  the DTI to bring in  specialist  talent  from academe and industry to  help 
operate their more technical directorates. I would be given a job title of Assistant Director of 
the IT Directorate, along with about four others. The Directorate used to initiate programmes 
of work, such as software engineering or speech and language technologies, offer grants to 
proposed projects, usually carried out by industry, but frequently in mandatory collaboration 
with academe, judge the contending grant applications, and fund the most promising of them. 
I had already been in the rôle of Monitoring Officer for a couple of projects, notably Analyst 
Assist, on contract with the DTI. Within the DTI, I would be Project Officer for a list of 
projects, in a number of areas. One of these would be Speech and Language technology, 
taking over from Nicolas Ostler, who was expected to leave in a few months. Projects in this 
area related to the analysis and understanding of speech, and translation and processing of 
natural languages. I would also be Project Officer for European and ESPRIT projects. There 
were several other European initiatives besides ESPRIT, some of which worked under the 
arrangement  that  a  collaborative  European  project  would  be  funded  by  the  national 
government of each partner, taking responsibility for that partner’s share of the expenditure. 
So in a collaborative project  with industrial  partners from France,  Spain and the UK, for 
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example, the UK firm would be funded by the DTI, the French and Spanish companies would 
be funded by the French and Spanish equivalents of the DTI, and the European Commission 
would oversee the whole project in some way.

John Buxton advised me that  at  the end of my secondment  I  was likely to find that  the 
“wound” that  I  left  by my absence from my employer  would have healed by the time I 
returned,  and that many secondees found themselves out of a job when their  secondment 
terminated. This did not entirely surprise me.

The SERC was running an initiative called Logic for IT, and under that was holding a course 
on Frame Theory. Frame Theory is a topic in mathematics related to lattices and topology, 
and a generalisation of the latter: that is, any topology is a frame. Frame theory and topology 
can  be  used to  model  computations.  Having been  engrossed in  the rather  mundane,  less 
academic  work  of  Praxis,  I  felt  a  need  to  stretch  my  brain  a  bit  on  some  demanding 
intellectual computer science. Shortly before the start of my secondment to the DTI I asked to 
be released to go on the course, which was three days long and held in Oxford. Praxis agreed 
to let me have the time, recorded as training, but said I had to pay the course fee myself. 
There was one price for academics and a higher price for industrial participants. I asked the 
course administrators if I could be granted the academic fee, since I was paying it out of my 
own pocket. They silently agreed. I was the only industrial attendee and I suspect that I was 
the only one paying myself. The course, given by Harold Simmons of Aberdeen University, 
was demanding, enjoyable and stimulating.

Chapter 11 Civic Duties
I started my secondment at the DTI in April 1990. Nicolas Ostler was, indeed is, a supreme 
expert in languages and the technology for processing languages. It was unwise for the DTI 
to end his assignment as a secondee, but this move arose from their policy and outlook that 
no-one needs to be a specialist; generalists were the order of the day. I felt embarrassed at 
stepping  into  Nick’s  shoes  when I  was  so clearly  less  qualified  to  do this  work,  but  he 
explained the ins and outs of the tasks to me with the utmost care, to make my learning curve 
as easy as possible. In the event, he stayed on at one day a week for the next six months, 
which was immensely useful.

I was made extremely welcome on my arrival  at  the DTI. Their  care for employees  was 
without  parallel  in  all  the different  types  of  organisation  where I  had worked.  However, 
working there was stressful, on account of the enormous importance attached to the results 
and timeliness of the work one had to do. A Project Officer’s duties related to past projects 
that  were  at  completion,  projects  currently  running,  and  new programmes  of  work  with 
applications for grants from prospective projects. 
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One requirement for those working in the DTI was that one should not have any interest in 
any particular company. This included owning stocks and shares. I had inherited a few shares 
from my mother, and had to declare these. It was decided that the quantity was so small that 
there was no issue.

Working for the civil service, one has grades. So-called Management grades are numbered 1 
to 7, 1 being the highest. This was in contrast to Praxis grades, where the higher the number, 
the higher the grade. At first, the DTI proposed that I should be grade 7, but John Thornton 
negotiated that I should be grade 6. This would bring more money into Praxis from the DTI 
for the secondment. So I was a grade 6; comparing myself with the other grade 6 staff, not 
many of them, I felt that this was perhaps higher than I deserved. The grade was also one’s 
job title;  instead  of  saying  “my department  manager”  or  “my division  manager”,  people 
would talk about “my Grade 5” etc. I was one of three grade sixes in the directorate. Nicolas 
Ostler and Graham Mackenzie-Washington were the other two. Graham was a regular DTI 
employee, and something of a guru of the directorate’s ropes. He was a tremendous support 
in guiding me through the mores of DTI’s ways of working.

Every DTI project,  whether it  was a large scale initiative,  support for a project  under an 
initiative, or even engaging a secondee such as myself, had to have a ROAME reviewed and 
accepted.  ROAME  was  an  acronym  for  a  case  for  the  required  funding,  consisting  of 
Rationale,  Objectives,  Appraisal,  Monitoring  and  Exploitation.  Nick  Ostler  was  in  the 
process of writing a ROAME for speech and language technology projects. The plan was for 
me to take over this work once he had got the ROAME through the lengthy approval process. 
A ROAME of this kind had to go before Government Ministers, but not the Treasury (some 
did,  however).  I  was  to  concentrate  on  formal  methods  projects  and  their  European 
connections. Besides ESPRIT, there was a separate European initiative called Eureka. Unlike 
ESPRIT, Eureka was not funded through the CEC (Commission of European Communities), 
and a Eureka project could include partners from any of 39 specific European countries, not 
just those from the EC, although the 39 included those.

SALT was  an  association  of  organisations  active  and interested  in  speech  and  language 
technology, the UK members funded by the DTI and the SERC. It too needed an approved 
ROAME to secure the DTI part  of the funding. It  funded some projects, and encouraged 
exchange of ideas and information between active parties through meetings and conferences. 
A considerable number of the ITD were involved in SALT.

There was a plethora of committees and subcommittees within or including the ITD. ITAB, 
the  Information  Technology  Advisory  Board,  oversaw  funded  IT  projects.  It  had  two 
subcommittees, A and B. I found myself most often attending meetings of subcommittee B. 
An extract from some private notes I took at a meeting of subcommittee B where a certain 
funded project was being discussed, may give a flavour of its way of working.
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There seem to be several factors contributing to the lack of success of this project. None of 
them are disastrous or overwhelming in themselves; none of them are such that some party is 
obviously to blame; all of them are easy to recognise in retrospect, but easy to have been 
passed over at the time; none of them alone would have definitely jeopardised the project to 
the extent that the they would have been adequate reason for suspending the project.

One major factor I think is that there was not a sufficient coherent unified technical vision for 
the project as a whole that could lead to plans for technical integration of the work. Hence the 
disjointed results, and the collection of deliverables which are difficult to conceive as a united 
whole. But I want to look at other parts of the file to get a better idea of the initial planning.

...

There was sometimes a temptation for Monitoring Officers to identify too strongly with a 
project, especially if they were subcontracted from outside the DTI, so that they began to 
“defend” the project against the DTI instead of acting as an objective observer, reporting on 
the project to inform the DTI. Seasoned DTI staff referred to this phenomenon as “going 
native”, recalling an imperial past!

Two important programmes in the ITD were Systems Design and Safety Critical Systems. 
Both  were overseen  by Subcommittee  B,  but  the  projects  in  each  had  their  own project 
officers. I was project officer for Systems Design projects, Simon Attwood was PO for Safety 
Critical Systems projects with Bob Malcolm, another secondee whom I had known for many 
years, technical coordinator. The immense level of scrutiny of these funded projects was a 
surprise to me;  all  of  them had Monitoring Officers too,  a rôle I  had carried out for the 
Analyst  Assist  project.  In  addition,  there  were some more  ad hoc  groupings  of  projects. 
Metrics  for  example  was  not  a  programme,  but  consisted  of  a  few pieces  of  work  and 
individuals,  possibly  in  different  programmes.  Great  emphasis  was  put  on  attempting  to 
coordinate  and  cross  fertilise  between  different  projects,  to  the  desirable  advantage  and 
advancement of UK industrial firms. In some ways, one could say that inter-company rivalry 
within the UK was discouraged in order to promote international competitiveness.

Eclipse was a knowledge engineering collaborative project, which has now grown to a strong 
technological community. A further project was set up to evaluate the Eclipse project. This 
project in turn had to have a ROAME, and I was asked to provide a view to contribute to the 
evaluation of this project. I found it a bit odd evaluating an evaluation project, especially with 
respect to the aspects of its ROAME: how could one evaluate its exploitation, for example? I 
thought that the only way an evaluation project could be expected to be exploited was by 
informing the original project under study, Eclipse in this case, and observe whether such 
information  had  been  taken on board and whether  Eclipse  in  turn had been exploited,  a 
second order exploitation if you will. All these were indeed positive outcomes.

All these activities came under the umbrella of the Advanced Technology Programme in the 
DTI. This covered more than just the activities within the ITD, thus more than just IT related 
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work. I was sent on a two-day course on the ATP. We were told about the general aims, 
Support For Innovation (SFI), the Small firms Merit Awards for Research and Technology 
(SMART); acronyms abounded in the DTI and often seasoned DTI staff had forgotten what 
were the original expansions of many of them. Government support had moved away from 
being near-market  in recent  years.  The thinking was that  government  should not  take on 
industry’s initiative. On the other hand, the DTI at any rate was not going to support blue-sky 
research (however, the EPSRC and parts of the EC would do just that). EC rules prevented 
governments  from giving  grants  that  would  make  for  unfair  competition,  hence  funded 
projects  had  to  be  some  distance  from  “market”.  Much  of  the  course  was  devoted  to 
explaining terminology. A Scheme is a broad heading of government funding. Programmes 
were technical areas within a Scheme. Projects could be funded within a programme. (In the 
CEC  context,  programmes  were  grouped  into  a  Framework.  ESPRIT  was  one  of  37 
programmes forming, in 1990, Framework III.) There were various criteria which applied to 
both programmes and projects. Additionality was one such: research and development had to 
provide some additional advantage to a wider audience than just the participants.

The ROAME approach was explained, including the desirable form of a ROAME, down to 
the recommended number of pages for each section. The Rationale should explain why the 
project/programme was to be carried out, in terms of the benefit for the UK. Policy, Rationale 
and  Objectives  form a  hierarchy  of  abstraction,  each  being  a  reification  of  the  former. 
Objectives  could  be  commercial,  economic,  operational,  technical  or  relating  to 
dissemination. Much store was set by Market. Market was supposed to provide the ultimate 
value of any endeavour. But if through some explained quirk of mechanism, market failed, 
then that market failure could be used as a reason for government funding. Personally, I was 
never convinced by this emphasis on the mechanism of market. It seemed to me to smack of 
bias towards a particular kind of political-economic theory.

Eureka  covered  39  European  countries  including  but  extending  beyond  the  European 
Community. There were at the time 297 current projects under Eureka, with another two to 
three hundred further proposals in the pipeline.  Each country had a national coordination 
office. In the UK this was a section within the DTI. Criteria for funding under Eureka were 
much the same as in other schemes, but a collaboration could involve just one UK partner, 
projects  could  be  nearer  to  market  and  industry-led,  they  need  not  involve  government 
funding (about 30 were unfunded but were still Eureka projects), funding was a maximum of 
50% of eligible costs, projects could co-opt more companies after starting up, and the IPR 
could be negotiated between the participants, with the respective national coordinating offices 
putting in their bids for national interests.

Some programmes could incorporate “Uncle” projects. These were academic projects that 
had  an  industrial  “Uncle”,  an  individual  from  industry  who  would  visit  the  project  at 
intervals, typically every three months, to provide industrial input and try to keep the project 

220



of  ultimate  practical  utility,  even  if  that  was  long-term.  This  was  a  very  light  form of 
academic-industrial  collaboration,  but  it  gave  the  academic  partner  some  ratification  for 
government funding. Even these projects required a monitoring officer. For Uncle projects, 
these MOs were from another academic institution, and were paid a standard rate of £200 per 
day, working out at about £25 per hour in 1990, modest even then.

The DTI was involved in PCTE and PCTE+, already mentioned, since Praxis took part in 
several PCTE-related projects. The MoD and ECMA were highly interested in PCTE+, and 
ECMA proposed to adopt it as a standard: ECMA PCTE would be PCTE+ re-badged. The 
DTI proposed to host a workshop on the industrial use of PCTE, publicised within JFIT and 
the BCS Computer Bulletin (a newsletter of the BCS, which is now renamed as IT Now). A 
PCTE newsletter was being published by the French R&D firm Emeraude.

The European Software Factory, ESF, was an international endeavour to define and produce 
an environment for developing and supporting software: a PSE in other words, but wider-
ranging  than  most.  BT were participants  in  the project,  assisted  with  funding from their 
internal customers. BT saw ESF as near market, and were not interested in its commercial 
exploitation as such. Their interest was to encourage their software suppliers such as ICL and 
SEMA to use ESF and thereby ensure a uniformity of quality and direction of their supplied 
products. Having BSI registration, BT was motivated to follow a quality route in its policies. 
They  considered  that  DTI  funding  would  help  to  sell  the  concept  and  wanted  to  know 
whether such DTI support was forthcoming, to what percentage and scale, the appropriate 
details.  A possible spin-off downstream of ESF itself  might  be common components and 
general experience. STC, ICL and Logica were among the other UK participants, and SEMA 
in France. A Council drawn from the participating members steered the work and direction of 
ESF. One technical concept within ESF was a Software Bus. (This nomenclature suggested 
an analogy with a hardware bus, which is a general term for an information highway carrying 
data between a large variety of components). The Software Bus was a medium by which the 
ESF process model was integrated with the processes in ESF, for example Reuse, Project 
Management,  etc.  It  was sometimes described as a discipline of integration.  There was a 
degree of compatibility between ESF and PCTE, and parts of PCTE were reused in ESF.

There was some slight tension between the need for the ESF consortium to align its partners 
to the project’s objectives and a temptation for an individual partner to use the project merely 
to further their  proprietary developments.  But mechanisms were in place to control these 
difficulties, all reinforced by contract.

Three programmes within the DTI were approved or in progress: Safety Critical Systems, 
Knowledge  based  systems  and  Speech  and  Language  technologies,  whose  ROAME was 
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being written. A future programme was to gather ideas from these three existing ones and 
carry them forward, with some developments of emphasis. This new programme was to be 
called Systems Design and Productivity. I was to be the “link man” to write its ROAME and 
run it. I would have to collect ideas from interested parties and formulate viable arguments 
for its approval. The programme would have to be worth doing, of benefit to the UK; the 
arguments would have to be primarily economic. For example, if one could speed up the 
route  from  requirement  to  delivery  of  systems,  this  would  lead  to  competitive  ability. 
Computer supported cooperative work could lead to large, complex long-lived systems built 
by groups of people.  One might  promote  compatibility  of  tools  across different  vendors. 
Government funding could overcome sectoral  specialisation especially across diverse user 
populations, leading to reuse across sectors. Productivity thus became the primary argument: 
productivity can lead to interdisciplinary working and better quality.  The concept of reuse 
needed to be interpreted widely, as reuse of designs and concepts for example, not just of 
software,  which  was  in  any case  rare.  Sectors  were  of  various  kinds,  products,  markets, 
technologies and others.

