
Fiendish Designs
A Software Engineering Odyssey

© Tim Denvir 2011

1

Preface

These are notes, incomplete but extensive, for a book which I hope will give a personal view
of the first forty years or so of Software Engineering. Whether the book will ever see the light
of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in
SE. I want to capture not only the evolution of the technical discipline which is software
engineering, but also the climate of social practice in the industry, which has changed hugely
over time. To what extent, if at all, others will find this interesting, I have very little idea.

I mention other, real people by name here and there. If anyone prefers me not to refer to
them, or wishes to offer corrections on any item, they can email me (see Contact on Home
Page).

Introduction

Everybody today encounters computers. There are computers inside petrol pumps, in cash
tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and
beside the dentist’s chair. A large proportion of people have personal computers in their
homes and may use them at work, without having to be specialists in computing. Most people
have at least some idea that computers contain software, lists of instructions which drive the
computer and enable it to perform different tasks.

The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference,
but the activity that it stands for had been carried out for at least ten years before that. To
engineer something, a road, a car engine, a skyscraper or a piece of computer software is to
design and build it, using the techniques and technology known at the time. I have worked in
software engineering for about forty years, from 1962 to 2002. For the last 20 years of this
time I specialised in formal methods of software development. My first job after graduating
was with Elliott’s, a British computer manufacturer, in 1962. Elliott’s no longer exists as a
separate company, but has been absorbed into the last remaining British mainframe
manufacturer, ICL, through a succession of mergers and take-overs.

Chapter 1 Flanges and Festivities
Late in the fifties, British Thompson-Houston merged with Hollerith to become the British
Tabulating Machine Company. Both these companies produced tabulators, machines that
sorted punched cards and which, with a bit of persistence and patience on the part of their
operators, could carry out basic statistical processes. In 1960 Powers Samas, an engineering
firm, merged with them and the result was International Computers and Tabulators, ICT. I
had worked as a vacation student with ICT just at that time, doing logic design and circuit
board layout for a new compact military machine; if I ever knew the name of it, I have
forgotten. But ICT at about that time were conscious that the word “tabulator” indicated an
obsolescent technology, and so they changed their name to International Computers Limited,

2

ICL. By the time I had graduated, there were two other large British computer manufacturers,
English Electric and Elliott's. Elliott Brothers had themselves recently absorbed part of NCR,
National Cash Registers Ltd. There was also a smaller firm that nonetheless produced
mainframe machines, Leo Computers. Leo Computers came about in a rather surprising way.
A chain of cafés called Lyons’ Corner Houses were to be found all over London. They
needed to coordinate their accounts and required computer power to do so efficiently. Rather
than pay someone else to supply their computers, they formed their own computer
manufacturing subsidiary, Leo. No “buy in” policy for them! Leo continued producing
computers for some years before they were bought by English Electric, who also took over
Marconi, an electronics firm who, famously, designed and manufactured radios but also
much other electronic equipment, especially for the military. Marconi was one of the firms
with whom I had an interview when choosing my first job after graduating. English Electric
made the KDF9 computer, a rival in size and performance to the IBM 360, which dominated
the market for many years. Later still, towards the end of the sixties, English Electric-Leo-
Marconi, EELM, was absorbed into ICL.

But back in 1962 Elliott’s produced the 803 machine and were embarking on a more
powerful version of it, with the same instruction code, the Elliott 503. In the early 1960s
computers were seen as large calculators: machines that could carry out complex
mathematical calculations. Most, if not all, application software was about performing large
calculations for some purpose. Academic courses reflected this, and were limited to post-
graduate diplomas, concentrating on numerical analysis and automata theory. Several
polytechnics also provided some more practical HNC courses. Most programmers working
for Elliott’s were maths graduates, a few with a post-graduate diploma in computing. A
minority were HNC holders.

I was one of a batch of new graduates who joined the Scientific Computing Division at
Elliott’s. Other graduates joined several other divisions at the same time, so there were some
twenty or thirty of us, all newcomers. We rapidly got to know each other and, almost all of us
being single graduates living in digs and assorted shared flats and so on, there would be a
party to go to every Saturday night. All of us in the Scientific Computing Division spent a
few days on a course in which we were taught to program. The language we were taught was
the machine code for the Elliott 803. This machine occupied a fairly large room. The central
processor was housed in several six-foot high 19 inch wide cabinets. The 803 was one of the
first machines to use semiconductors, germanium transistors and diodes, for its electronics. It
was consequently relatively compact. A paper tape reader and punch, and a card reader and
punch were held in similar cabinets, and the operator’s console was desk-shaped, and held an
on-off switch, various lamps and buttons and a “number generator”, which was a row of
toggle switches on which one could set up a binary number. There were instructions in the
machine for reading the setting on the number generator and for displaying patterns on the

3

lamps. One could also set up an instruction on the number generator and press a button
causing the machine to obey it. This was the principal way of booting up a program, by
setting up a jump to its starting address on the number generator and obeying it. A line printer
could print out results of the calculations or other work that a program had performed. These
printers were the first to be attached to a computer and consisted of a rotating drum and rows
of hammers. Paper edged with detachable sprocket holes would be fed into the printer. The
drum had lines of characters embossed on it. Each line had the same character embossed
along all of its character positions. Usually, a line of characters would be printed on each
rotation of the drum. The character to be printed at each character position was controlled by
timing the hammer at that position to strike when the correct line of the drum was under it.
These printers were large and noisy, but were the main means of printing output for most
computers. Programmers could book time on the machine to run their programs, or request
one of the operators to do so. I preferred to make use of the operators’ services, but most of
my colleagues liked to be more hands on. I caused much amusement when I went to use the
machine myself for the first time after I had been working there for nearly a year. “What,
you’ve never used the machine before, Tim?”