I attended a seminar for Project Officers, to which Monitoring Officers were also invited. 
Project Officers worked within the DTI and had oversight of a group of projects within one or 
more programmes. Each project had a Monitoring Officer engaged from outside the DTI on 
contract, who reported in principle to the Project Officer. Having been a Monitoring Officer, 
and now a Project Officer, I had some suggestions for how the activity could be improved. 
Monitoring Officers could be given feedback on whether their reports were at a useful level 
of detail. More knowledge of the structure of staff  and their rôles in ITD would help, as 
would an understanding of what was done with their reports; currently, Monitoring Officers 
received communications from half a dozen different people within the ITD, which I had 
found perplexing. One reason for this was that the DTI was excellent at using junior staff to 
the  limit  of  their  abilities,  in  taking  minutes  of  meetings,  chasing  up  due  reports  from 
Monitoring  Officers  and  deliverables  from projects,  and  all  manner  of  clerical  activities, 
which nonetheless required a measure of intellectual ability. A result of this is that people 
who had a relationship with the DTI, managers of funded projects, Monitoring Officers and 
others,  would  receive  communications  from many different  DTI staff,  and  this  could  be 
confusing. An initial one or half day seminar for monitoring officers would have been a help. 
As a  monitoring  officer  I  never  received  the  Project  Monitoring  manual,  or  knew of  its 
existence. Being kept informed of changes of Project Officer would have been helpful! The 
monitoring officer needs a copy of the project proposal, so as to know what deliverables, 
activities and objectives were expected of the project, preferably before signing the contract. 
That way a prospective MO could make a better judgement about whether he/she was capable 
of monitoring that project. I had to ask my project for a copy. I would have liked a clearer 
understanding of what, as an MO, I could demand of the project: e.g., to see a list of what 
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personnel they are charging to the project month by month and the specific contributions of 
each one. I felt that monitoring officers should be advised on how proactive/reactive they 
could be – I thought they should be encouraged to be as proactive as their skill allowed. On 
the Project Monitoring Manual, under “Rôle of the MO”, nothing was said about whether the 
MO should try to influence the project to be successful! I thought that this was both desirable 
and  feasible.  As  an  MO  I  required  to  see  copies  of  all  working  documents  that  were 
communicated between the partners, so that I could keep track of the technical progress etc. I 
suggested that this should be a standard “right” of Monitoring Officers. There were various 
other discrepancies between the duties that the MO had to carry out, according to the Project 
Monitoring Manual, and the information provided enabling him/her to do so.

All these criticisms of mine might suggest that the process was a bit of a shambles, but in 
practice an intelligent MO could deliver meaningful and helpful reports without too much 
difficulty. But as a PO I found that some Monitoring Officers were surprisingly lacking in 
initiative.

The  DTI  kept  a  watching  brief  over  all  the  European  Framework  projects  having  UK 
partners, and the ones funded under ESPRIT would feature in the annual JFIT conference. A 
wide  view  would  generally  be  taken  of  ESPRIT  projects:  their  context  within  other 
Framework projects, their position in the context of ITD, and the general shape of funded 
initiatives  in  Europe.  There  were,  in  1990,  19  UK  leaders  of  ESPRIT projects,  and  24 
projects having at least one UK partner. These ESPRIT projects were within Frameworks I 
and II; Framework III had been approved but was at the time yet to start.

I was taking over the PO duties of projects for which Nick Ostler currently had responsibility, 
as well as other items. There were three “Clubs” within Nick’s domain. These were largely 
unfunded associations of organisations having a specific common interest. SALT was one. 
The others were Logic Programming, and Advanced Databases and Knowledge Bases. Also, 
there was Eurotra.

Eurotra  was  a  programme  comprising  a  collection  of  projects  researching  the  machine 
translation of natural languages. Eurotra had started in 1982. There was a steering committee 
and I would be taking over from Nick as UK representative on this. Eurotra was financed by 
the CEC and member states. The project originated from a perceived need of the CEC: there 
would be economic savings for the CEC if the numerous translations of documents into the 
languages of all the member states could be done automatically. This, in 1990, was seen as a 
forlorn hope, but the project was a medium for considerable and wide-ranging research. This 
led to the CEC letting subcontracts to member state organisations to do the work. The UK 
participants  were  UMIST and  Essex  University.  Within  the  DTI  the  funding  source  for 
Eurotra seemed always to be passed around from one budget to another.
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In July 1990 I attended an interesting seminar on the Japanese software industry. The most 
notable contributor was perhaps Alan Benjamin,  who was the first director general of the 
Computing Services  Association and founder of the Worshipful  Company of Information 
Technologists.  He  noted  that  long  term  high  investment  and  patient  marketing  were 
characteristic of the Japanese software industry. He recommended using the British embassy 
to find a partner in order to gain entry to the Japanese market. No “NIH” (Not Invented Here) 
prejudice operated in Japan. Alan Benjamin recommended that an Anglo-Japanese industrial 
club be formed.

My own personal observations from the range of published Japanese research papers were 
that there was a stronger link between research directions and long-term industrial aspirations 
in Japan than in western countries. Research focussed on very large scale parallelism and 
sophisticated (mathematical) logics. From this I predicted that one long term industrial aim 
was  the  development  of  very  clever  human-machine  interfaces,  possibly  using  natural 
language and spoken words. If this was the case, we have yet to see it emerge, but some work 
along the way might be discerned.

Although I was seconded to the DTI, I still spent occasional days at Praxis in Bath, reporting 
briefly on my secondment, which was viewed as a Praxis contract, and taking part in some of 
the indirect Praxis activities. I remember, for example, participating in a committee to review 
the Praxis project review process, which was crucial to the in-house quality system.

There were many specific duties and fierce deadlines working in the DTI, but one had a large 
measure of freedom too. The approach to timekeeping was relaxed, provided the work got 
done, and one was free to arrange a visit to an industrial or academic institution on one’s own 
say-so, for example. I was interested in the use of IT to assist those who were disabled in 
some way, blind people for instance, and was a member of the Disabled SIG of the BCS. I 
visited Sight and Sound Technologies,  a firm that  designed and manufactured equipment 
enabling blind people to use a computer, among other things. Being a representative of the 
DTI, and hence the “Government”, one had considerable clout: a visit was always granted, 
and demonstrations arranged and provided. Sight and Sound Technologies showed me their 
various pieces of equipment and told how they were being used in libraries and other places. 
Today, such “accessible” interfaces are provided as part of the latest operating systems as 
built-in facilities.
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Springer-Verlag London publishes a lot of computer science and software engineering books, 
and FACS had developed something of a special relationship with them. Springer published 
the FAC Journal and several proceedings of FACS conferences. After some negotiation, in 
1990 Springer agreed to start a special series of volumes, called FACIT – Formal Approaches 
to  Computing  and  Information  Technology.  An  advisory  board  was  set  up  and  we  had 
lengthy discussions on the content and emphasis of the series. Springer expected members of 
the board to procure proposals for books from our contacts, something that I suspect did not 
transpire  as much as they would have wished.  However,  a healthy collection of volumes 
appeared in the series over the years, and it was the first port of call for many computer 
science authors looking for a publisher.

In July 1990 the DTI held a seminar on ESPRIT Framework III. I introduced the day: the 
purpose of the seminar, format of the day, circulated the attendance list and introduced the 
first speaker, Derek Flynn. A number of speakers gave position papers and there was a fairly 
free-ranging discussion. ESPRIT Framework III was to run from 1990 to 1994, and had a 
total  budget  of  5,000  MECU,  millions  of  ECU.  Participation  by  UK  organisations  was 
allowed up to 16% of this total. Speakers from academic and industrial organisations in about 
equal  numbers  contributed  positions:  IPSEs,  software  reuse,  safety  critical  systems, 
technology transfer, quality,  user interfaces, foundations of software engineering,  software 
components,  measurement  and  metrics,  reliability,  testing  and  validation,  performance, 
exploitation,  distributed  systems,  neural  networks,  learning  systems,  genericity,  formal 
methods, speech and language, and multi-media were all topics of discussion.

I had been Monitoring Officer for the Analyst Assist project, of which Robin Pyburn was the 
project leader. Robin and I had both worked at RADICS in 1969-1970. Now Robin Pyburn 
was the Monitoring Officer for the project CLARE, and I was the Project Officer. It is mildly 
amusing how the same people waltz around each other over the years.

John Buxton and I presented the ROAME for the proposed System Productivity programme 
to Subcommittee B. We received several pieces of advice: to emphasise the problem of scale, 
i.e. how to build large systems; to strengthen trans-sector reuse; building systems in a generic 
environment; to show how the objectives lead to revitalisation of British software industry. 
The discussions at these meetings were always in very general terms with much metaphorical 
hand-waving. The programme had originally been called System Design, but the name had 
changed to Productivity  to  change its  emphasis  from the technical  to the economic.  The 
estimated  budget  was  some  £36M with  half  provided  by  industry  and  half  provided  by 
Government, of which DTI would supply £14M and SERC £4M.

John appointed me as Project Officer for the applications of Imperial College and BT to take 
part in ESF (European Software Factory). ESF was a project under the Eureka scheme. In 
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many ways,  ESF was more like a programme rather than a project,  because of the loose 
associations between the work of the different partners. Another member of ITD retained the 
PO responsibility for ICL’s participation. John Buxton and I visited BT, who already had 
experience in project support environments: MCHAPSE in 1983 and ISTAR in 1984 to 1988. 
I  attended an ESF conference  in Berlin  at  the end of 1990.  Fourteen  organisations  were 
participating in ESF, including three academic. Imperial College was one of the latter. My 
conclusions  at  the end of this  conference were that  these kinds of massive  infrastructure 
systems  will  only  ever  be  afforded  by  the  biggest  organisations,  even  with  European 
collaboration. But it was good to have a European competitor to the US efforts in support 
environments.  The  collaboration  could  help  to  achieve  standardisation  which  would 
otherwise be slower. Conformance to such a standard would make such a software factory 
more competitive and saleable.  But little  UK collaboration was visible.  Having said that, 
using a software factory could bring large companies such as BT and ICL into a modern era. 
Funding the collaborative overheads seemed justifiable,  especially for European standards 
and compatibility. I still had grave doubts about the plausibility of these huge infrastructure 
systems. The main trend seemed to be towards user-driven and user-definable systems, not 
massive  institutional  ones.  I  would  have  liked  to  see  more  technical  issues  aired  in  the 
conference.

I visited SEMA who were another partner in ESF. After a discussion on their expenditure and 
claims to the DTI, always a necessary topic on a PO’s visit, we talked about the direction the 
project was going. They were going to put less emphasis on tools, more on the kernel of the 
system. They wanted to investigate and seriously develop means of integration with other 
platforms. I urged them to marshal arguments to show how wider benefits would result. For 
example, they wanted to enable ESF to support the traditional development method, SSADM, 
which many organisations were still using. Other continental partners included Matra, AEG, 
Telesoft, Softlab and CGS.

By July 1991 BT had withdrawn from ESF, and a company sprung from the University of 
Durham,  independent  but  in  the  university  Science  Park,  had  joined.  This  company was 
formed mainly because the French participants did not want to subcontract to a university; 
otherwise the company, albeit “Ltd”, comprised members of the Durham computer science 
department.

ESF, funded through Eureka with the French government funding the French partners 100%, 
was an advanced generic environment for software development. The aim was to bring a new 
generation of integration technology to industrial  scale software engineering products and 
practices. The watchword was integration: of software product management, developments of 
actual pieces of software, configuration control, production of manuals and documentation 
etc., a framework to support all the computer-based activities of software production. What 
was  believed  to  single  ESF out  was  its  genericity:  not  oriented  to  any specific  method, 
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application  or  programming  language.  Particular  instances  of  these  environments  or 
“factories” can be provided which would be built according to the underlying architecture 
and conforming to a number of technical standards specific to ESF. That was the idea. It 
aimed to be the major software environment project in Europe. ESF as a Eureka project was 
to have a ten-year lifespan from 1986 to 1996. The partners comprised 3 German, 4 French, 1 
Swedish, 1 Norwegian and 3 UK bodies. SEMA and ICL were the UK industrial partners, 
Imperial  College  the  academic  one.  Durham  University’s  participation  was  still  only  a 
proposal in August 1991.

In February 1991 I visited Imperial College to discuss their latest proposal for taking part in 
ESF. I had various questions, of the kind I had learned that it was necessary for a PO to ask. 
Since the previous version of their proposal, the collaboration seemed weaker, because there 
were no longer  any references  to  sub-projects  within ESF; not a good thing from a DTI 
perspective.  One  justification  for  government  funding  was  that  it  fostered  collaboration, 
which in turn stimulated technological advance. The proposal had notes of pessimism: “It is  
widely recognised that there are difficulties with some of the strategies of ESF”. The proposal 
did not elaborate this any further. This would cause alarm within the DTI, even to the extent 
of questioning the existing funding that the UK were providing to ESF. They would think, are 
we being asked to throw good money after bad? IC needed to explain and itemise this, and 
reassure as to how the difficulties could be resolved. It conflicted sharply with the euphoric 
style  of  most  ESF publicity.  Later  on,  the  proposal  offered  new and helpful  promise  of 
collaboration,  to  some  extent  counteracting  the  earlier  weakness.  More  details  of  the 
collaboration mechanisms would help. Each major task would deliver a consultancy report. 
Were these the only deliverables? They needed to provide a list of all deliverables with time-
scales, preferably not all coming to fruition at the end of the project’s two-year time span! 
These deliverables were needed to assist the Monitoring Officer’s task (of monitoring the 
project).  I  give this  detail  here to  convey the flavour of the relationship between Project 
Officers and their projects. These are the kinds of questions a PO has to ask and issues to be 
understood.

Another EC funded initiative that was more of a programme than a project was Eurotra. The 
programme was funded by the  Commission  through “Contracts  of  Association”  with the 
participants, the British participants being two universities, Essex and UMIST. The DTI part-
funded  the  British  participants  and  the  equivalent  national  administrations  likewise  part-
funded the participants in the other EU countries. The European Commission coordinated the 
whole effort, provided a proportion of the funding and periodically called meetings of project 
leaders  and  representatives  from  the  contributing  national  administrations.  I  thus  found 
myself  attending these,  essentially steering group, meetings,  as well  as funding and other 
policy meetings within the DTI. The EC chaired meetings were all held in Luxembourg, my 
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first  visit  to  that  country  and its  eponymous  capital.  There  we discussed  and  agreed  on 
matters of distribution of results and IPR, the proportions of EC and national government 
funding  for  different  aspects  of  the  projects,  royalties,  and  matters  of  that  kind.  The 
Commission wanted identical clauses on IPR to be signed in the contracts of association. But 
also discussed were technical strategies. All participants wanted to work on translation to and 
from  English  and  most  also  to/from  German;  technical  matters  included  common 
grammatical issues such as morphology1 and modifiers2. The EC wanted final reports on the 
work done from each member state to cover the whole programme period. Both scientific and 
management reports were proposed, the latter to relate what happened to the project and what 
it  produced,  the  former  to  concentrate  on  software  produced  and  such  like.  The  whole 
programme was to cost some 10 million ECUs.