The first programming course covered the two main versions of the machine code and gave
advice about how to program, using the accumulator and main storage. The machine code
was numeric, having a couple of octal digits for the instruction and the rest for the address.
Octal numbers were used rather than hexadecimal. The word size in the machine was 39 bits.
This may seem bizarre today, when word sizes are invariably a whole number of bytes. Each
instruction occupied 18 bits, so that two instructions fitted into each word. One bit remained,
in between the two instructions. This was called the “B-line”. Setting the B-line caused the
contents of the address in the first half to be added to the second instruction. This was useful
for working with arrays and lists. The first five bits of each instruction contained the
operation code and the remaining 13 bits the address. In this way the instruction code could
address a store of 8192 words. The computers were supplied with a main store of either 4096
or 8192 words. The first versions of the 803 had no backing store. Any intermediate
information generated by a program would be punched out onto paper tape, ready to be read
in again. Later versions had backing stores consisting of magnetic film, specially
manufactured by Kodak. This was 35 mm film with sprocket holes and a magnetic coating
instead of a photographic one. The film was wound onto reel-to-reel decks.

The simplest version of the machine code was “ absolute”; the addresses in the instructions
referred to specific, absolute locations and the program would only work if it was loaded into
a specific location in store. This was so primitive and restrictive that it was only used for
some very basic utilities. The relocatable version of the machine code would be loaded into
the store with an offset address added to all the relevant address parts of the instructions by
the loader program, so that the program would work wherever it was located in the main

4

store. There was also an assembly language, in which address locations were more like the
identifiers in higher level programming languages and the operation codes were three-letter
mnemonics, like LOA for Load and STO for Store.

The programming course put great emphasis on subroutines. This is a term that has almost
fallen out of use; the equivalent construct in high level languages is the procedure or function.
However, strangely there is one exception: in the various instantiations of the Star Trek
episodes, Commander Data and the holographic Doctor, both containing as sophisticated
software as you could imagine, have “subroutines” for ethics and other features. Subroutines
in 1962 could give structure to a program, separate concerns, and save a great deal of storage
space. Storage space was at a great premium in those days. The main store consisted of very
small magnetic rings with activating and readout wires wrapped round them. The typical cost
was about GB £1 (US $1.8 or €1.5) per word. So a great deal of effort was put into keeping
one’s programs compact. In my first project, I started by taking this advice a bit too literally.
Having written my program, I scanned it for instances of repetitions of three or more
instructions and turned them into a subroutine. Of course these little subroutines had no
intrinsic meaning or purpose, and the overall structure of the program became quite
amorphous. I could not get it to work and was advised to start again from the beginning. So
my first lesson in software engineering was to use structuring tools like subroutines to reflect
aspects of the problem rather more than to try to save storage space.

I was given a project to do shortly after the programming course. The program was typical of
those written to perform calculations. It also indicated part of the different economic balance
between supplier and customer. Many customers who bought computers did not program
them themselves. They would often require them for just a small range of calculations. So
Elliott’s quite often used to write a few programs for a customer in order to secure a sale.
Tube Investments used an empirical formula to calculate the size of flanges for bolting two
tubes together, and the number and diameters of holes in the flange, given the diameter of the
tube (figure 1).

Figure 1

I was asked to write a program to perform this calculation. I threw away my first version with
its too many low level subroutines, and was able to get a second version working without
trouble.

5

Working at Elliott’s was interesting, and quite fun, if exasperating at times. The location was
Borehamwood, a small town alongside Elstree, on the north edge of London. The workplace
included a small manufacturing plant, with the offices and computer rooms where the
programmers and design engineers worked, at the front of the building. The main
manufacturing plant was in Cowdenbeath in Scotland, and few of us ever needed to go there.
Elliott’s was emerging from an industrially class-ridden tradition into a more enlightened era,
but still had some way to go by today’s standard. In the year I joined them Elliott’s paid men
and women graduates the same rate for equal qualifications for the first time; in previous
years a woman graduate with exactly the same degree class was paid slightly less than a man.
In the programming areas there were several women managers, a fairly rare phenomenon in
those days. Most firms had separate “executive canteens” for senior staff, but an increasing
number were following American lines of a single, “democratic” facility. Some firms even
banned employees from discussing or revealing their salaries to each other; it could be a
sackable offence. Although Elliott’s did not like their staff doing so, they did not penalise
people for it. Because computing was a relatively new occupation, the demand for new
graduates in the appropriate disciplines, mostly maths and engineering, was high. So new
graduates were enticed with higher salaries, and existing employees of a year or two’s
experience discovered to their annoyance that raw recruits were engaged at a higher salary
than they were earning themselves. In one case a section leader even found that new
graduates in her group were earning more than she was. Elliott’s was persuaded to make
some adjustments.

There was an ambience of scientific enterprise and excitement about Elliott’s Scientific
Computing Division. One of the first ever Algol60 compilers was being designed and built.
Two new machines were designed in succession, the 503, which was a more powerful version
of the 803, and later the 4100 series of machines.

There were two professional institutions to which programmers could belong: the British
Computer Society and the Association of Computing Machinery, which was centred in the
USA although people from any nationality could belong to it, as indeed they can to the BCS.
Elliott’s encouraged us to join the BCS and there was an excellent subscription rate of just £1
per year for anyone who had graduated in the last three years. I joined. One got a good deal
for one’s £1, four copies of the quarterly BCS Journal and copies of the more frequent and
less formal BCS Bulletin. Three years later I ceased to be eligible for the ultra-low student
rate and, at the same time, the BCS decided to seek a Royal Charter, have its own coat of
arms, and various other things. I did not like the way the society was going, trying, it seemed
to me, to turn itself into an august and remote organisation and not as centred on academic
excellence as it had been. In addition, they were putting their rates up, so my own
subscription was going to increase from £1 to £9 a year, equivalent to half a week’s salary.
So, although I enjoyed membership of the BCS for the first three years after I graduated, I

6

left. I was to join them again many years later in the 1980s, when membership of the BCS
became a qualification and normally entailed passing an exam. The BCS Journal and the
Journal of the ACM were circulated round the programmers in the Scientific Computing
Division. We used to read most of the papers in those journals eagerly. This would be an
impossible feat nowadays. There is a plethora of journals, many of them highly specialised.
Twenty years later when I was a Chief Research Engineer at Standard Telecommunications
Laboratories in Harlow, I realised that my division was receiving 41 different journals and
most people did not have time to read any of them.

Software lives inside a many-faceted context. Who writes it? Who uses it? What technology
underlies it? How is it executed? What influences its development? In 1962 not many people
wrote software, even those rare organisations that bought themselves a computer. Hardware
was very expensive, hence computer time was expensive, and labour cheap by comparison. A
firm would usually buy a computer just to carry out a small handful of different calculations,
repeated many times with different data. Computer manufacturers like Elliott’s would often
write this “application software” (the phrase had not been coined then) for a prospective
customer, just to obtain the sale of a computer, such were the relative economics of hardware
and software. The very large machines were owned by few organisations, such as computer
bureaux. Time on the bureau’s machine would be hired to customers. So the bureau would
usually double up as a software house, writing the application program and selling the result
and the computer time spent in running it to the customer. Often the bureau would retain the
program, since it could only be run on a possibly unique machine. The bureau indeed might
keep the IPR of the program. My first program for flange design was such an application
program for a customer. The programmers at Elliott’s found themselves writing a mixture of
customer’s application programs and systems programs that supported the use of the
machine: compilers, assemblers, device handlers, and parts of the minimal operating systems.
Periodically we produced new and updated examples of these and distributed them to
customers who had purchased machines. One enthusiast, a Dr. Murray at Edinburgh
University, would examine each of these new products and produce one of his own, faster,
more compact and sometimes with extra useful facilities. He would then send it to Elliott’s
Scientific Computing Division as a gift. We would check it out, find that indeed it was a
superior product, thank him graciously and adopt it as the next released version. This
customer became quite a legend within the division. We even joked that we need not try too
hard to make a fast, efficient software product; Dr. Murray would respond with a high quality
version in short order! But we did not actually adopt such a policy. As far as I know Dr.
Murray never asked for any reward. I wonder where he is now.

My second project was not a programming project at all. Elliott’s were producing the 503, a
development of the 803 machine, but faster, with superior electronics employing more up to
date semiconductor devices, and with a larger range of peripherals. Instead of the rather crude

7

row of toggle switches, the “number generator”, the operator controlled the computer by
means of an on-line IBM electric typewriter, the most up to date “golf-ball” typewriter. The
golf-ball had embossed on its surface the whole character set in the chosen typeface. These
golf-balls could be exchanged, so it was possible to type documents containing Greek letters
and mathematical symbols using such a typewriter. They were expensive, costing about £650,
about £13,000 or €20,000 in today’s money.

Other new peripherals were candidates for attachment to the 503, including some rather odd
suggestions, which fortunately were not adopted. One was a card reader-punch. Although
paper tape, in two widths, 5 holes and 8 holes, was becoming the dominant bulk input
medium, punched cards were still used to a considerable extent. These cards could be
punched with holes in fixed positions along twelve rows and eighty columns. The proposed
card reader-punch could both read and punch cards, so it would be possible for the computer
to read a card and punch extra holes in it. We were mostly horrified at the idea and could not
imagine how it could be used in any systematic way. Another proposed peripheral device was
a magnetic card reader. Again, although this seemed more practical, most of the staff thought
it would not be accepted and it too was dropped. It is intriguing to think that today credit,
debit and other cards with magnetic stripes have for a long time been a universal part of our
lives.

One peripheral which was adopted was a flat-bed plotter. This was a graph plotting device
rather like those one sees in weather stations for plotting the temperature and pressure. The
computer could drive the pen back and forth and the paper under it, using subroutines for
drawing lines and curves. This was rather fun to write software for, and we experimented
with various routines for drawing and scribing titles and even continuous script. One more
advanced model even had several colours of pens that could be called into action.

Another peripheral device that was adopted was the magnetic tape deck. A development from
the magnetic film complete with sprocket holes that the 803 used, the magnetic tape was
much like a bulky version of the tape that is used today in video and audio cassettes, but
mounted on reel-to-reel, vertical decks. A more experienced colleague, Vivian Kelly, and I
were given the task of specifying the magnetic tape system. It would normally have been the
role of hardware engineers to specify this system, that is, to define exactly what the system
should do in detail, how it should respond to instructions from the central processor within
the computer and from the operator. Elliott’s had the novel idea that instead of the hardware
engineers writing this specification, the programmers should do so. After all, it was the
programmers who would be writing the software to drive the magnetic tape system, and
therefore who were its “users”. This task of specification is separate from design;
specification determines what the system should do, whereas design determines how it should
do it. The argument was, therefore, that the “users” of the magnetic tape system, i.e. the
programmers, were in the best place to specify it. The programmers were the users because

8

they wrote the software that drove, i.e. used, the system. I have always thought that, although
logical, this was a bold move on the part of the management. The programmers, not being
electronic or mechanical engineers, had no idea what would be feasible. Nonetheless, we
wrote the specification, consulting the hardware engineers at frequent intervals. This was a
tedious writing task, since we were using carefully framed English; our phraseology became
almost legalistic, for it was very important that what we wrote should not be ambiguous or
misunderstood. I remember painstakingly writing sentences such as “when the Load Button is
depressed, the Load Lamp is extinguished”, and page after page of such statements. When we
had finished the hardware engineers designed the electronic and mechanical system to
perform the functions we had defined, and I moved on once more to some real software
design, the device handler for the magnetic tape system we had just finished specifying.

This distinction between the specification of what a software or hardware system was
intended to do, and the design of how it was going to achieve it, was beginning to be seen as
more and more important. The idea of separating the stages of thinking required to produce a
design eventually led to the notion of “separation of concerns” coined by one of the greatest
computer scientists, Edsger W. Dijkstra, in 1974. I remember one of our colleagues, Bill
Williams, wrote a paper for the British Computer Journal about the project he was working
on, a simulator program called the “Elliott Simulator Package”, or ESP. The editor of the
journal queried this choice of name for the program, pointing out that ESP usually stood for
Extra-Sensory Perception. Bill’s riposte to the editor was that the paper described what the
program did, and not how it did it! The editor relented. Elliott’s approach of the user
specifying the functions of a piece of software foreshadowed the user-led approach that
became the vogue in the nineties, especially within Framework 5 of the European
Commission’s research and development programme in information technology.