Meanwhile, within the DTI there were the usual requirements for any UK government funded 
programme:  a  ROAME had to  be  written,  and  with  something  of  this  size,  the  advance 
expenditure  had  to  be  agreed  at  a  meeting  involving  representatives  from  several  DTI 
divisions and the Treasury. I wrote the ROAME and then presented it to the the approval 
meeting.  Since  the  programme  had  been  running  for  a  couple  of  years,  I  thought  that 
provided I clearly stated the work to be done and related issues, the decision would be taken 
on the merits of the case, which since it had been approved for previous years would be quite 
apparent. In an industrial situation, of which I had had considerable experience, this would 
have been the case:  no industrial  organisation would casually put a large investment into 
something and then halt it before the results had arrived. I couldn’t have been more wrong. 
This was my first time presenting in one of these committee meetings and the experience was 
ghastly.  The  process  in  the  DTI,  and  probably  throughout  the  civil  service,  was  for  the 
protagonist of a case to come with a band of supporters, or at least an ally or two, all of whom 
could contribute their views in the argument. Decisions were taken not so much on the merits 
of the case as on the rhetoric and debating skills of its defenders and opponents. The Treasury 
representatives, and some of the others, would see their rôle as trying to save government 
spending, of course understandable to a degree. The result was that the committee rejected 
my ROAME, which would mean that the UK’s participation in Eurotra would be stopped. 
This was disastrous, considering that the teams in two universities had been working on their 
projects for several years and had every right to expect that funding would continue until 
their conclusion. One of my grade 7 colleagues in the DTI IT division heard of this calamity 
and helped me bring about a change in the decision. Together we wrote carefully worded 
memos to the grade 5 manager who chaired the committee. My colleague explained to me 
that challenging the committee’s decision would not do; it had been taken through an entirely 
correct process. Essentially I had to say, cap in hand, that it was my fault for not bringing all 

1 Morphology concerns changes to the forms of words, usually endings: has, had, have for example.
2 A modifier is a general term for an adjective, adverb and also the word change that alters its grammatical rôle 
such as give - giver - given.
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the salient  facts  before the committee.  The one missing fact  that  we hit  upon was that  a 
government minister had put his name to the funding of the British part in the programme at 
its  inception,  and  to  cancel  it  now would  cause  him great  embarrassment.  After  several 
exchanges  of  memos  with  the  grade  5,  he  eventually  agreed  to  reverse  the  committee’s 
decision. Phew. I could go back to Essex University and UMIST and tell them that all was 
well. I felt somewhat humbled by the fact that the colleague who guided me through this 
repair process and saved the day was a grade 7, a lower grade than mine. I often wondered if 
I really deserved to be grade 6.

Because  the  previous  DTI  project  officer  for  Eurotra,  Dr.  Nicolas  Ostler,  had  so  much 
expertise  in  matters  of  languages  and  translation3,  I  felt  I  should  at  least  teach  myself 
something of the technicalities of the subject area. I did not want to be just a government 
administrator.  I  asked  Doug  Arnold,  who  was  the  lead  researcher  at  Essex  University’s 
contribution to Eurotra, for suggestions on some reading matter that might help me obtain 
some technical background. He recommended Lectures on Contemporary Syntactic Theories  
by Peter Sells4,  which was in their  MSc reading list.  I  found this most  illuminating,  and 
learned that there was much more to grammar and syntax than the traditional parts of speech 
that those of us of a certain age were taught at the age of nine or so, and which were part and 
parcel of the process of learning Latin and classical Greek.

An illuminating meeting of the Language Round Table (the government funded programmes 
had a penchant for inventing these little committees) in Paris revealed some rather interesting 
statistics: 9.1 million person-years are devoted to the written word each year, which is 19% of 
the world total: it varies from 22.7% for the lowest level worker (“office worker”) to 16.5% 
for the highest (“high-level executive”); 30% never use DP tools; 5% of foreign language 
dictionary  usage  is  computerised;  11  people  out  of  242  (4.5%)  used  computer-aided 
translation. These statistics date from 1990.

In June 1991 I attended the Eurotra Advisory Committee in Luxembourg.  this committee 
selected the project proposals that would be accepted into the Eurotra framework. There were 
rolling calls  for proposals  every few years,  each call  designated ET1, ET2 onwards. The 
deadline for ET9 was at the end of the next month. The committee comprised delegations 
from  twelve  European  Union  countries:  Belgium,  Denmark,  France,  Germany,  Greece, 
Republic of Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain and the UK. There 
was a question about how follow-up projects resulting from previous calls, even from ET6, 
related  to  ET9.  Follow-up  projects  could  include  implementing  software  and  extending 
research. Not all scientific problems that previous calls addressed had been solved. ET6 was 
complete  and its  final  report  would be produced the following week. Then the means of 
selecting proposals in the forthcoming ET10 was discussed; the selection process evoked a 

3 His various recent books, see Ostler 2005, 2007 and 2010, are very accessible to an intelligent lay reader.
4 See Sells 1985.
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lot  of  criticism.  There  was  a  desire  for  more  visibility  in  the  selection  process  and 
opportunities  for  discussion  prior  to  a  fait  accompli.  Objections  to  the  current  selection 
process were voiced by four of the delegations. Then one delegate expressed concern about 
the absence of contracts of association in the projects. This led to difficulties: some groups 
had to reduce their size for organisational or financial reasons. Further follow-up work would 
include  the  creation  of  linguistic  resources  and  applications  of  machine  translation.  One 
project  selected  focussed  on  reusability  of  grammars,  dictionaries  and  other  linguistic 
resources  of  Eurotra.  The  relationship  between  ET7  and  the  EC  Third  Framework  was 
discussed. Using external experts to assist in the evaluation of project proposals was agreed 
for the future. Invitations had been issued to the national administrations to nominate experts. 
The committee needed the list by the end of September 1991 for ET10. Evaluators would 
have  to  declare  their  interests  and  to  abstain  from  evaluating  their  own  proposals,  or 
competing ones in some areas.

By  the  time  I  came  in  on  the  act,  the  ROAME for  the  SALT  (Speech  and  Language 
Technology) programme was at its seventh draft and was still being scrutinised closely by 
many parties. A steering group codenamed “Link” had been set up to examine the ROAME 
and  subsequently  to  play  a  part  in  overseeing  the  programme.  The  forecast  was  for  15 
projects and an expenditure of £14M over four years. After that the club was expected to be 
self-financing.  Meanwhile  the  DTI  and SERC would  fund two workshops  per  year.  The 
participants  would  include  academics  and  SMEs,  but  enable  exploitation  by  large 
corporations.  The  ROAME  included  claims  of  UK  leadership  in  the  field,  scientific 
capabilities,  economic  interest  and  involvement  of  SMEs.  At  last  the  ROAME  gained 
acceptance from the governmental approval committees and was ready for presentation to 
ministers.

In January 1991 I gave a presentation on SALT to an international audience in Versailles. 
The programme would include speech processing: the acoustic basis of speech and computer 
analysis  of  spoken  information;  assigning  meaning  to  natural  language  text  in  computer 
accessible printed form; and script recognition, the analysis of hand-written text for computer 
input.  We  would  aim  to  include  international  collaboration  in  some  projects  and  widen 
awareness by encouraging new entrants to the technology.

All fourteen projects within SALT contributed to the workshop held in January 1991, and 
again to that held the following June. By September 1991 the role of SALT was widening. 
The SALT programme could fund Eureka projects. SALT projects could involve foreign, 
such as US, partners, funded by foreign sources. But the UK government would not fund 
foreign partners. More adjustments were made to the structure of the coordination committee, 
an assessment panel, means of reviewing, publicity and so on.
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One of the most famous software engineering institutions in the world is the SEI, Software 
Engineering Institute at Carnegie-Mellon University in the USA. They had devised a means 
of  assessing the capability  of  a  software  development  organisation,  called  the  Capability 
Maturity Model5 - CMM. Five levels of maturity were defined, and there was a battery of 
questions which, if answered honestly, would place an organisation at a level in the model. 
This maturity model became very well-favoured and used internationally.  It was part of a 
more  general  investigation  into  the  Software  Process6,  the  process  of  building  and 
maintaining software from inception to retirement, as opposed to the Software Product, which 
is the actual software and associated documents, test data and other delivered products. Part 
of the reason for the popularity of the CMM, I believe, was that it is extremely difficult to 
assess the actual quality of a given piece of software. So assessing the ability of the team that 
built it was the next best thing. (This may be considered a slightly cynical view). However, 
given this background, it was interesting to have a visit from a member of the SEI in October 
1990. The SEI had a budget of $30M, and employed 150 people. They were 100% funded by 
the US Department of Defense.

In November 1990, in my rôle as PO for formal methods projects, I accompanied a scientific 
officer from the SERC to the Laboratory for Foundations of Computer Science at Edinburgh 
University to review the projects funded by SERC grants to Rod Burstall and Gordon Plotkin, 
who founded the LFCS along with Robin Milner and Matthew Hennessey. We were given a 
series of presentations about the research work going on there. I was extremely impressed, 
especially by the work being done on Extended Calculus of Constructions. The Calculus of 
Constructions  is  a  formal  language  which  can  express  both  computer  programs  and 
mathematical  proofs. It  was developed in the late 1980s by Thierry Coquand and Gerard 
Huet7 at the French research centre, INRIA. In CoC, types can be first-class values, that is 
they can be assigned to variables, passed as parameters, returned as results and constructed at 
run-time8. This theory enables the building of practical proof assistants, and was the basis of 
the  proof  tool,  Coq.  The  LFCS  were  extending  CoC  to  allow  reasoning  about  abstract 
structures such as groups, topologies, etc., whereas CoC enabled the definition of concrete 
mathematical structures such as natural numbers, lists etc. Thus in ECC, first class objects 
also included theorems and proofs.

5 See Paulk et al. 1993.
6 See Humphrey 1988 and 1989.
7 See Coquand and Huet 1988.
8 The term, “first class value” was coined by Christopher Strachey in the 1960s. He advocated that functions 
should be “first class citizens”. See Burstall 2000.
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Our review meeting  was  held  in  Edinburgh  University’s  James  Clerk  Maxwell  building, 
which then was the home of LFCS. I was embarrassed and, indeed, rather shocked that my 
co-visitor from SERC did not know who James Clerk Maxwell was.

A few weeks later I was again with a SERC panel reviewing the rolling SERC grant for 
“Foundational  Structures  for  Computer  Science”  at  Imperial  College,  led  by  Samson 
Abramsky. The Computer Science department at IC had eight sections. There were 70 PhD 
and MPhil  students in  its  post-graduate  programme,  which  included both conversion and 
advanced MSc courses. Sixty research projects were in progress, 20 funded by ESPRIT, 25 
by SERC and other UK government sources, and 15 funded by industry and other agencies. 
Along with the LFCS at Edinburgh and the PRG at Oxford, the IC CS department was one of 
the leading academic computer science research groups in the UK.

We were given presentations by Tom Maibaum, Samson Abramsky, Steve Vickers and Mike 
Smyth.  Their  investigations  into  the  mathematical  foundations  of  CS focussed  on  “deep 
structures”, the basis of effective analytical methods. They were building on work done in the 
previous  two  years,  which  had  studied  domain  theory,  models  of  polymorphism  and 
information systems where infinitary objects are defined as limits of of finite objects, after 
the methods of Scott. The results promised to unify areas in which the current research efforts 
were largely separate. There was also a deal of work in progress on the connections between 
topology  and  domains,  topology  and  logic.  Once  more,  it  was  clear  that  radical  new 
theoretical research was being effectively pursued at Imperial College.

The Alvey project Poetic intended to establish a dynamic database about road conditions in 
the UK, linked to police mobile radios. The partners were the AA (Automobile Association), 
the  Independent  Broadcasting  Authority,  the  University  of  Sussex  and Racal.  There  was 
liaison between the project and the Home Office, (who were in effect the authority for the 
police then). The principal planned output from the project was to be a demonstrator version 
of  the  software  system;  certain  Alvey  projects  were  known  as  Alvey  demonstrators.  A 
prototype that could demonstrate the feasibility or otherwise of an idea which could then be 
taken forward was a legitimate justification for Alvey funding.

Sussex University were to carry out all the software implementation, using Poplog. Poplog is 
a  multi-language  software  development  environment  supporting,  among  other  languages, 
ProLog and LISP. Sussex University had also developed Poplog. The software was to support 
natural  language  processing,  in  particular,  police  traffic  reports.  One  difficulty  they  had 
discovered  was  that  police  in  different  areas  used  different  vocabularies,  although  in  a 
restricted domain. Other developers could be brought in to help develop the software in the 
future.  Sussex University would undertake the technology transfer,  dissemination  being a 
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required facet of Alvey projects. Cartographic data would form part of the system; supplying 
this would be the AA’s rôle. The IBA would be responsible for providing access to radio data 
systems.

In December 1990 I received a proposal for a Eureka project from a UK company that none 
of us had heard of. The proposal was interesting if only because it was utterly infeasible. 
There were to be two partners, the other one an Italian company, but it was not clear from the 
proposal  whether  the  two  were  in  the  same  group:  if  so,  it  would  not  have  been  truly 
collaborative  and  therefore  not  eligible.  The  proposal  was  for  a  32-bit  microprocessor 
designed using formal methods, and therefore suitable for safety critical applications. Some 
work at  the time had been done on formal  methods  applied  to hardware design,  but  the 
proposers made no reference to such previous work or how they would build on it. The really 
stunningly ambitious part of the proposal was that the proposed machine would execute high-
level real-time languages directly. This would have moved enormously more complexity to 
the hardware and to run-time: lexical  and syntax analysis,  name reference resolution, etc. 
They proposed to “expand formal design and verification methods to system engineering, 
production, manufacturing testing...”. all in a two-year project. Furthermore, they planned to 
build a CAE environment to support it all. What mainly worried me was that they proposed 
to  develop a  product,  yet  there  were a  whole string  of  research questions  needing to  be 
answered on the way. We had never heard of the company, and if they were capable of doing 
this kind of work I suspect we would have done.

That was one request for government funding that did not get off the ground.

Although the Monitoring Officer kept watch over a DTI funded project at least quarterly, the 
Project Officers were also advised to visit their projects once a year or thereabouts if possible. 
I was Project Officer of some twenty projects and at this beginning of my stint at the DTI, I 
thought it wise to visit as many of them as I could, to get some familiarity with the individual 
projects and to get a general view of their landscape and context. The next one I visited was 
the ReForm project,  run by IBM, Durham University and CSM Ltd.  The purpose of the 
project  was  to  produce  a  system of  tools  that  could  take  software  written  in  assembler 
language and generate from it a formal functional specification that was an abstract model of 
it, in the Z notation. IBM wanted to develop this system in order to assist the maintenance of 
CICS. CICS is a transaction manager that oversees multi-part transactions that must not be 
interrupted, such as financial transactions initiated by banks, and manages restore actions in 
case  of  breakdowns.  It  has  many  other  features.  IBM  would  share  this  tool  with  the 
community of CICS users,  customers  of theirs.  CICS was first  released in 1969 and has 
undergone further development ever since. It was an example of legacy code: software dating 
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from possibly many years in the past, that may work well and be useful, but whose details of 
design  have  long been  lost.  The  process  of  taking  legacy code  and deriving  design  and 
specification documents from it is known as Reverse Engineering. In the normal, or perhaps 
ideal,  development  process,  one  works  from  a  statement  of  requirements,  produces  a 
specification, then a design and finally an implementation, code that runs on a computer (I 
am simplifying  to  an extreme degree here).  Reverse Engineering in  a sense reverses this 
normal engineering process, by deriving a design or a specification from the final product. 
This can be a notoriously difficult process, because one has to find the structure of the wood 
when only being able to see the trees.

Thus, I paid a visit to the project at IBM Hursley research laboratory in January 1991. This 
gave rise to a slightly amusing event. In welcoming me, as we were settling ourselves in the 
meeting room, my hosts asked me if I had ever visited IBM Hursley before. As it happened I 
had done a vacation job there while an undergraduate.  Yes, I said, in 1961. There was a 
moment’s stunned silence and I realised that this date was probably before some members of 
the team had been born!

The project was going well, the collaboration agreement was being signed and arrangements 
for approving the publication of results  were well in hand, something the DTI wanted to 
happen so that the benefits would be spread as wide as possible. Collaboration agreements 
between the partners were also needed so that the intellectual property could be shared, but 
the agreements could take a very long time to be negotiated and sometimes were signed only 
at the end of all the work. The project control was the most superb I had seen so far, with 
computer aids that actually seemed to be a help and not get in the way. The project was now 
in  the  last  quarter  of  its  term  and  the  team  was  making  preparations  for  post-project 
evaluation and exploitation.

The  DTI  maintained  a  bipolar  relationship  with  its  industrial  and  academic  funding 
beneficiaries. It could not be seen to direct their technical policies: that would be unwarranted 
and unpopular government interference. On the other hand, any funding had to encourage 
national economic and technical advancement. The DTI guidelines for eligible projects and 
programmes were therefore broad but strictly applied. Within those guidelines the funding 
beneficiaries (we used to call them the “punters”) could make their own technical decisions 
without interference. To maintain a transparent profile, the DTI would hold conferences for 
projects in progress within a programme, and workshops for establishing programmes at their 
initiation. One of the latter was a workshop introducing the Systems Engineering programme, 
held in March 1990. The purpose of this was both to gain views from technological leaders in 
companies and academe, and to communicate to them the objectives and emphases of the 
forthcoming programme. The Systems Engineering programme was to integrate two previous 
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programmes, Systems Engineering and User Enhanceable Systems. The driving emphases 
were to be productivity, technology integration and benefits for the user. Increasing the users’ 
productivity would benefit the national competitive edge. This was the flavour, rather than 
technological advancement for its own sake.

After  debating  this,  we  reached  a  form  of  words  which  summarised  the  policy  of  the 
programme: “To enhance the productivity of IT systems users in UK business by establishing 
requirements  for  and  researching  and  delivering  the  right  technologically  integrated 
scientifically-based advances, in both the medium and long term”. There was further debate 
on  this.  The  programme  should  include  the  enabling  of  users,  and  the  link  between 
productivity and effectiveness. A few more sentences were agreed which gave the definition 
of the programme. These would be incorporated into a call for proposals and proposals would 
be assessed on their conformance to those objectives. These workshops were a part of the 
process of formulating a new programme of funded R&D.

The DTI’s Information Technology Directorate was quite relaxed about enabling its officers 
to attend conferences and other technical events. This may have been partly due to the head 
of ITD being John Buxton, an academic also on secondment. ICALP 90 took place on the 
campus of Warwick University.  ICALP stands for International Colloquium on Automata, 
Languages and Programming. ICALP is an annual international colloquium sponsored by the 
European Association for Theoretical Computer Science. It first took place in Paris in 1972, 
and in 1990 twelve European countries had hosted it. ICALP 90 was an intensive but very 
interesting five days incorporating 57 papers grouped into 17 sessions. Parallel sessions were, 
of course, inevitable. ICALP is one of the most prestigious international computer science 
events and it was a privilege for me to attend it.

Another interesting conference that year was a workshop on Concurrency, held at Leicester 
University.  There  is  in  practice  little  difference  between  a  workshop  and  a  conference, 
although workshops are intended to present more recent work that may be in a less final state, 
and  be  opportunities  for  discussion  amongst  researchers  working  in  the  same  areas. 
Concurrency is that research area which studies and develops the theories behind processes 
that  proceed in parallel,  at  the same time,  and is motivated by modern digital  electronics 
involving  multiple  processors,  and  software  working  under  the  control  of  time-sharing 
operating  systems,  both  of  which  are  now  ubiquitous.  At  this  workshop  Robin  Milner 
introduced his idea of “mobile processes”, which was a development of his CCS9. In Mobile 
Processes, processes themselves can be created, destroyed and passed as arguments to other 

9 See Milner 1980.
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processes10. Bill Roscoe described a theory of Tony Hoare’s CSP, and gave an account of the 
difference between CSP and CCS. CSP, Communicating Sequential Processes, is defined in 
terms of a mathematical model, whereas CCS is defined as a calculus. (A calculus is a set of 
rules  for  transforming  terms  or  formulae,  without  particularly  prejudicing  what  those 
formulae denote,  whereas a mathematical  model will be a specific  algebra,  for example). 
Other  papers  dealt  with  temporal  properties  (Colin  Stirling),  causal  semantics  (Samson 
Abrasky), multi-traces (Antoni Mazurkiewicz) and much else besides.

These various theories of concurrency, process algebras like CCS and CSP, Petri Nets and 
Temporal Logic, are principally concerned with the mathematical modelling of concurrent 
processes, so that, if a concurrent system conforms to an interpretation of the theory, then one 
may reason about  it  and draw deductions  about  its  behaviour.  None of  the  theories  are 
specifically designed as a specification language to be used while developing a concurrent 
computing or electronic system, although in principle most of them could be, at least to some 
extent.  A  specification  language  was  developed,  based  on  CCS,  CSP  and  algebraic 
specifications  of  abstract  data  types,  called  LOTOS11.  FACS held  a  one-day meeting  on 
LOTOS in September 1990, soon after the language was published.

VDM Europe, ongoing then for four years, was planning its next symposium, VDM ’91. The 
organisation was still being funded by the European Commission, with project officer Karel 
de  Vriendt.  He was  the  group’s  “champion”  in  the  EC.  Every  funded  initiative  needs  a 
champion in the governmental funding organisation, EC or DTI; the same probably applies in 
local government. However, he warned us that this funding could not continue indefinitely. 
We were technically classified as an “advisory group”, i.e. giving advice to the EC. Further 
funding  could  only  be  justified  if  VDM  Europe  widened  its  scope.  Proselytising, 
communicating  the  technology  to  a  wider  audience  and  therefore  benefiting  European 
industry and academia, would make the funding easier to justify. We discussed whether to 
widen our scope to include other formal methods such as RAISE, CSP, LOTOS. For the time 
being at least we would continue to focus on VDM. But VDM ’91 should contain two tutorial 
tracks, one advanced and the other more “elementary”.

Alexander Moya took over the rôle of project officer in January 1991. In that year we decided 
to  broaden our  scope to  include  other  formal  methods,  but  limited  to  other  model-based 
methods for the time being: these in practice included RAISE, Z and B. A draft charter for 
the  organisation  was  distributed.  A  more  umbrella-like  structure  was  adopted,  with  a 
controlling body and other subcommittees dealing with various activities, some permanent, 

10 See Milner et al 1989 and 1992.
11 See ISO 8807:1989.
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others temporary. Examples were a newsletter, technical events, the symposia planned at 18 
month intervals, and perhaps other activities such as standardisation. This committee meeting 
in January 1991 was to be the last meeting of VDM Europe; henceforward it was to become 
Formal Methods Europe.

My secondment to the DTI had another eight months to run. I knew that at the end of that, my 
manager at Praxis, John Thornton, would want to end my six-year long arrangement of being 
notionally based at my home in London, and I would have to be a normal employee, based at 
the firm’s location in Bath. I didn’t want to pay the expensive commuting costs myself, and 
with my family ensconced in London; with my wife in a London based job and my teenage 
children at a crucial stage in their schooling, I did not consider moving to Bath. So I started to 
plan working for myself as an independent consultant when the time came. I thought there 
was a good chance I could secure another secondment contract with the DTI. At the same 
time, at the suggestion of my ex-colleague Roger Shaw, who was already working there, I 
approached Lloyd’s Register.

Lloyd’s Register, previously called Lloyd’s Register of Shipping, originated from Lloyd’s 
Insurance.  Its  original  purpose was to assess the insurance risks of seagoing vessels.  LR 
would maintain a list, known as Lloyd’s List,  of seaworthy vessels. Now, an independent 
organisation, it covers the safety of lives and property more generally and actively promotes 
safety.  First, LR developed rules of design and construction. Then surveyors would check 
vessels on a five-year cycle. Fees provide 50% of their income. Over the last 50 years LR 
have expanded into more industrial areas such as power generation and civil engineering, and 
they now have 300 offices throughout the world.

Over  the  previous  few  years  software  had  become  embedded  into  engineering  control 
systems. LR recognised that they needed to be able to certify and assess software to ensure 
that  it  was  fit  for  purpose.  They  wanted  to  devise  guidelines  for  the  development  of 
dependable systems containing software. They wanted to establish their competence in expert 
systems and formal methods. A software department had been set up and had grown from 30 
to 40 over the previous six months. We discussed a consultancy contract for me in which I 
would work two days per week to help them devise a software certification procedure. My 
ultimate embarkation into independent consultancy in eight months’ time was beginning to 
look almost secure.

In April 1991 BCS FACS ran a three-day tutorial on B12. B is a formal system for describing 
abstract machines that can be used as abstract models of computer systems, and hence as 
formal specifications of systems. J-R Abrial developed B while working as an independent 
12 See Abrial 1996.
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consultant and as a researcher at the Oxford University PRG. An abstract machine is defined 
as a formal system consisting of data types and operations with state: that is, the machine 
contains  a  collection  of  variables  of  specific  types  whose  values  can  be  altered  by  the 
operations. Operations can have input values and output values, but can also alter the state of 
the machine; they are therefore not like mathematical functions, which do not have “state”, 
and an abstract machine is for that reason not quite the same as a program in a functional 
language. A program in a functional language does not contain a state.

The B language is a formal language, which technically consists of an alphabet with rules of 
formation  of  well-formed  formulae  (wff).  Along  with  the  formal  language  there  is  a 
deductive system consisting of axioms and rules of inference that determine what wff may be 
deduced from some given wff(s). There are automated proof assistants and other tools for B; 
the  one  demonstrated  at  this  tutorial  was  called  the  B-Tool.  (Another  was  subsequently 
developed in France under Abrial’s guidance called Atelier B).

In this three-day tutorial, David Till of City University presented logic and deductive system 
for B and J-R Abrial presented the B language and B Proof Assistant. B, he declared, consists 
of  the  B Tool,  the  Theory of  Abstract  Machines,  and Abstract  Machine  Tool-kit.  David 
Nielsen  presented  more  details  of  the  Abstract  Machine  tools,  the  type-checker,  proof 
obligation generation, refinement and other features.

This course was a hard, stimulating three days. I found the notion of abstract machines very 
reminiscent of VDM; indeed VDM, Z and RAISE are all examples of approaches based on 
the concept of abstract machines, in addition to B. All these languages, based on abstract 
machines,  that  is  data  types,  operations  and  a  state,  became  known  as  model-based 
specification languages.

Over the subsequent years, B has been used in important safety-critical projects. The Paris 
Metro  line  14  was  started  in  1993  and  opened  to  the  public  in  1998.  It  is  completely 
automated with driverless trains. The critical parts of the control and signalling software were 
specified  and  designed  using  the  B  notation  and  method,  which  allowed  for  stages  of 
refinement  down  to  a  version  that  can  be  translated  into  a  conventional  programming 
language. The improved confidence in the safety of the overall system meant that trains can 
be scheduled more closely, 85 seconds apart with trains arriving at a platform just as the rear 
of the previous one is leaving.

The DTI Subcommittee B would review funded projects, along with its other duties. One of 
the speech and language projects was “Aviator”, which was developing text searching and 
retrieval  software  with  facilities  for  lexical  clustering  and filters  that  interfaced  with  the 
retrieval  mechanisms.  The academic  partner was the University of Birmingham,  with the 
publisher Collins (who produce continuous editions of a collections of dictionaries), Nimbus 
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Records and BRS (British Road Services).  This was one of a long list  of other projects: 
PEBA, headed by SEMA, aiming to build an environment supporting SSADM; FERESA, 
again headed by SEMA for an environment supporting JSD; the Eureka project ECMA PCTE 
already  mentioned;  the  Eureka  project  Europicon  (European  Process  Intelligent  Control) 
which aimed to make advances in process control using knowledge-based systems; and the 
British National Corpus.

The British National Corpus was led by Oxford University Press, that part which published 
the renowned Oxford Dictionaries. The project aimed to build an ongoing corpus of English 
text, a “bank of English”. Again, to be useful, such a corpus of work needs search, retrieval 
and related software. Another project planned to enable computer analysis of the content of 
spoken discourse.

One of the concerns the DTI had when monitoring Eureka projects, which had British and 
European partners, was to ensure that the benefits after the project, such as royalties, were 
equitably distributed, not biassed in favour of another participating country. The ROAMEs 
for these projects had to justify government funding. Distance from market of the proposed 
research would often be cited,  yet  there had to be an eventual  market  for the work.  The 
proposal  had  to  demonstrate  that  the  aims  were  technically  viable.  The  work  had  to  be 
innovative  and  “pre-competitive”,  that  is,  at  an  early  enough  stage  that  there  was  no 
competition, for the DTI could not favour one firm over another. While collaboration was a 
requirement, it also had to have merits for the project: usually a case would be made that no 
one organisation had all the requisite skills or experience. The proposal would have to show 
knowledge of previous related work so that it could build upon it, and the ROAME would in 
turn bring such points out. High risks, long time-scales to market, a generic approach, wider 
eventual benefits could all add justification to the case. A very detailed project plan would be 
required with milestones and deliverables allowing the DTI to monitor the progress of the 
project effectively. Such was the lengthy and meticulous work needed to construct not only a 
proposal by the partners but a ROAME by the DTI project officer.

In July 1991 I took part in the JFIT conference, which the DTI organised and hosted every 
year.  Some  dozen  industrial  and  academic  representatives  presented  their  views  and 
experiences,  and the conference  finished with a panel  session and subsequent  discussion. 
Some, to me, surprising views were expressed: one academic asserted that IBM had saved a 
seven figure sum by using Z to specify CICS, and that PROLOG and Type Theory originated 
in the UK. I think that some French academics might vigorously disagree with that asserted 
origin of PROLOG, and I wasn’t sure he would have had access to enough detail of IBM’s 
finances to know the extent of saving due to the use of Z. The ADJ group in the USA might 
reasonably claim the application of Type Theory to computer science, although I suppose one 
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might refer to Russell and Whitehead’s theory of types in their Principia Mathematica which 
long  pre-dated  computers.  Nonetheless,  the  JFIT  conferences  were  always  a  fruitful 
networking event.