Vivian Kelly and I had desks next to each other while we worked on specifying the magnetic
tape system. We got on well together and had many conversations. I admired the way he
spoke with warmth and affection to his wife, a delighted smile on his face, when she
occasionally telephoned him at the office. Most of the men I worked with, including myself,
felt embarrassed and inhibited when telephoning our loved ones within earshot of our
colleagues. One day after work I found myself walking to the railway station alongside him.
Vivian usually drove to and from work, so I asked him where his car was. He replied that his
wife had taken it on holiday with her. Rather nervously, I asked him if he and his wife did not
go on holiday together. He explained that his wife was a barrister and that the Inns of Court
in London closed down for eight weeks during the summer “on account of the stench of the
river Thames”1.

1 For the benefit of those not familiar with London, the odorous problems with the Thames were largely cured
during the nineteenth century when Joseph Bazalgette and the Metropolitan Board of Works designed and built
the London sewage system .

9

My next project, designing the magnetic tape device driver for the 503, was a natural
progression from specifying the system. This was a true software project, and a systems
program rather than a user application. I recall little difficulty with this task. These were,
however, before the days of widespread use of interrupts in computers. A program requiring
data to be read from or written to the magnetic medium would simply have to wait for the
transfer to finish. But interrupt systems were being devised in the industry and theoretical
work was being done to find ways of ensuring the integrity of processes that were interrupted
by others. Today every personal computer user takes for granted the ability to carry on doing
some word-processing, say, while some information is slowly being downloaded from the
internet. The principles enabling this kind of multi-processing were being researched around
the beginning of the 1960s.

For the first few months at Elliott’s, because of lack of desk space, I worked in an office full
of sales representatives, all men. They were, like the programmers, all graduates in
engineering disciplines but had, I presume, decided to pursue a career in sales. They wore
suits and ties and seemed to spend their time in the office making phone calls, projecting their
personalities down the telephone and starting their persuasive tactics by enthusiastically
inviting the prospective client to lunch. This was a noisy and energised environment to work
in, and I found it distracting to say the least. The salesmen never ate in the canteen, but would
drive to some nearby pub for lunch. They would invite me along, and our lunchtimes tended
to be substantially longer than the regulation hour. One day Tony Hoare, who was in a line
manager position in charge of the programmers, decided that we needed a pep-talk about
extended lunchtimes, but perhaps unwisely called the meeting for two o’clock. I heard later
that he started his talk with the words “most of the offenders are notable by their absence”. I
fear I was not a good time keeper. Security guards used to take one’s name if one was late,
but I soon discovered that if one arrived seriously late, forty minutes or so, they would have
given up taking names down, probably assuming that one had attended to some legitimate
duty in another part of the building. However, I believe I put in a fair amount of time and
effort in total.

After a while I was moved out of the sales office into a room with other software staff. I have
to say I was quite relieved, for although I enjoyed the company of the salesmen, I found their
office was not conducive to deep analytical thought! The dress code among the programmers
was more relaxed than that of the salesmen, but I probably carried this a little too far. One of
my managers enquired with a polite smile “No shirt? Holes in your jersey?”. Well, it was a
polo neck, so any shirt would have been invisible. The Scientific Computing Division had
decided to embark on designing and manufacturing a new machine. No name was given to
this machine at first, but the whole enterprise was called “Project 41”. It was supposed to be
commercially highly confidential. We were under strict instructions not to discuss it outside
Elliott’s. The design of the machine instruction code was still in a state of flux. The senior

10

technical people thought that experiments should be done with programming the machine
before setting the new instruction code in concrete, so to speak. I was therefore asked to write
a simulator for the new machine, which would run on the 503. People could then write
prototype systems software in the code of the new machine, test it out and measure its
performance in terms of time and storage space, before the first machine cast in real hardware
was produced. The development of the systems software could progress in parallel with the
hardware development, so that both would be ready at the same time, shortening the time
from first ideas to available product, the “time to market”.

There was a lot of discussion about what would be a useful repertoire of machine code
instructions for the new machine. One idea was to take the systems software already written
for previous machines, the 803 and 503, and to count the usage of the different instructions.
However, this study produced an unexpected result. Instead of showing which were the
generally favourite and useful instructions, the count showed that there were marked
differences between styles of the different programmers who had authored the programs;
indeed the counting technique turned out to be quite an accurate way of determining who was
the author of different pieces of software! So that approach was abandoned.

After a while the repertoire of the instruction set was mostly agreed, but then there seemed to
be interminable discussions about the design of the written form of the assembly language
itself. The instruction set was simply an association between binary patterns and functions
that the machine’s central processor would carry out. The way the programmer would write
down these instructions was yet another thing to be decided. We seemed to be getting
nowhere, and I thought that if we had something concrete to criticise, at least we might make
progress. So I spent just on a week writing a proposal for the assembly language. The office
environment was very different from today’s. There were no photocopiers. If you wanted to
make copies, you needed to know in advance, and have a typescript prepared on a special foil
which was then used as a master for a Gestetner copying machine. Then copies could be
rolled off. These copies I remember were on flimsy paper, shiny on one side, with faint print
and a bit unpleasant to handle. A typewriter could be used to make up to about four carbon
copies, but these had to be made at the time that the document was being typed. So I simply
wrote my document by hand and passed it round the three or so others who were involved in
the project. They were surprised at the progress I had made and this assembly language, with
a few revisions, was adopted. For the Elliott 803 and 503 machines the company had
produced a programmer’s “Facts Card”, a small fold-over card with all the essential
instructions succinctly listed. It was small enough to fit in one’s pocket, and we found these
very useful. Much of my description for the new machine code eventually found its way onto
the new Facts Card, something I felt rather pleased about at the time.

The simulator for the project 41 machine did not take me too long to write, although it was a
large program – some 900 instructions I recall. The reason was that it was extremely simple

11

in structure. A central controlling piece of code would extract the instruction to be obeyed
and switch on its operation code to a routine which handled that particular function. I used
subroutines to deal with the actions that were common to many instructions, like extracting
the contents of the address, modifying the address with an index, etc. I seem to remember the
whole exercise took me about three weeks, although I was continually adjusting the program
as new suggestions and ideas for the machine came forward. At the same time one of the
hardware engineers, Fred Harkin, who had been at Elliott’s for the same length of time as I
had, was building the prototype machine. However, to make even a small modification to my
simulator I had to change the code, edit the tape, re-assemble the program by booking time on
the 503 and test it out with suitable test data, which I also had to prepare. The turn-round for
this process would take a day. Fred just had to go to his prototype, make some physical
changes and as often as not his modifications would be up and running within an hour. So, in
the end, my simulator was not used very much; programmers would use Fred’s prototype
instead, for which there was not a lot of demand, whereas the department’s 503 was used for
many different purposes and one had to book time on it in advance.

A few years later, in the late 1960s, the topic of software metrics would become all the rage.
More of this in due course, but it was a theory that I never found at all convincing, largely
because of this early experience. My simulator comprised 900 instructions and took three
weeks to complete. My next project was to result in a thirty-instruction program and took
nine months to complete, for very good reasons. The general objective of software metrics
was to predict the effort that developing a piece of software would take by estimating its
physical characteristics, number of instructions or lines of code, or something a little more
complicated. These two early projects of mine belied this possibility.

A name had to found for the new computer being developed in project 41. Great commercial
secrecy had surrounded the project up to that point, because the company did not want its
competitors to know anything about the new machine or indeed that we were developing one
at all. There were lots of discussions about this: whether the machine should have a name
rather than a number, even. Ferranti had named all their machines after classical Greek
deities, Mercury, Orion, Pegasus, Atlas, Titan. So we felt that we could not go along that
path. Nor could we use the names of planets or constellations, because they coincided with
the names of deities. Other ranges of numbers had been taken by other manufacturers, for
example 360 by IBM, KDF9 by English Electric. In the end we just called the new machine
after the project, and added a couple of zeros on the end, so that it became the 4100 series. No
other company was using four digits in their machine names at that point. So the 4100
machine became so named rather accidentally.

There was, throughout Elliott’s, an atmosphere of exciting innovation. The programming
language Algol60 had been designed just two years earlier by an international panel of
distinguished experts. To be able to program in a language like Algol60, a “compiler” has to

12

be written. This is a program that translates programs written in the language into the
machine code of the machine on which that program is to run. Compilers were considered to
be some of the most complex programs anyone could be called upon to design, requiring a
great deal of analytical thought. The more sophisticated the language, the more complex its
compiler. Algol60 was the most advanced high level language designed up to that point. Its
predecessors were Fortran and Cobol. Fortran was a language principally for translating
formulas and Cobol, essentially the same in its technical sophistication, was designed for
business calculations. Algol60 was a step forward in concept, treating computational
procedures and functions as principal objects and being based on a mathematical theory
called “Lambda Calculus”. Under this theory the meaning of a computational procedure was
defined by rewriting and expanding textual formulas. But, for efficiency, indeed for practical
feasibility, the computer had to translate this textual rewriting process into a more direct
computational one. In the room next to the one where I worked, the first ever commercial
Algol60 compiler was being written for the Elliott 803. I experienced some envy not being a
member of that team but, happily, there was a culture of sharing ideas among the different
projects and academic style seminars would be held quite often, in which the design ideas of
different groups would be explained and discussed amongst everybody. I was most impressed
to hear that, for an exhibition, a machine was dismantled into parts, crated and shipped
(literally, by ship) to Moscow, reassembled, switched on, and displayed the message “Algol
Ready”: the Algol60 compiler was still intact in the main, random access, core store of the
computer and ready to go.

However, the proximity of this innovative work on the Algol60 compiler was something of
an inspiration, and in any case I was given a fairly leading edge task, that of writing the
kernel of the operating system for the 4100 machine. My technical manager for doing this
was Tony Hoare, who had also led the team producing the Algol60 compiler. An interrupt
system was being designed for the 4100 machine. This was a hardware extra that could
enable an external event like a signal from a peripheral device, a magnetic tape for example,
to interrupt the program currently running and divert control to another piece of software
designed to receive data from the device. So a program could continue running while data is
being sent to or received from a peripheral. Users of present-day personal computers
probably take this for granted. As soon as you ask for a document to be printed, for example,
you can continue using an application while the printing goes ahead. Until interrupt systems
were invented, a program simply had to wait until peripheral activity had finished, before
resuming. The kernel of the operating system is a central piece of software that directs the
computer to switch between obeying different sections of code associated with interrupts
from the various peripheral devices. Interrupts were organised into priority levels. All these
rules and arrangements were being designed, mostly from scratch. I was working very much
under Tony Hoare’s direction in this effort. He was conceiving new ideas at an amazing rate.

13

At times it felt as if he would have new insights every night and would explain them to me in
the morning first thing each day.

Tony Hoare later moved to academia, becoming Professor of computer science at Queen’s
University, Belfast in 1968, and subsequently joining the Computing Laboratory at Oxford
University in 1977, of which he was later Director. In 1980 he was awarded the ACM Turing
award and was made a Fellow of the Royal Society in 1982, one of the first computer
scientists to be made an FRS. In 2000 he was knighted for his services to computer science,
again one of the first computer scientists to receive such an honour. Yet his initial
background was not science, but in classics; his knowledge of computer science theory and
the mathematics that is necessary for its understanding were entirely self-taught. Having such
a brilliant individual as my project supervisor in 1964 was a stimulating, if at times gruelling,
experience.