The DTI did not have a technical policy in IT themselves: it would not do for government to 
influence industry’s market-driven R&D. On the other hand, the DTI tried to predict what 
would be the future needs for IT, so that they could foster the developments that would meet 
those  needs  and  thereby  boost  the  UK’s  IT  industry.  So  papers  were  written,  studies 
conducted and meetings held to try to determine the future needs for IT:  this  was called 
variously the “Forward Look” and “Strategic Overview of IT”. How does one predict future 
trends  in  IT  needs?  Straightforward  extrapolation  of  current  trends  does  not  work;  for 
example,  the  sixties  and  seventies  saw  an  ever-increasing  use  of  main-frame  number 
crunching computers. Yet in the two next decades, these fell by the wayside and networked 
workstations and desk-top computers were coming into their own. Advances in AI had almost 
halted, but were beginning to move on again, more slowly. The surge of formal methods had 
been checked, but still had a continuing demand. The decreasing price of chips had many 
repercussions that were hard to foresee. The need for integration in general was prevalent in 
these DTI papers and discussions. Users could easily identify their specific problems, but less 
easily  see how to  combine  solutions:  for  example,  how can  I  integrate  my point-of-sale 
transactions  with  my  stock  control  programs,  my  stock  control  programs  with  financial 
management and forecasting? How can I integrate my sales processing and invoicing with 
my raw materials ordering, financial forecasting, throughput forecasts, process control, day to 
day  staff  planning?  My  new  product  design  with  longer  term  financial,  site  requisition 
forecasting? It could be highly advantageous if the IT systems supporting all these activities 
were integrated and worked together.

Another approach to predicting the needs for IT is to observe social trends: they follow each 
other. IT systems support social structures and activities, such as processes between people in 
a work-place, or processes used to develop engineering systems, including software intensive 
systems. The architecture of the IT systems supporting people at work depends on current 
social  trends:  one  can  envisage  two  scenarios,  one  community-oriented  and  the  other 
individual-oriented. In a community-oriented scenario, users form a large team who identify 
with  the  objectives  and  products  of  the  team.  These  are  embodied  in  the  information 
structures and processes which are held centrally on (in 1991) a mainframe computer. All the 
users have access to these central resources via, again in 1991, a terminal.  They agree to 
comply  with  the  centralised  procedures,  access  rules  etc.  and  cooperatively  construct 
powerful,  large  information  structures  and  processes.  The  knowledge  that  they  have 
contributed to this effective powerful system, in which they are in direct contact, gives the 
individuals in the team a personal feeling of gratification, protected because of being part of 
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something large, but not being individually exposed. The sense of community is enhanced by 
communication  facilities  such  as  electronic  news-boards,  email  etc.  The  user  feels  as  if 
logged into a corporate consciousness, losing individual identity but gaining an identification 
with a more powerful and authoritative composite.

In  an individual-oriented  scenario,  users develop their  own, more  individual,  information 
structures and processes, sharing them through the communications facilities. The items may 
be integrated later into the “official” system. Each individual feels identified with the items 
for which they are specifically responsible. Centrally available facilities are presented to the 
user as personal tools that assist and add to the power of the individual: spreadsheets, word 
processors, fourth-generation languages etc. were typical in an office system. Through these 
the user  can build  complex  information  structures.  This  power gives  the user  a  sense of 
fulfilment and individuation.

Hybrid systems  are  possible and indeed frequently occur.  Organisations  that  are  building 
software systems  or  systems  that  require  a  high degree of discipline,  for  example  where 
quality or reliability is paramount, will tend to the community-oriented scenario. Where the 
systems  developed  are  largely  for  use  within  the  organisation,  the  individual-oriented 
scenario is more likely. Within the DTI itself one could observe that we used a hybrid system, 
with  common  structures  such  as  divisional  and  departmental  files  to  which  access  was 
disciplined, but with a heavy emphasis on the individual-oriented system: each user can use a 
battery of common facilities — database packages, word-processors, calculator, spreadsheet, 
graphics  and  drawing  packages.  But  other  facilities  such  as  data  management  were 
community-oriented.

In principle a system can be produced by either of these social structures, or by any which 
lies in the spectrum between them. The resulting system will  have facets  that  depend on 
which  social  structure  was  used  to  construct  it.  In  particular,  high  reliability  requires  a 
discipline which fits more easily into the community-oriented model. Otherwise, the choice 
of what type of system will be popular depends on the preferred social structure. In the 1990s 
the trend was far more towards the individual, and will probably continue for a considerable 
time.

In the  1990s one could perceive  a  broad trend towards  constructivism:  the individual  as 
authority, owner of rights, creator, and the demise of the institution as regulator of people’s 
lives  and  values.  This  was  exemplified  by  the  then  recent  political  changes;  trends  in 
intellectual thought (philosophy, religion, psychology); social attitudes and public behaviour; 
a general atrophy of public deference; economic trends (more people than ever before owning 
cars, personal bank accounts, houses etc.) at least in the West. A small symptom of this is that 
people tend to ignore instruction manuals:  they don’t want to be told what to do. People 
prefer to try out an artefact themselves, straight off. The result is that instruction manuals are 

241



ignored and become deficient, written in awkward unpolished language. There is almost a 
tolerance of faulty engineering provided that useful features are provided. By contrast, the 
Japanese  had  a  tendency more  towards  community-oriented  modes,  and  as  a  result  they 
showed a capacity to produce goods of high quality and reliability.

A two-pronged approach was proposed: a large prong and a small one. Both were essential. 
The large prong is an enhanced user-machine relationship: interfaces, speech and language 
processing, computer-vision, integration of facilities and function, which required research 
into the abstraction of functions in order to coordinate them. These were reflected in parts of 
the DTI ITD programme. The small prong was that part of systems that users want to feel 
secure  about,  so  that  they  can  ignore  it,  so  that  their  personal  power  is  facilitated:  for 
example, engine control systems in cars and other vehicles. The end-user does not want to be 
concerned with them, but wants them to work transparently.

The foregoing was a perception and opinion summarised from papers circulating in the DTI’s 
“Forward Look” cogitations. Much of it still applies today, although some of the supporting 
technology  has  changed.  Networked  PCs  with  a  central  server  would  now  replace  a 
mainframe and terminals. News-boards have been replaced by blogs, although they are in 
essence a new name for much the same thing. There are today other more sophisticated, often 
web-based, tools and facilities. Over the subsequent decade, during the noughties, that trend 
in the UK began to reverse: the individual became more regulated by the community’s rules. 
But now, in the 2010s, we are seeing a societal rebound back to individuation.

The  Fifth  Refinement  Workshop,  sponsored  by  Lloyd’s  Register,  Program  Validation 
Limited and the DTI, and organised by BCS FACS, took place in the imposing board room of 
Lloyd’s Register’s offices in London from 8th to 10th January 1992. The proceedings were 
published  by  Springer-Verlag  in  their  Workshops  in  Computing  series13.  There  were  19 
papers  presented,  including  an  opening  address  from  Mr.  Patrick  O’Ferrall,  the  Deputy 
Chairman of Lloyd’s  Register.  There were also demonstrations  of eight  support  tools  for 
formal  methods:  the  Genesis  Z  Tool  from  Imperial  Software  Technology;  μral  from 
Manchester  University;  Specbox  from  Adelard;  RED  (Refinement  Editor)  from  Oxford 
University;  the  RAISE  Toolset  from  CRI;  Cadiz  from  York  Software  Engineering;  the 
SPADE Theorem Prover from Program Validation Limited; and a refinement tool from the 
Victoria  University  of  Wellington,  New Zealand.  Program Validation  Ltd.  hosted a most 
enjoyable social evening in the London Transport Museum, at which there were refreshments 
and a delightful recital from a string quartet.  These Refinement Workshops run by FACS 
were becoming the major  regular formal  methods events in the UK, and the Fifth was a 
particularly memorable one.

13 See Jones, Shaw and Denvir (Eds.) 1992.
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As I have said, my secondment from Praxis was coming to an end, and my manager at Praxis 
did not want to renew it: secondment to the DTI was not very profitable for the company. I 
decided to leave Praxis and try to renew my secondment myself. This required writing – a 
ROAME! All proposals needed a ROAME, and my own secondment was no exception. I 
would need to outline the scope of the problem that my leaving would create, the Eureka and 
other projects for which I had project officer responsibility, why I was uniquely qualified to 
fulfil the rôle and why a “normal” civil servant in the department was not so well qualified to 
perform it. There would have to be “deliverables” and the normal criteria for an acceptable 
ROAME, monitoring arrangements and all.

So my ROAME proposed that the DTI engage a consultant to provide the technical expertise 
necessary to appraise proposals for Eureka projects in IT and to monitor them when approved 
and in progress. I estimated the support required would be one day of consultancy per week, 
with some allowance for travel, over three years in the first place, subject to review after that 
time. I referred to the DTI policy that required it to have responsibility for Eureka projects 
(these  ROAMEs  had  to  go  before  committees,  not  all  with  DTI  staff,  so  contextual 
explanations were always necessary), the activities that this would involve and the skills that 
were necessary.  Those skills  I  identified as knowledge of DTI procedures,  knowledge of 
Eureka criteria, good knowledge of IT and software engineering so as to be able to assess the 
technical  aspects  of  proposals  and  the  competence  of  proposers,  familiarity  with  UK IT 
companies and academe, familiarity with European IT and software engineering companies 
and academe, an understanding of the differences and nuances between UK and European IT 
culture, and some understanding of European administration: Eureka, ESPRIT and the EC. 
Then  a  statement  that  this  mixture  of  skills  was  not  available  in  ITD and  the  ROAME 
therefore proposed engaging a consultant to fill the rôle.

Next I wrote some words about the scale of the activity,  visits to industrial and academic 
sites, the need to attend some international events and conferences. I was, of course, uniquely 
qualified to do the job, my ROAME was approved and I was re-engaged.

Chapter 12 Independence Days
<to be writ>
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Glossary

Abstract Machine A term used much in the B literature: an abstract machine comprises a 
set of data types, operations and a state consisting of a set of variables. 
Operations  can  change  the  values  of  the  state  variables,  unlike  the 
functions in a functional programming language.

ACL Atlas  Commercial  Language:  an  imperative  programming  language 
used on the London Atlas machine, geared to commercial applications, 
dating from the 1960s. It had similar features to COBOL but a less 
verbose syntax.

ACM Association for Computing Machinery: the USA professional scientific 
and educational computing society founded in 1947.

ACT1 A  specification  language  based  on  initial  semantics  of  universal 
algebras with equational axioms, often called equational algebras1.

1 See Ehrig and Mahr, 1985.
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Ada A  comprehensive  programming  language  commissioned  by  the  US 
DoD to replace the plethora of languages previously used in defence 
projects. Ada was chosen from four contenders codenamed Green (the 
winner), Blue, Red and Yellow in 1979.

Additionality A piece of government jargon: in a R&D project, additionality is the 
property of producing additional benefit to an audience wider than just 
is  participants.  Additionality  is  usually  a  requirement  when seeking 
government funding for a project.

ADJ A group of researchers (J. A. Goguen, J. W. Thatcher,  E. G. Wagner, 
J. B. Wright)  who focussed on category theoretical  interpretations of 
algebraic specification during the 1970s and 1980s. ADJ is a reference 
to “adjoint”, a concept in category theory.

ADT Abstract Data Type: the mathematical model of a data type found in 

computer  languages.  The  latter  can  be  integers,  real  numbers, 

characters, lists of data of another type, records of mixed type etc. An 

ADT in addition is bundled with the operations that can operate upon 

data of that type. An ADT is abstract because it makes no prescription 

about how the type is implemented or represented in the computer. The 

concept2 is inspired by the study of universal algebra3. 
AEI Associated Electrical Industries, see GEC.

AFFIRM An experimental specification language based on abstract algebra; the 
effect of actions within a specification are defined by axioms.

AI Artificial Intelligence: a broad category of computer science research 
in  which  attempts  are  made  to  mimic  human  intellectual  activity. 
Typical  areas  are  the  understanding  of  natural  language  and logical 
reasoning.

ALGOL A family  of  imperative  programming  languages,  Algol58,  Algol60, 
Algol68 and AlgolW, of which Algol604 was the most implemented 
and used. ALGOL stands for Algorithmic Language.

Alvey Directorate The team within the DTI that managed the Alvey Programme, a UK 
collaborative research programme in information technology involving 
industry, academia and government.

ANSI The American National Standards Institute.

2 See Ehrig and Mahr, 1985, for a thorough account.
3 See Cohn 1981.
4 See Backus 1960 for the official definition of Algol60.
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Applicative 

Programming 

Languages

See Functional Programming Languages.

APSE Ada Program Support Environment; a proposed integrated set of tools 
to assist the development of programs in Ada.

ARPANET US  Department  of  Defense  Advanced  Research  Projects  Agency 

Network in the 1960s, the first ever email network.
Assertion In an algorithmic programming language, a statement having no effect 

on the state of the program but which asserts that  some proposition 

about the state should be true at that point in the execution.
ASTG Advanced Software Techniques Group, a group within STC.
Atlas A computer  developed  by  Ferranti  in  conjunction  with  Manchester 

University  and  Plessey  in  the  early  1960s.  Four  machines  were 

manufactured, the London Atlas (see ULICS), the Manchester Atlas, 

the Chilton Atlas in the Atlas Computer Laboratory at AERE Harwell, 

and  the  Cambridge  Titan.  There  were  substantial  differences  in 

architecture, although the machine code was the same and enabled a 

good degree of program portability between them.
ATP Advanced Technology Programme, a programme of work within the 

remit of the DTI in 1990.
Auto-G A software design method based on Yourdon and DFDs.
AXES An  experimental  axiomatic  specification  language  dating  from  the 

1970s.

B A  formal  method  for  specifying  and  designing  software,  using  set 

theory and logic as a modelling medium. Designed by J.R.Abrial5, B is 

named  after  the  French  mathematicians  who  published  under  the 

pseudonym of Bourbaki.
BCL A language proprietary to RADICS designed for writing compilers. It 

was an early example of a compiler-compiler, easier to use than that 

designed by Brooker and Morris.
BCS The British Computer Society.

5See Abrial, 1996.
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Bison A compiler-writing  tool  that  inputs  a  grammar  written  in  a  format 

upwards-compatible  with  yacc,  and  converts  it  to  a  program in  an 

imperative language (C etc.) that can parse a script that conforms to the 

grammar. Bison is now available from the Free Software Foundation 

under the GNU conventions.
BNF Backus  Normal  Form,  later  Backus-Naur  Form.  The  description 

language  devised  by  John  Backus  for  the  syntactic  definition  of 

Algol58, later extended by Peter Naur for the definition of Algol60.
Bootstrap To  bootstrap:  a  technique  of  writing  a  compiler  for  a  language  by 

writing  the  compiler  in  its  own  language.  The  first  version  of  the 
compiler is usually very restricted and its implementation helped along 
by other means. Then a series of versions can progressively build up to 
the full implementation.

BoT Board of Trade, a British Government Department, predecessor of the 
DTI and its successors.

BSI British Standards Institution.
BT British Telecommunications,  the successor  to the Post  Office as the 

nationalised  UK  telephone  and  telecommunications  supplier,  now 
privatised and with several competitors.

BTH British Thompson Houston, which merged with Hollerith to become 
the British Tabulating Machine Company, BTM. See also GEC.

BTM The British  Tabulating  Machine  Company,  see  BTH.  BTM merged 
with Powers Samas to become ICT, q.v.

C An  imperative  programming  language  developed  in  1972  at  Bell 
Telephone  Laboratories  by  Dennis  Ritchie.  It  was  designed  for 
implementing systems software, although it is of general purpose and 
has also been used for developing portable applications.

CAA (UK) Civil Aviation Authority (UK).
CADES Computer  Aided Design and Evaluation of Software, an ICL CASE 

tool.
CASE Computer Aided Software Engineering.