Eventually I completed the 4100 operating system kernel after about nine months. It was a
mere 30 instructions, but it took me over thirty pages of documentation to explain its purpose
and how it worked. “Documentation” is a set of documents describing a piece of software,
written for the human reader. Elliott’s considered documentation to be very important, but
concentrated on documents aimed at subsequent programmers who might want to understand
the software so that they could extend it or modify it. This was especially important if the
original author left the company. Over the next few years the computer industry was to
consider documentation to be extremely important, not just for other programmers, but for
users, managers and others. But at that stage even user manuals were much less in evidence
than today, when one may see rows of books in general bookshops explaining how to use
Windows, Java and so on.

At one of the many Saturday evening parties I met another new graduate working at Elliott’s,
Brenda Allatt. We danced for a long time to the strains of Diana Ross singing “Babylove”.
We got married the following year. Brenda, who later changed her name to Hazel, was
working in a division that was producing the on-board flight control software for a new
military aircraft, the TSR2. The quality control procedures for military projects were
ponderous and thorough, with the result that equipment approved for use was always older
than the current state of the art. This is, I believe, as true today as it was then. Consequently,
the on-board computer of the TSR2 was of primitive and archaic design, even by the
standards of 1964. The main store of the Verdan computer was not a random access core
store, but a rotating magnetic drum. By the time an instruction was obeyed, the drum would
have moved on several words, so to increase the speed of executing the program, each
instruction would specify the address on the drum of the next instruction to be obeyed. By
taking into account the execution time of each instruction and carefully placing the sequence
of instructions forming the program round the drum, the programmers could ensure that the
software was not slowed down by unnecessary rotations of the drum. All the programs were

14

written in octal on special coding pads, which were designed to facilitate this process of
mapping the program’s instructions to addresses on the drum. The drum was of a limited size
and, to save space, programmers would consult each other’s programs to share constant data
and other items. A great contrast to today’s extravagant attitudes to storage space!
Programming this machine in octal was a task requiring meticulous attention to low-level
detail and not for everyone’s aptitude. Hazel’s first task was to take over a program from
someone who had recently left the company. After studying the program for a long time to no
avail she consulted her manager. They could make no sense of the “program” that Hazel had
inherited and concluded that her predecessor had no clue about what he was doing: he had
simply filled the coding pads with random octal numbers for a few months before leaving the
company. Much later I discovered that this individual had been promoted to data processing
manager for a local authority in the west of England, and later still he became chairman of the
Computer Services Association. C’est la vie.

Elliott’s was situated in Borehamwood, a small town contiguous with the village of Elstree.
Elstree was famous for its film studios, where many classic British films were made: The
Titchfield Thunderbolt, School for Scoundrels, Man in the White Suit, The League of
Gentlemen among many others. From time to time one would see film extras in the street,
which could be quite startling if they were dressed as soldiers from the German SS, for
example. One would often see famous film actors in the Elstree Way pub immediately across
the road from Elliott’s. This pub did an excellent line in roast beef sandwiches at lunchtime,
freshly and generously carved, with the option of horseradish or mustard. The lady who
carved the beef did so with an expression of pained reluctance, as if to say that she would like
to carve even thicker slices, but commercial considerations forbade her from doing so. I can
recall the taste to this day.

However, despite the fine roast beef sandwiches in the Elstree Way pub, I decided it was time
for me to move on.

Chapter 2 Mighty Atlas
In the 1960s the several different colleges within London University shared both a computer
science research department and a large computer. The University of London Institute of
Computer Science was a free-floating department, situated in Gordon Square in the heart of
Bloomsbury and largely independent of any particular college. Bloomsbury was an elegant
part of London with several green squares containing shrubs and trees, and imposing
seventeenth and eighteenth century buildings, which had once been private residences of the
wealthy. The computer was one of the largest in the country, the London Atlas, designed in a
joint effort with Manchester University and built by Ferranti at a cost of £3.7 million. In those
days a new graduate would be lucky to earn £1,000, so to compare with today’s 2007 money
one would need to multiply that by 20, say about £75 million or €120 million. When London

15

University commissioned the computer, there were many questions asked about whether
funds intended for other purposes had been improperly diverted to this purchase, and the
university had to claw half the money back. They did this by establishing a commercial
company, which bought half the machine from them. The company owned half the time on
the machine and used it on a commercial basis to recover its share of the cost over a number
of years. This company was called the University of London Atlas Computing Service, or
ULACS. It was situated in the same building as the Institute and the computer. Although the
two bodies occupied different parts of the building, 39-43 Gordon Square, they shared several
facilities in addition to the computer: a staff common room, a lunchtime snack bar, a lecture
room and entrance hall.

The London Atlas computer was one of three. The first to be built was the Manchester Atlas,
and in Cambridge a very similar machine, with the same instruction codes but a different
operating system, was called the Titan. The London Atlas was situated on two floors. The
central processor and chief operator’s console was in the basement, and the peripheral
devices, that is magnetic tape decks, paper tape readers and punches, punched card readers
and punches and so on, were on the ground floor. A closed circuit television system and
communication system linked the two, so that the chief operator could observe the peripheral
activity and issue instructions to the assistant operators. They would mount and dismount
tapes on the tape decks, feed the paper tape and card readers, unload the paper tape and card
punches, and collect the results of the separate jobs together. The Atlas, although large and of
sophisticated design, was older than the Elliott 803 and 503, and used valves (thermionic
vacuum tubes) rather than semiconductors for its electronics. Even on the rare occasions
when the machine was not in use, it was almost never switched off. The inevitable surges
produced when the machine was switched on again would blow many valves, and the time
taken to detect which had blown and the cost of replacing them would outweigh the
considerable savings in not having the machine consuming electricity.

I have no clear memory of my interview with ULACS, but it must have gone smoothly
because I was offered a job at a substantial increase in salary. I accepted, and started work
there in 1965. The working hours were 9.30 to 6.00 p.m., the later starting time reflecting the
difficulty of commuting into central London. On arriving on my first morning promptly at
9.30 I found that no-one in the department I was to work with had yet come in to work. One
of the managers, George Davis, was found and he bustled down into the reception hall and
introduced himself. He supplied me with some literature to read until someone arrived.

ULACS was both a computer bureau and a software house; it sold time on its computer and it
wrote software for clients, software that was almost always designed to run on the Atlas
machine. There were two teams of programmers, the systems and the applications
programmers. I joined as a senior systems programmer. The systems group maintained and
improved the systems software for the Atlas, language compilers and parts of the operating

16

system, which formed the technical platform on which users’ programs could run. We were
thus working on improving the facility that made the machine an attractive proposition on
which to hire time. The applications group wrote bespoke programs under contract for
customers. Occasionally members of the systems group would also write a program for a
customer contract, usually when the program required some more complex technical
expertise. Thus the work done by the applications group would lead more directly to earnings
for the company than that done by the systems group. This was always to be a source of some
contention, even though selling computer time, which was ultimately supported by the
systems group, accounted for 80% of the company’s revenue, whereas bespoke software
contracts accounted for 20%. There was always the suggestion that the systems group were
distant from the company’s need to make money. The two groups were much the same size,
about 20 programmers.

In addition to the two programming teams, there was a team of salesmen, and computer
operators who worked in shifts, 24 hours and weekends. Because the machine was shared
between ULACS and the Institute of Computer Science, those in charge of the operations
were academic staff. These two or three academics had taken part in the design of the central
part of the operating system and were very familiar with it. There were also various
management and accountancy staff, and reception staff who were hired from an agency.
These reception staff, dressed in uniforms like traffic wardens or security guards, used to
cause a great deal of resentment. They were rude to visitors, knew nobody’s name, not even
the managing director’s, and were offhand to everybody. From time to time the agency were
persuaded to reassign some of their staff, but the underlying problem persisted. They could
not have presented a good impression to potential customers.

I had started at Elliott’s at a salary of £875 and left with £1100 per year. I started at ULACS
with £1450, a substantial 32% increase. I think computer programmers may never have had it
so good. There was a great demand for them and firms would offer enticing salaries to attract
staff from other organisations. One could expect to double one’s salary every five years or so.
This led to a considerable turnover rate, with programmers typically changing their job every
two or three years.

There was quite a lot to learn about the technicalities of Atlas. Although the machine was
built out of more primitive hardware than the Elliott machines, the operating system was very
advanced for its time. Up to four main programs could run concurrently, the central processor
switching between them following the rules of a scheduling program within the operating
system. By choosing which programs to run together, the operators could optimise the usage
of the machine’s resources. The operating system was thus called “time sharing”, one of the
first in the world. In addition to sharing the machine’s time and storage space between up to
four main programs, the operating system would time-share with peripheral transfers, just
like the Elliott 4100 did. To speed up the machine, there was a “look ahead” system within

17

the hardware of the central processor. Instead of just obeying the current instruction, the
central processor, or “mill” as they called it, would extract the next three instructions and
start preparing to execute the next two in addition to the current one. Of course, if control was
transferred to a different sequence of instructions, by a jump or an interrupt, most of this
preparation work would be discarded, but generally instructions are obeyed in sequences of
some length and the look ahead mechanism speeded up the running time of the machine
considerably. This technique is still used in today’s computers, with look ahead mechanisms
operating on anything up to the next twelve or more instructions.

The other advanced feature of the Atlas operating system was its two-level store. The main
store, directly addressable by machine code instructions, was split between a fast random
access core store and a secondary magnetic tape. The operating system would switch blocks
of store content between these two so that the mill would in fact operate on instructions and
data in the random access store, yet programs could behave and be written as if there were a
vastly larger addressable storage space. It was this two-level store concept that in turn
enabled the time sharing between programs that could otherwise not have fitted into the
random access core store, and indeed enabled very large programs to be written and run.

The Atlas machine was one of the very first to pioneer this two-level store concept, which is
used routinely now in the design of personal computers and virtually all other machines of
any size; the exception being very small embedded machines dedicated to a specific task, like
computers inside manufacturing machines or car engines. Those computers are often
classified as “programmable logic controllers” or PLCs, but they are simple computers whose
basic design is just the same as the central processors of early computers such as the 803. The
two-level stores of personal computers are split between random access stores and hard discs,
but when the Atlas was designed there were no magnetic discs. So the secondary storage
medium was magnetic tape. When I joined ULACS, discs, in particular exchangeable disc
packs, had been invented and a couple of units were attached to Atlas, as something of an
experiment. Indeed, they had been introduced as a peripheral for the Elliott 503. The
exchangeable disc pack performed the same rôle as a floppy disc or rewritable CD on a
personal computer, but the drive was a separate unit the size of a commercial washing
machine that one might find in a launderette. You could remove the disc from the unit and
exchange it for another, hence the name. However, instead of a single disc like a floppy disc
or CD, these discs came in packs of eight, all mounted on a single spindle and having a
diameter of about 50 centimetres. All eight discs would be read and/or written by eight arms
with reading and recording heads retracting in unison. The removable disc packs were also
rather unwieldy and one would see operators heaving them across the room. Considerable
care was needed to remove and insert them into the unit without damaging the heads or the
drives, and only trained operators were allowed to handle them. I was told that these discs
rotated at great speed and, given their substantial mass, if a bearing in the unit broke and a

18

disc broke free it could slice through a metal cabinet or two; potentially lethal! Its
descendants, the floppy disc and the rewritable CDs and DVDs are astonishingly handy by
comparison.

When I joined ULACS at first I shared an office with Peter Hughes, who was the Chief
Systems Programmer. My first programming project was to write another device handler for
the operating system, a magnetic tape handler that could read tapes written on the Ferranti
Orion computer. The information was recorded in a different arrangement on the magnetic
tapes by Orion, and it was going to be useful to be able to read these tapes on the Atlas. I
remember struggling a little at first learning the Atlas assembly code, because it was not as
sophisticated as those used on the Elliott machines. It did not use symbolic names for the
instruction codes like LOA for Load and STO for Store. Instead one had to remember, or
have by one’s side, the numeric values of these codes, 358 or whatever. Likewise, I believe
there was not the facility for using symbolic names for addresses of data to the same easy
extent. But after overcoming this I wrote the required handler, feeling a little bemused about
it. I had not seen any of the Orion tapes that it was supposed to handle and had no means of
producing them, not having access to an Orion. So I had little opportunity to test my program.
But I believe it worked without problems, because I knew at least one colleague who used it
and he didn’t complain!