Category Theory A  branch  of  mathematics  which  generalises  and  studies  the 
relationships  between  mathematical  structures.  It  is  useful  for 
modelling certain phenomena of programming languages, such as type 
polymorphism.
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CAVIAR Computer  Aided  Visitor  Information  And  Retrieval:  a  piece  of 

software developed at STL for administering visitors to the company 

and their needs. It was developed as a case study in the use of Z, but 

was a program of practical use with a non-technical person providing 

the requirements.
CCS Calculus of Communicating Systems: a formalism devised by Robin 

Milner at the University of Edinburgh for modelling dynamic systems 

which can consist of communicating components. It is an example of 

what later became known as a Process Algebra.
CCITT Comité  Consultatif  International  Téléphonique et  Télégraphique,  the 

international  standards  committee  for telecommunications.  Its  parent 

body is the ITU with which, in 1992, it became identified and ceased to 

be a separate entity.
CCTA Central  Computer  and  Telecommunications  Agency,  a  one-time 

agency of the UK Government.
CCTV Closed Circuit Television
CEC The  Computer  Engineering  Centre,  a  group  within  ITT  based  in 

Brussels and later in Versailles.
CEC The Commission of the European Communities, frequently referred to 

as the European Commission.
CEGB The  Central  Electricity  Generating  Board,  the  UK  electricity 

generating utility before privatisation.

CHILL The  CCITT  High  Level  Language:  a  language  used  for 
telecommunications  systems  with  similar  features  to  Ada (q,v.)  and 
developed about the same time.

CHILL IF The CHILL Implementers  Forum.  A committee  of  implementers  of 
compilers for CHILL that met to agree language features, syntax and 
semantics.

CICS Customer Information Control System, a transaction server developed 
by IBM, mainly for the business sector. The first release was in 1969 
but CICS has been developed further ever since.

CLEAR A  language  based  on  abstract  algebra  for  expressing  models  or 
specifications.
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CMM Capability Maturity Model: developed by the SEI at Carnegie-Mellon 
University, a means of determining the maturity of an organisation’s 
capability  in  developing  software  and  performing  software 
engineering.  Five  levels  of  maturity  were  defined  from  chaotic  to 
highly defined with procedures for assessment and improvement. The 
model  became very popular despite very few organisations reaching 
the desired level 5.

CMOS Complementary  metal–oxide–semiconductor:  a  technology  for 
constructing integrated circuits, patented in 1967. It uses the principle 
of field effect transistors, having a sandwich of a metal  electrode,  a 
metal-oxide  insulator  and  semiconductor  (a  semi-metal).  It  has 
practical advantages of low noise and low power consumption.

COBOL Common  Business  Oriented  Language.  One  of  the  first  high-level 

languages,  contemporaneous  with Fortran.  COBOL was designed in 

1959  by  Grace  Hopper,  a  Commander  in  the  US  Navy6.  The  first 

compilers were written in 1960 and portability of programs, an initial 

advantage of high-level languages, demonstrated that year.
CoC Calculus of Constructions, a  formal language which can express both 

computer programs and mathematical proofs, developed at INRIA by 

Thierry Coquand and Gerard Huet in the late 1980s.
COCOM Coordinating  Committee  for  Multilateral  Export  Controls.  A 

committee of 17 member states established in 1947 during the Cold 

War  which  held  a  list  of  embargoed  products  considered  to  be  of 

potential assistance to the Soviet Union’s military capability. COCOM 

was  disbanded  in  1994,  to  be  replaced  by  the  considerably  less 

proscriptive Wassenaar Arrangement.
Common LISP (CL) A dialect of the LISP programming language, developed in 1984 and 

standardised by ANSI in 1994. In addition to list processing, Common 

LISP supports functional, procedural and object oriented programming 

paradigms.
Coq A proof assistant developed at INRIA, based on CoC, the Calculus of 

Constructions, q.v.

6 To paraphrase Gilbert and Sullivan, “If you stick to your computer and never go to sea, you’ll soon be a 
Commander in the US Navy”
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CORAL Computer On-line Real-time Applications Language: a programming 

language developed in 1964 at RSRE and stabilised as CORAL-66 in 

1966.  Intended  for  military  applications,  CORAL was  a  high-level 

language in the Pascal style but with low-level facilities designed for 

space and time efficiency.  A version,  PO-CORAL, was adopted for 

industrial use by the UK Post Office in the 1970s.
CORE Controlled  Requirements  Expression:  a  method  of  capturing  and 

expressing requirements  of  a  system,  developed and used at  British 

Aerospace  in  the  early  1980s.  A simple  diagrammatic  notation  was 

used to show data flow within and between different system viewpoints 

and shown to the customer to provide a picture of the proposed system, 

as well as providing a basis for implementation.
CPL Cambridge/Combined  Programming  Language:  a  programming 

language developed during the 1960s first at the Cambridge University 

Computing  Laboratory,  then  in  conjunction  with  the  University  of 

London Institute of Computer Science. It survived into the early 1970s. 

See Barron et al, 1963.
CPU Central Processor Unit, the electronics within a computer that executes 

programs held n the computer’s memory.
CSP Communicating  Sequential  Processes:  a  process  algebra  and 

mathematical  theory  consisting  of  a  notation  and  language  for 

modelling  concurrent,  communicating  processes.,  devised  by  Tony 

Hoare in 1978.
DARPA Defence Advanced Research Projects Agency (USA).
Database A file or files stored on a computer that consist of potentially many 

records of information, all of the same structure. Examples could be 
names,  numbers  and  addresses  in  a  telephone  directory,  or  names, 
addresses, account numbers and balances of customers of a bank or a 
department store. The first research project database systems appeared 
in the 1960s, and became commercially available in the late 1970s.

DEC The  Digital  Equipment  Corporation,  a  US  computer  manufacturer, 
noted for the VAX (q.v.) range in the 1970s, which displayed some 
innovative technology.

DERA Defence  Evaluation  and  Research  Agency:  previously  RSRE,  now 
privatised as QinetiQ, q.v.
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DFD Data Flow Diagram: a graphical technique for displaying the flow of 
data  through  a  system,  without  specifying  the  order  of  processing, 
devised by Larry Constantine in the 1970s. Data Flow Diagrams assist 
a top-down approach to design.

DoI, DTI Department of Industry, Department of Trade and Industry, previously 
the  Board  of  Trade,  now  (in  2009)  the  department  of  Business, 
Innovation and Skills (BIS): the UK government department with the 
objective of stimulating UK industry.

Domain Theory A branch of mathematics comprising partially ordered sets in which 
such a set  can include its  own (partial)  function space.  Such partial 
functions include  the computable  functions and can therefore model 
certain  kinds of recursive types,  which cannot  be modelled in more 
traditional set theory. The application of Domain Theory to computer 
science was pioneered by Dana Scott in the 1960s7.

DP Data  Processing,  the  commercial  application  of  computers  to  large 
scale information.

DPSS A proprietary operating system for the ITT 3200 machine developed at 
LCT, part of ITT Europe, in the early 1970s.

Dumb terminal A user console consisting of a keyboard and display device with little 
or no processing power of its own, linked to a central computer.

EATCS European Association for Theoretical Computer Science.
EC The European Community, comprising six countries (Belgium, France, 

Germany,  Italy,  Luxembourg,  the  Netherlands)  at  its  foundation  in 
1957, became nine-strong when the UK joined in 1973, numbered 15 
from 1995 until 2004 when ten more countries joined making the total 
25. With Bulgaria and Romania arriving in 2007, the number in 2010 
stands at 27.

ECC Extended  Calculus  of  Constructions,  an  extended  form  of  CoC 
developed at the LFCS at Edinburgh University in the early 1990s.

ECMA The European Computer Manufacturers’ Association.

ECU European Currency Unit, the predecessor of the Euro. It was used from 
March 1979 until the adoption of the Euro on 1st January 1999. There 
was never any hard currency for the ECU, but it was possible in most 
European countries, including the UK, to open a bank account in ECU. 
On  1st January  1999  these  accounts  magically  turned  into  Euro 
accounts, on a one-for-one basis.

7 See Scott 1971 et seq.
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ELLA A  computer  language  proprietary  to  Praxis  for  programming 
simulations of digital electronic hardware.

ELIZA A computer program designed in 1966 by Joseph Weizenbaum, which 
simulated a psychotherapist of the Rogerian school. It worked mainly 
by rephrasing many of the client’s responses as questions and posing 
them back to the client. The program was named after Eliza Doolittle, 
the heroine in George Bernard Shaw's play Pygmalion.

Environment Development  Environment  or  Operating  Environment:  the 
development environment of a piece of software is the collection of 
computerised  support  tools  that  aid  the  developer  to  design  and 
produce the software through its development. Examples are the APSE 
and IPSE. The operating environment is the characteristics and rate of 
arrival of the data presented to the software, the expectations placed 
upon its output by the technical system of which it is a part, and any 
other software which interacts with it.

EPSRC The UK Engineering and Physical Sciences Research Council.

Equational Reasoning The techniques of formal deduction in a formal system in which the 
axioms are expressed as equations.

ESA The European Space Agency.

ESF The European Software Factory: a European international endeavour to 
define  and  produce  a  PSE  for  developing  and  supporting  software 
through its life-cycle.

ESPL1 Electronic  Switching  PL/1,  a  programming  language  devised  for 
telecommunications proprietary to ITT in the 1970s. Although named 
after the language PL/1 it had little of the sophistication of the latter 
and was not much more advanced than an autocode. However, it was a 
great  advance  on  the  symbolic  assembler  language,  which  was 
otherwise used for telecoms applications in ITT.

ESPRIT The  European  Strategic  Programme  for  Research  in  Information 
Technology, an initiative of the European Commission.

EST A 1984 research project in STL investigating the construction of an 
automated  proof  system  that  was  generic,  i.e.  that  could  be 
parametrised by a codification of the desired logic. The intention was 
to  start  with  equational  reasoning  and proceed to  other  logics.  The 
project led on to the NIMBUS project.

ETOL An interpreted language for testing software produced and used by the 
ESA in 1985.
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Eureka A European initiative, not funded through the CEC, launched in 1985, to 
support  close-to-market  R&D  in  all  technological  sectors  carried  out  by 
industry,  research  institutions  and  universities.  It  comprises  39  national 
members, including those in the European Community.

FACIT Formal Approaches to Computing and Information Technology,  a series of 
books within Springer-Verlag London’s volumes on computing, initiated in 
1990.

FACJ The Formal Aspects of Computing Journal.

FACS Formal Aspects of Computer Science, a special interest group of the 
British Computer Society founded in 1978 and still flourishing at the 
time of writing.

FCO Foreign and Commonwealth Office, a U.K. Government department.
FDL Functional  Description  Language,  an  algorithmic  language  with 

provision for assertions, being an intrinsic part of PVL’s SPADE proof 
checker.

Finite Automata A  finite  automaton  is  a  theoretical  machine  defined  by  a  simple 
mathematical formulation. A finite automaton consists of a finite set of 
states, of which one is an initial state, an input alphabet consisting of a 
finite set of symbols, a state transition function and one or more final 
states.  Finite  automata  have  been  proved  equivalent  to  Turing 
machines, and can parse sentences belonging to a grammar defined in 
certain  standard  forms.  The  pioneering  work  was  done  on  finite 
automata in the 1950s.

Finite State Machines A  formulation  of  finite  automata  conducive  to  implementation  in 
imperative computer programming languages.

Flagship A parallel computing research and development project funded by the 
Alvey Directorate in 1985.

FM Formal  Method(s):  mathematical  approaches  to  software  and  system 
development which support the rigorous specification, design and verification 
of computer systems, based on mathematical logic and set theory.

FME Formal Methods Europe, instituted in 1987 with support from ESPRIT, but 
for many years now self-financing.

FORMAP Formal  Methods Applied to Protocols,  an Alvey funded UK collaborative 
project in 1984-1985; STL, BT, GEC, ICL and IDEC took part.

ForTIA Formal  Techniques  Industrial  Association,  a  club  of  industrial  users  and 
suppliers of formal techniques, initiated in 2003 under the auspices of FME.
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Fortran An early high-level imperative programming language, developed by 

John Backus at IBM in 1953. The name is an abbreviation of Formula 

Translation system. Numerous versions have flourished and Fortran is 

still  in  use  today,  the  latest  version  (at  the  time  of  writing)  being 

Fortran 2008.
Functional 

Programming 

Language

In  contrast  to  imperative  programming  languages,  a  functional 

language has no variables, no state and no instructions that are obeyed. 

A program is a collection of functions which may be defined in terms 

of  each  other,  very similar  to  mathematical  functions.  The program 

works by applying the main function to one or more input values. For 

that reason FPs are also known as applicative programming languages.
fUZZ A simple but effective support tool for Z, written by Mike Spivey at 

Oxford University in 1988.
Framework Six The sixth in a series of “Framework” programmes, funding initiatives 

of the European Commission to stimulate research and development in 

a  number  of  technical  areas,  including  “Information  Society” 

technologies. Framework Six covered the period 2002 to 2006.
Gamma A software  design  technique  developed  by  Mike  Falla  at  Software 

Sciences Ltd. in the 1970s. It was a tool that could support the use of a 
software development  method and had been used by Barclays  Bank 
with JSD.

GCSE General Certificate of Secondary Education. The standard collection of 
examinations taken by school students at about age 16 in England and 
Wales.  It  succeeded  the  GCE  which  in  turn  replaced  the  O-level 
exams.

GEC The General  Electric  Company,  a British company founded in 1886 
manufacturing electrical  apparatus. Through numerous mergers GEC 
acquired  AEI,  Metropolitan  Vickers,  BTH,  Edison  Swan,  Hotpoint, 
English Electric (which included Elliott Bros.), Marconi, Plessey and 
many others.

GYPSY A program verification environment developed by Donald I. Good.

HNC Higher National Certificate, a higher education qualification in the UK, 
approximately equivalent to one or two years’ of a university course.

HOL Higher Order Logic, distinguished from first order logic. HOL is also 

the name of a theorem proving system; the homonym is deliberate.
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HOPE An experimental applicative (functional) language developed by Rod 

Burstall, Dave McQueen and Don Sanella at Edinburgh University in 

the 1970s.
Host A computer  on which software runs that assists the development  of 

other programs, such as compilers. Contrast with target machine.

IBM 360, 370 A  range  of  mainframe  computers  produced  by  IBM  (International 
Business Machines) from 1964 to 1977. The success of the series may 
be attributed to the continuing compatibility of the numerous models in 
the series, achieved by using the same instruction set. IBM spent a lot 
of effort  and money on marketing  to remove the expanded form of 
their name from the public consciousness.

IC Imperial  College:  Imperial  College  of  Science,  Technology  and 
Medicine, London.

ICALP International Colloquium on Automata, Languages and Programming. 
ICALP is an international colloquium sponsored by EATCS, which has 
been held annually since 1972.

ICL International  Computers  Limited,  a  leading  British  computer 
manufacturer  formed  by  a  series  of  mergers  from  Elliotts,  English 
Electric,  International  Computers  and  Tabulators  (ICT),  Leo 
Computers, Marconi, and others.

ICT International Computers and Tabulators, see ICL.
IEE The Institution of Electrical Engineers, now the IET.

IEC International Electro-technical Commission. An international standards 

organisation for electro-technological products.
IET The Institution of Engineering and Technology,  the UK professional 

body for engineers and technologists.

IFIP International  Federation  for  Information  Processing,  established  by 
UNESCO in 1960.

IKBS Intelligent  Knowledge  Based  Systems:  systems  based  on  the 

techniques of Artificial Intelligence (AI).
IMA The Institute of Mathematics and its Applications.

IMI Imperial Metal Industries, a UK engineering firm founded in 1862.
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Imperative 

Programming 

Languages

Programming languages which perform actions by executing a series 
of  coded  instructions  (also  called  commands  or  statements)  in 
sequence.  The  canonical  imperative  instruction  is  an  assignment,  in 
which a variable is assigned a new value. The “state” of a program is 
the set of values held by all the accessible variables at a point in the 
execution.

Ina Jo A  language  for  formal  specification  and  verification  of  software 
systems, developed by J. D. Guttman at the Mitre Corporation in the 
1980s.

INRIA Institut  National  de  Recherche  en  Informatique  et  en  Automatique 
(National Institute for Research in Computer Science and Control): a 
French national research institution of high repute founded in 1967.

Intel 8086 A 16-bit microprocessor chip designed by the company Intel,  in the 
late 1970s.

Invariant A logical condition which must remain true throughout the execution 
of a program loop.

IPR Intellectual Property Rights.

IPSE Integrated  Project  Support  Environment;  see  PSE.  Also  used  for  a 
particular  UK  DTI  and  MoD  initiative  to  develop  an  IPSE:  see 
IPSE2.5.

IPSE2.5 A  particular  IPSE  project  within  the  Alvey  programme.  Three 
generations of the IPSE were envisaged: the specification of IPSE2.5 
was positioned between those of the second and third generations.

ISO International Standards Organisation

ISTAR A project support environment developed by BT in the 1980s.

ITAB The Information Technology Advisory Board, a committee within the 
DTI that oversaw funded IT projects.

ITD Information Technology Directorate, a directorate in the DTI.

ITT 1600 A  16-bit  minicomputer  manufactured  by  ITT  and  used  within  that 
corporation mainly as an embedded computer in telecommunications 
(telephony and telex) systems in the 1970s.

ITT 3200 A  32-bit  minicomputer  manufactured  by  ITT  and  used  within  that 
corporation mainly as an embedded computer in telecommunications 
(telephony and telex) systems, but also for software development, in 
the 1970s and 1980s.

ITU International Telecommunication Union, founded in 1865 and made a 
United Nations Agency in 1947.
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INRIA Institut  National  de  Recherche  en  Informatique  et  en  Automatique 
(National Institute for Research in Computing and Control); the French 
national research institution, which concentrates on computer science, 
control theory and applied mathematics. It was founded in 1967.

Java An Object-Oriented programming language released in 1995, designed 
to eliminate as far as possible the capability of programs to corrupt the 
operating system and other essential software.

JFIT Joint  Framework  for  Information  Technology:  a  UK  government 
supported  advisory  body  for  IT  with  members  from  industry  and 
academe.

JSD Jackson  System  Development:  a  system  development  methodology 
developed by Michael  A.  Jackson and John Cameron in  the 1980s. 
Great emphasis is placed on modelling the real world environment of 
the system to be developed, before specifying the system itself.8

JSP Jackson Structured Programming,  a structured program development 
method developed by Michael A. Jackson in the 1970s, based on the 
principle that the structure of a program should reflect the structure of 
the data that its processes.9

KDF9 A  mainframe  computer  designed  and  manufactured  by  English 
Electric,  in  service  from  1964  to  1980.  Its  logic  was  based  on 
germanium solid state circuitry.

Lambda Calculus In mathematical  logic,  a  formal  system that  can be interpreted  as a 
means  of  function  definition  and  application,  devised  by  Alonzo 
Church10 in the late 1930s and early 1940s. It inspired the design and 
semantics  of  Algol  6011.  Lambda  Calculus  (or  λ-calculus)  has  been 
used as a component  of the mathematical  foundations of the formal 
semantics of programming languages.

LCD Liquid Crystal Display.

LCF Logic  of  Computable  Functions:  an  interactive  theorem  prover 
developed by Robin Milner at Edinburgh and Stanford Universities in 
197212.

8See Jackson 1983.
9See Jackson 1975.
10See Church 1941.
11See Landin 1965.
12See Milner 1972.
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Legacy Code Software dating from possibly many years in the past, that may work 
well and be useful, but whose details of design have long been lost. 
Maintaining such systems, in the absence of detailed knowledge of its 
design, how it works, and what are all its features is problematic, and is 
itself the subject of much study and research.

LFCS The Laboratory for the Foundations of Computer Science was founded 
by  Rod  Burstall,  Gordon  Plotkin,  Robin  Milner  and  Matthew 
Hennessey in 1986. It is part of the Computer Science Department at 
Edinburgh University, now called the School of Informatics.

LISP List Processing language: a programming language designed by John 
McCarthy in 1958. The design of LISP was influenced by Church’s 
Lambda Calculus and has been widely used for AI. Linked lists are a 
principal data structure of LISP, and source programs in LISP consist 
of linked lists. A considerable number of dialects and developments of 
LISP have been produced since its inception, notably Common LISP.

LMS The London Mathematical Society.

Logic Programming The use of logical statements as a programming language. One of the 
earliest examples was the language Prolog.

LOTOS Language Of Temporal Ordering Specification. A formal specification 
language  designed  for  protocol  specification  in  telecommunication 
systems, but applicable to many applications involving concurrent and 
temporal behaviour.  LOTOS is built  upon concepts from CCS, CSP 
and data types. Originated in 198913.

LPF Logic of Partial Functions: a logic which allows undefined values in 

addition to the propositional values True and False.
LR Lloyd’s  Register,  previously Lloyd’s  Register  of Shipping,  a British 

organisation  with  charitable  status,  which  certifies  the  safety  of 

engineering systems.
LTS A language,  proprietary to  STL,  for  defining  and simulating  digital 

electronics.

LUCOL An autocode-level  language  proprietary to  Lucas  for  engine  control 
software, dating from the 1980s.

Macro A  textual  sequence  within  a  programming  language,  especially  an 
assembly  language,  which  stands  for  a  defined  longer  sequence. 
Macros avoid repetition and can be parametrised.

13 See ISO 8807:1989.
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Martin Löf type 

theory

A theory of types based on intuitionistic logic developed by Per Martin 
Löf in the 1980s.

Mascot A  system  design  method  using  a  graphical  notation  and  a  set  of 
building  blocks  for  expressing  real-time  system  designs.  It  was 
sponsored by the MoD, had a substantial users’ association and its use 
was mandatory in some MoD contracts. Originated in 1978.

MCHAPSE A  project  support  environment,  based  on  the  APSE,  for  software 
written  in  CHILL  or  Ada,  developed  by  a  consortium  of 
telecommunications institutions including BT in the 1980s.

Mercury A computer designed and built by Ferranti in the early 1950s. the first 
version used a magnetic drum memory and its electronics used valves 
(thermionic vacuum tubes). Subsequent versions of the machine used 
transistor electronics and magnetic core store random access memory, 
again  developed  in  the  1950s.  First  customers  were  Manchester 
University,  CERN  in  Geneva,  AERE  at  Harwell  and  the  UK 
Meteorological Office.

Metaconta L A computer-based telephone exchange system developed by the ITT 
R&D laboratory LCT in Versailles in the early 1970s.

ML Metalanguage:  a  functional  programming  language  developed  by 
Robin Milner and others at Edinburgh University in the early 1970s. It 
was  designed  for  programming  proof  tactics  for  the  LCF  theorem 
prover.

MMI Man-Machine  Interfaces:  perceived  by  the  Alvey programme  as  an 

enabling  technology.  The  interfaces  between  a  computers  and  their 

users, these days less gender-specifically referred to as user interfaces.
MoD The UK Ministry of Defence.

Model-based 
languages

A model-based specification language is one in which the data types 
are defined in terms of set theory and thence whose values and state 
variables are models of types and values in a programming language. 
See also Abstract Machines.

Modular One A 16-bit mini-computer built with emitter  coupled logic, which first 
appeared  in  1969,  manufactured  by  the  British  company  Computer 
Technology Ltd.
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Modula-2 An imperative programming language developed in the late 1970s by 
Niklaus Wirth at the Swiss Federal Institute of Technology in Zurich. 
An emphasis was separately compilable modules. Its predecessor was 
Modula, in turn based on Pascal, both of these also being developed by 
Wirth.

Monitors A program language  structure  invented  by C.  A.  R.  Hoare  and Per 
Brinch-Hansen,  facilitating  concurrent  programming.  Monitors  are 
sections  of  code  that  can  be  executed  safely  by  more  than  one 
execution thread through a mechanism of mutual exclusion.

Motorola 68000 A microprocessor manufactured by Motorola from 1979 to 1996 and 
used in embedded systems. Other manufacturers continue to produce 
the design using later technologies to this day.

MULE Manchester  University  Language  Environment,  a  collection  of  tools 
being  developed  by  Manchester  University  to  support  rigorous 
software and language development in the 1980s.

Nassi-Shneiderman 

diagrams

A  graphical  method  of  representing  top-down,  structured  program 
design, devised by Isaac Nassi and Ben Shneiderman in 1972.

NBG A system of axioms for set theory proposed by John von Neumann, 

Paul Bernays and Kurt Gödel in the mid-1920s.
NCC The National  Computing  Centre,  an  organisation  supporting  UK IT 

industry.
NewSpeak A language devised by RSRE primarily for programming the Viper 

high  reliability  computer.  Special  features  included  finite  types 
enabling compile-time bound checking and a limited form of recursion.

NIH “Not  Invented  Here”,  a  syndrome  in  which  one  regards  anything 
invented outside one’s home territory (institution,  country etc.)  with 
mistrust. It leads, for example, to firms selling to major European and 
north American  countries  setting  up local  national  sales  offices  and 
deliberately giving the impression  that  the company is  based in  the 
country of targeted sales.

NIMBUS A 1984 STL research project in constructing generic automated proof 
systems, successor to the EST project q.v.

NPL The  National  Physical  Laboratory,  a  UK  Government  research 
establishment.

NuPRL A higher order proof development system originated by Joseph Bates 
and Robert Constable in 1979 and further developed by many others at 
Cornell University.
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OBJ A family  of  programming  languages  introduced  by  the  late  Joseph 
Goguen in 1976. OBJ languages are based on algebraic principles, in 
particular  order-sorted  algebras,  enabling  users  to  define  their  own 
abstract data types. OBJ incorporated many object-oriented ideas.

Object Oriented 
Design/Programming

An approach to software design that springs from Abstract Data Types, 
and consists of packaging together data classes and their operations to 
construct  the  “Objects”  of  a  system.  Modularity,  Encapsulation, 
Polymorphism and Inheritance are underlying principles of OOD/OOP.

OCCAM A concurrent programming language based on CSP – one could say an 
executable  version of CSP – designed by David May of INMOS in 
conjunction with the Oxford University PRG, in 1983.

Orion A computer designed and built by Ferranti in 1959-61, contemporary 
with the Atlas (q.v.) but smaller.

OS Operating System: on a computer, the basic software that is necessary 
for enabling the operation of application software such as compilers, 
spreadsheet  packages,  browsers,  email  programs,  database  packages 
and  the  like.  An  operating  system  will  invariably  include  software 
handlers for the peripheral devices that are attached to the computer, 
the keyboard,  monitor,  hard disc and so on. It  will  also include the 
software that enables the running of several different applications at the 
same time together with input/output  (time sharing). On present-day 
PCs, the operating systems are programs such as MS Windows, Unix, 
Linux, Mac OS, etc. Such operating systems today also have bundled 
in with them applications such as web browsers and email clients, but 
these are not strictly part of the OS although commonly regarded as 
such.

Pascal A high  level  imperative  programming  language  created  by  Niklaus 
Wirth in 1970. It was based on Algol60 but designed to be simpler and 
more efficient, and to encourage structured programming.

PC Personal Computer.  At first called microcomputers, small  computers 
constructed  around  the  microprocessors  that  were  developed  in  the 
mid-seventies,  designed  to  be  used  by  one  person  at  a  time, 
interactively.  At first there were a proliferation of designs. The IBM 
PC became dominant in the 1980s, but competition became rife with 
many firms manufacturing PC clones.

PC Process Controller: a small computer designed to be embedded in an 
engineering system and programmed to control an engineering process, 
often used in automated manufacturing systems.
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PCTE Portable Common Tools Environment: a specified collection of tools 
supporting software development that can be transported from one host 
operating system to another14. See PSE.

PDP11 A minicomputer manufactured by the Digital Equipment Corporation 
from 1970 to the 1990s.

Pegasus A computer developed by Ferranti, using thermionic vacuum tubes for 
its electronics, in 1956 (Pegasus 1) and 1959 (Pegasus 2).

PERT Project Evaluation and Review Technique,  a system using charts for 
determining the time resources needed for a project and the activities 
on its critical path.

Petri Nets A mathematical  formalism consisting of places, transitions and arcs, 
for describing concurrent processes, devised by Carl Adam Petri. Other 
approaches  include  process  algebras  (q.v.).  The  first  documented 
reference  appears  to  be  in  1962  in  Petri’s  university  mathematics 
dissertation.

PIMB The PCTE Interface Management Board.

Platform The combination of hardware and software architecture that  enables 
other software, usually applications software, to run.

PL/1 A high level programming language devised by IBM at their Hursley 
laboratories  in  the UK in the early 1960s.  It  was designed for both 
business  and  scientific  use  and  supported  some  structured 
programming concepts.

PLC Programmable Logic Controller. This is an electronic device which is 

essentially a computer,  typically without  input  or output devices,  or 

backing storage, and with limited memory.  They are normally wired 

into engineering systems such as controllers for industrial  processes, 

engine  management  systems  and  the  like.  They  are  of  similar 

computing power to a 1960-70s minicomputer, but usually occupy a 

single circuit board.
PLM “Programming  Language  for  Microprocessors”,  an  autocode  level 

programming language designed by David Wright’s team at STL, ITT 

in the 1970s.
PML Process  Modelling  Language:  a  language  defined  in  the  IPSE  2.5 

project  for  modelling  the  rôles  and  activities  in  a  software 
development.

14 See ISO/IEC 13719-1, 1998 for the standard defining PCTE, and Wakeman and Jowett, 1993.
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PO-CORAL See CORAL.

Poplog A multi-language  software  development  environment,  developed  by 
the  University  of  Sussex  from 1983.  It  supports  ProLog,  Common 
LISP and Standard ML, among other languages. Later  co-developed 
and distributed by SDL, Poplog is now available  as an open-source 
system hosted by the University of Birmingham.

Portable, Portability Software is  portable  if  it  is  designed to  be easily transferred across 
different platforms and operating systems.

Postcondition A logical predicate which is required to be true after a statement or 
sequence of statements in a program has been executed.

Precondition A logical predicate which needs to be true before the execution of a 
statement  or  sequence  of  statements  in  a  program in  order  that  the 
postcondition (q.v.) is satisfied. The weakest precondition (q.v.) is the 
weakest such predicate, and hence is the precondition which is implied 
by all other pre-conditions.

PRG The  Oxford  University  Programming  Research  Group  founded  in 
1965.

Process Algebra A  general  term  for  mathematical  formulations  which  can  define 
processes,  where  a  process  consists  of  events,  including 
communication  events  enabling  process  to  communicate  with  each 
other. Examples are CCS and CSP.

ProLog A  language  for  Logic  Programming,  (in  French,  Programation 
Logique) developed in 1972 by Alain Colmerauer of the University of 
Grenoble,  from a  collaboration  with  Robert  Kowalski  at  Edinburgh 
University.

ProofPower A  proof  development  system  for  specifications  written  in  HOL  – 
Higher Order Logic. Developed originally by Roger Bishop Jones at 
ICL from 1989, now an open source system with further development 
continued since 1997 by Lemma 1 Ltd.

PSE Project Support Environment; a general term for an integrated set of 
software tools for assisting the project management and development 
of software. See IPSE.

PSL/PSA Problem  Statement  Language/Problem  Statement  Analyser:  a 
computer-based toolset intended to describe system requirements and 
designs, developed by Daniel Teichrow at the University of Michigan, 
through the 1970s. PSL/PSA is still in use and being developed.

268



PVL Program Validation Limited, a UK firm founded by Bernard Carré and 
dedicated  to  providing  facilities  for  program  proving.  PVL  later 
merged with Praxis.

QinetiQ A UK technology company with a tradition of supplying to UK and US 
defence and government. It arose from the privatisation of DERA in 
2001.

RAISE Rigorous  Approach  to  Industrial  Software  Engineering,  a  formal 
method with a set of tools developed in a ESPRIT funded project led 
by Dines Bjørner. The RAISE specification language (RSL) contains 
elements of VDM-SL and Process Algebra.

RAM Random Access Memory: a hardware memory medium in which the 
addressing  and  access  to  contents  is  equally  direct  for  all  content 
addresses. In practice this means that the content is accessible by direct 
electronic means, without recourse to mechanical or other searching, so 
no rotating medium etc. The memories mounted on the motherboards 
of PCs, and USB sticks are examples.  By contrast,  hard and floppy 
discs are not RAM, not being “Random” access.

Refinement The process and result of deriving from a formal description a more 
concrete one which satisfies all its properties and prescriptions.

Reverse Engineering The  process  of  deriving  a  design  or  a  specification  from  an 
implementation of some software, i.e. from the code. To put it crudely, 
one  takes  some  program  code  and  discovers  (with  computer-aided 
assistance) what it does, how it works, and possibly what it is for. It is 
useful for analysing legacy code (q.v.). Reverse engineering can also 
be  applied  to  electronic  and electromechanical  systems,  and  can  be 
used  in  less  legitimate  contexts  such  as  industrial  and  military 
espionage for examining stolen or captured equipment and designs.

ROAME A DTI-specific  acronym for  the  case  made  for  funding  support,  an 
activity or an initiative, consisting of Rationale, Objectives, Appraisal, 
Monitoring and Exploitation.

RRE Royal  Radar  Establishment,  a  research  arm  of  the  British  army 
regiment Royal Signals; see RSRE.

RSL The RAISE (q.v.) Specification Language.
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RSRE Royal  Signals  Research  Establishment,  later  RRE,  DERA,  finally 
privatised as QineticQ.

SADT Structured  Analysis  and Design Technique:  a  graphical  notation  for 
describing software systems, developed by Douglas T. Ross at SofTech 
Inc. in 1969 – 1973.

SALT Speech  and  Language  Technology,  a  club  funded  by  the  DTI  and 
SERC for institutions with an interest and active in the topic.

SDI Strategic  Defence  Initiative.  Launched in  1983 by President  Ronald 
Reagan, SDI was a research and development project whose ultimate 
aim was to build a network of satellites  that would detect  incoming 
hostile  intercontinental  missiles  and  shoot  them  down  with  laser 
weapons. The initiative was highly controversial from many points of 
view: technological feasibility, safety, policy, ethics and the wisdom of 
UK participation. See Ennals 1986.

SDL System  Designers  Limited,  a  British  software  and  systems 
development company, subsequently merging with Scicon to become 
SD-Scicon, now owned by EDS.

SDL System  Design  Language:  a  language  for  expressing  the  design  of 
telecommunication  systems,  based  on  finite  state  machines,  defined 
and standardised by the CCITT in the 1970s.

SDSS A proprietary (ITT) software development platform hosted on the IBM 
370 and having the ITT3200 as target machine, first released in 1978.

SEI Software  Engineering  Institute,  at  Carnegie-Mellon  University,  who 
were responsible for developing the Capability Maturity Model (q.v.).

SEMA The SEMA Group plc was a joint British-French IT services company 
formed in 1988 by the merger of CAP (UK) and Sema-Metra (France). 
After a succession of acquisitions Sema Group plc was itself acquired 
by Slumberger in 2001, to be mostly sold on again in 2004.

Semaphore A mechanism for enabling parallel  process to access shared data  or 
other  resources  in  a  controlled  way,  without  mutual  interference. 
Semaphores were invented by Edsger W. Dijkstra in 1965 and have 
been widely used in operating systems since.

SERC The Science and Education Research Council, previously the Science 
Research Council (SRC), now the EPSRC.
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SFI Support  For  Innovation:  a  guiding principle  in  the DTI’s Advanced 
Technology Programme (ATP).

SIG Special Interest Group.

Simula67 A computer language designed for simulation problems by Ole-Johan 
Dahl in 1967, Simula67 is a superset of Algol60 with object-oriented 
features. It is considered to be the first object-oriented language.

SLANG Simulation  Language:  a  language  for  simulating  analogue  computer 
programs, designed by ULACS for Elliott Bros. in 1968.

Smalltalk An Object Oriented programming language, developed in the 1970s at 
Xerox PARC and released publicly in 1980.

SMART Small  firms  merit  Awards  for  Research and Technology:  an annual 
competition for single UK companies run by the DTI.

SME Small and Medium sized Enterprises. Both the DTI and the EC use the 
term, each with specific but slightly differing definitions in terms of 
number of employees, turnover etc.

SML Standard ML (q.v.): a further development of ML, with contributions 
from several academic institutions. The first definition was published 
in 1990, revised in 199715.

Spade A static analysis tool, developed by PVL, which analyses a program 
without running it, and detects certain anomalies such as unreachable 
code, variables not initialised and so on. See also Spark.

Spark A program analysis tool, developed by PVL, which, in addition to the 
facilities  of  Spade,  carries  out  proofs  of  correctness  and  facilitates 
correctness by construction.

SRC The UK Science Research Council, now the EPSRC.

SSADM Structured  Systems  Analysis  and  Design  Method,  an  approach  to 
analysis  and  design  of  information  systems  developed  in  the  early 
1980s by the UK CCTA.

Star Wars A popular name for the Strategic Defence Initiative, SDI, q.v.

State Diagrams See State Transition Diagrams.

State Transition 

Diagrams

A graphical representation of a finite state machine, which defines the 
abstract behaviour of a system.  State Transition Diagrams have been 
attributed to Taylor Booth16

15 See Milner et al, 1990 and 1997.
16 See Taylor Booth, 1967.
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STC Standard Telephones and Cables, a leading UK telephony company.

Steelman See Strawman.

STL Standard Telecommunications  Laboratories,  a  research  laboratory of 
ITT in Harlow, Essex. STL was part of STC, Standard Telephones and 
Cables.

Strawman In commissioning the Ada language definition, the US DoD issued a 
series  of  documents  outlining  the  requirements  for  the  language.  A 
straw-man is a common term denoting an initial suggestion put for to 
be criticised and to invite further ideas; also known as an aunt Sally. In 
developing  the  Ada  requirements,  the  series  of  requirements 
documents were named to reflect their increasing solidity:  Strawman 
(issued  April  1975),  Woodenman  (August  1975),  Tinman  (January 
1976),  Ironman  (January  1977,  revised  July  1977),  Steelman  (June 
1978),  Pebbleman  (July  1978,  revised  January  1979),  Stoneman 
(February 1980).

SQL Structured Query Language, a language used to query a database. The 
first commercial versions of SQL were released by Oracle and IBM in 
1979. By 1986 the American National Standards Institute adopted SQL 
as a standard and ISO followed suit a year later.

System X The first  public  digital  telephone  exchange  system in  the  UK,  first 
installed as a local exchange in Woodbridge, Suffolk in 1981.

S3 A systems programming language proprietary to ICL, dating from the 
early  1970s,  designed  for  writing  operating  systems,  language 
compilers  and  other  applications  packages,  S3  was  a  subset  of 
ALGOL68,  and had  a  number  of  its  characteristic  features  such  as 
reference variables: variables which could hold the “abstract address” 
or information leading to the whereabouts of another variable or piece 
of data.

Target A target  machine is  a computer  on which the end product software 
runs. For embedded software,  it  will be the machine residing in the 
engineering system that the software drives or monitors.
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Temporal Logic A logic  which  can  accommodate  statements  with  a  time-dependent 
element, such as “...will be until...”, “...is always...”, “...will eventually 
be...”.  Research  into  temporal  logic  in  a  computer  science  context 
started in the 1960s, with notable contributions from Amir Pnueli and 
later, Willem-P. de Roever.

TickIT A  scheme  for  certifying  software  quality  set  up  by  the  DTI  IT 
division’s Software Quality Unit.

Titan See Atlas.

Transputer A microprocessor architecture developed in the 1960s by Inmos, a UK 
electronics  company,  which  was  designed  to  support  parallel 
computation.

Typed Lambda 

Calculus

A  development  of  Lambda  Calculus  (q.v.)  enabling  types  to  be 
ascribed  to  λ-expressions.  There are  a  number  of  varieties  of  typed 
lambda calculus,  which can be regarded as extensions of the simply 
typed lambda calculus; on the other hand, the latter can be regarded as 
a  special  case of  typed lambda calculus  with only one type.  Typed 
lambda  calculi  are  the  foundational  mathematical  underpinning  of 
functional programming languages such as ML (q.v.).

Type Theory The mathematical theory which can form a model of the data types that 
one can use in programming languages, especially where the language 
allows the programmers to define their own types. Type theory has a 
wide ranging mathematical  pedigree dating back to the beginning of 
the twentieth century.

ULACS The University of London Atlas Computing Service. A company set up 
by London University to use 50% of the London Atlas computer time 
to generate commercial income to recover the initial investment. It was 
in  effect  a  computer  bureau  and a  software  house  dedicated  to  the 
commercial exploitation of the Atlas.

ULICS The University of London Institute of Computer Science. Initially, the 
institute  was  independent  of  any  specific  college  within  London 
University, and was centred on the use of the London Atlas machine 
(q.v.).

UMIST University of Manchester Institute of Science and Technology.
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UML Unified Modelling Language: a language for modelling processes and 
systems based on Object Oriented concepts and defined by the Object 
Management  Group,  a  consortium  for  setting  standards  in  Object 
Oriented  software  engineering.  UML  is  subject  to  an  international 
standard17.

Uncle Some SERC-funded academic projects had an industrial “Uncle”, an 
individual  from  industry  who  would  visit  the  project  at  intervals, 
typically every three months, to provide industrial input and try to keep 
the project of ultimate practical utility, even if that was long-term. This 
was a very light form of academic-industrial collaboration, but it gave 
the academic partner some ratification for government funding.

Unification A  technique  used  in  automated  theorem  proving  and  automated 
deduction, in which two terms are made equal or unified by means of a 
syntactic substitution of component variables to other terms.

UNIX An  operating  system  for  personal  computers  developed  originally 
between 1969 and 1973 at Bell Labs, AT&T, the later versions written 
in  C,  facilitating  its  portability.  UNIX has  since  been  adopted  and 
further developed by many other academic and industrial institutions 
and is a serious rival to IBM’s proprietary operating systems for PCs 
and the various versions of MS Windows.

VAX A family of computers developed by DEC in the 1970s, which used a 
32-bit word length and instruction set. VAX was originally an acronym 
for Virtual Address Extension.

VAX11/780 The first model in the VAX computer series, q.v.

VDL The  Vienna  Definition  Language:  a  language  developed  at  IBM’s 
research laboratory in Vienna for formulating the semantics of PL/1, 
dating from the early 1970s.

VDM The  Vienna  Development  Method,  developed  at  the  IBM  Vienna 
Laboratories  during the late  1970s.  Defining  data  types  through the 
elements  of  set  theory  and  operations  by  means  of  pre  and  post-
conditions  and logic,  it  assists  the development  of software through 
proof by construction.

VDM-SL The VDM Specification  Language:  the language  used in  VDM and 
standardised in 1996 as BS ISO/IEC 13817-1:1996.

17 See ISO/IEC 19501:2005 Information technology — Open Distributed Processing — Unified Modeling 
Language (UML) Version 1.4.2.
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VIP VDM Interfaces  to PCTE, an ESPRIT project  for formally defining 
those interfaces.

VLSI Very Large Scale Integration: The technique of etching thousands or 
millions of transistors and other semiconductor devices onto a single 
semiconductor wafer, known as a chip. The technique was initiated in 
the  1970s  and  has  developed  apace  and  increased  dramatically  in 
miniaturisation ever since.

VME An operating system proprietary to ICL developed in the 1970s for the 
2900 computer series.

Weakest Precondition A concept invented by E. W. Dijkstra in 1975. If one has a machine 
with  state  P (see  Abstract  Machine  in  this  glossary),  and  a  post-
condition  R which one desires to hold after the execution of  P, there 
may be a set of preconditions which, if satisfied before the execution of 
P, will guarantee that  R will hold. These are called preconditions and 
the weakest of them, that is the one which is implied by all the others 
(and which therefore holds for all  values  of the state  for which the 
others  hold),  is  called  the  weakest  precondition  and  is  denoted 
wp(P,R). Dijkstra gave formulae for the weakest preconditions of the 
normal statements in a traditional imperative programming language, 
and  rules  for  combining  them  into  compound  statements  and 
programs18. This led to a method for proving programs correct given a 
specification of the required pre and postcondition.

wff Well-Formed Formula: in a formal language a wff is an allowable term 
of the language. For example, in a language of algebraic expressions, a 
wff  might  include  constants,  variables  and  expressions  containing 
brackets, operators and other wffs.

Word A word-processing  package  produced  by  Microsoft.  First  issued  in 
1983, many versions have been and continue to be released.

Wordwright A proprietary early  (1973)  word processor,  consisting of a personal 
computer dedicated solely to word processing, and its resident word 
processing software package. WordWright is also the name of a more 
recent  (last  updated  1999)  free  downloadable  word  processing 
package, but it is not clear whether there is a historic or commercial 
link between the two.

Wordwise A  word  processing  software  package  for  the  BBC  Microcomputer 
dating  from the  early  1970s.  (The  term is  also now the  name of  a 
patented predictive text software product used in mobile phones).

18 See Dijkstra 1975, 1976.
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Workstation A  more  powerful  personal  computer  designed  for  engineering 
applications, with greater processing power and graphics.

X.25 protocol A  packet  switching  protocol  standardised  by  the  CCITT  in  1976, 
defined in a publication called the “Orange Book”.

YACC “Yet  Another  Compiler-Compiler”:  a  compiler-compiler  (parser-
generator)  with  a  defined  format  for  expressing  computer  language 
syntax.

Yourdon A  flavour  of  structured  programming,  as  promulgated  by  Edward 
Yourdon.

Z A formal notation for specifying the functions of a program, based on 
ZF set theory and logic, developed at the University of Oxford by J-R 
Abrial  and  others  in  1977,  standardised  in  2002  as  BS  ISO/IEC 
13568:2002.

ZF An axiom system for set theory developed by Ernst Zemelo in 1901 
and extended by Abraham Fraenkel in 1922.

Z8000, Z8002 The Z8000 was a 16-bit microprocessor manufactured by Zilog from 
1979 to the mid-nineties. The Z8002 was a smaller memory version. 
The Z8000 was used as the CPU for many popular desk-top personal 
computers of that era.
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