ULACS was a very pleasant environment to work in. The whole building was colourful and
elegant. At one point they even redecorated the staff common room, picking out the ceiling
mouldings in gilt paint. There was a piano there which more talented staff members
occasionally played during the coffee breaks. The common room was supplied with many
technical journals and the day’s newspapers, and it was pleasant to spend a break in an easy
chair surrounded by quiet discussions and an air of studious relaxation. During the summer
months it was possible to obtain a key to the fenced green area in the middle of Gordon
Square where there were shrubs, trees, grass and seats: something of an oasis in central
London. Within one’s lunchtime it was also possible to go right into the centre with its shops
and city life, and to reach the Thames embankment.

The way in which programmers submitted their programs to the Atlas will seem unfamiliar to
most present day computer users. Today, we sit at our personal computers, typing the text of
a program directly into the machine, and saving it in a file after frequent intervals. If the
development of a program takes a few days or months, we open the file and update it by
typing in new information or modifying what we have done to date, and save it again in the
same or a new file. These files are held on a backing store, typically the main hard disc, but
possibly another medium such as a removable CD or floppy. Even before personal computers
came on the scene, a team or firm of programmers would have a large central machine with
terminals, either one on every programmer’s desk or in a pool of workstations which the
programmers would arrange to go and use. The process of producing a program was just the

19

same. But Atlas and the vast majority of machines at that time were monolithic, single large
machines without any user terminals. For a machine the size of Atlas, the operation was so
specialised that no normal programmers would ever use the machine themselves. Because up
to four programs could be run at once, there had to be a way of organising the input of
programs and the collection of their results so that programmers would receive back the
results of their own programs and not those of someone else’s. The submission of programs
to the machine was organised into “jobs” and the operators fed batches of jobs to the
machine. For this reason, the type of operating system used on Atlas was called a “batch”
operating system. The programmer asked the computer to do a job, that of compiling or
running a program and delivering the results. To that end, one had to prepare a “job
description” on paper tape or punched cards. The job description stated what software was to
be used by the program, maybe a compiler for compiling the program or a package for
analysing survey data. It also declared what peripherals the program would require, the
names of input files, the output devices and files to be generated, the maximum storage space
and central processor time required, and an identification of the job and the programmer. The
job would be automatically costed, and its cost would increase with the storage space
reserved and so on. If the job was predicted to be quick, that is to use a small amount of
processor time, it would be scheduled sooner. It was therefore important to be fairly accurate
in predicting these statistics for a program. The standard turn-around time for having a
program run was one day, but priority jobs would be done in half the time, so that one could
get two successive submissions per day. If there was a mistake in one’s program, one would
therefore have to wait at least half a day and maybe a whole day before correcting it and
trying again. This was a great incentive to check one’s work carefully before submitting it.
All the programmers were given a budget of computer usage and would have to apply to their
managers for any extension. Usually the budget was enough provided one was reasonably
careful. The central processor was fast and the time used by most jobs like compiling a
program would be short, far less than the time that elapsed from the operator starting the job
to finishing it. The default processor time allowance was one minute.

This arrangement of giving the programmers a budget of computer usage might seem a bit
draconian, until one considers the enormous cost of the machine resources. An hour’s time
cost £950, about the equivalent of six months’ of my salary. Sometimes a client user would
book the entire machine for an overnight run, at a cost of several thousand pounds.

The job descriptions would be punched out on paper tape or punched cards. The program
would also be prepared on paper tape or cards. Large scale data would initially be prepared
on punched cards and would then usually be copied to magnetic tape. The programs and data
would initially be punched out by data preparation staff, working from coding sheets that the
programmers had written. Amending a deck of cards was easy enough; one could just replace
a few cards with corrected ones. To amend a paper tape, one would use a teleprinter to copy it

20

until the point where the correction was required, punch the replacement section and continue
copying from the appropriate point. Teleprinters were much the same machines that were
used for sending telegrams and produced paper tapes with five holes across and a small
sprocket hole used to drive the tape through the teleprinter. The combination of five potential
holes were a code for the different characters that had been punched. The paper tape readers
attached to the computer would read much faster than the more mechanical teleprinters and
used photo-electric cells to detect the presence of the sprocket hole. This would trigger the
tape reader to detect the presence or absence of holes punched in the other five positions.
Thus, if the sprocket hole became blocked, the character would be missed. This was a
frequent cause of paper tape reading errors.

Teleprinters were not the most convenient machines to use, being originally designed for a
somewhat different purpose than preparing programs for a computer. Making small updates
to a long paper tape was particularly cumbersome, because one would have to make a
complete copy of the tape, stopping at exactly the right point, typing the new section and
advancing over the piece of script that was to be replaced. For making small amendments,
two other devices were available: splicing tape and the uni-punch. The uni-punch was a
manual instrument, of high mechanical precision, so costing a hundred pounds or so,
comprising a hinged block into which one could place the tape and holes through which one
could insert a small punch to make individual holes in the tape. Guide holes enabled the
punch to produce holes in any of the five positions in a character. There was also a groove
and a cutting knife to sever the tape. Splicing tape would be used to join tapes together and to
block off unwanted characters. To cancel a specific character, it was sufficient to block the
sprocket hole, because that triggered the tape reader to read the other holes comprising the
character.

<photos of pieces of tape, unipunch, teleprinters and flexo-writers>

Five hole paper tape was phased out in favour of eight hole tape. Programs on eight hole tape
were prepared on more sophisticated “flexo-writers”. These were much more like a
conventional typewriter, and more pleasant and easy to use. The use of eight holes to
represent a character enabled a greater range of characters. For example, both upper and
lower case letters could now be typed out; the five hole tape, even with a case shift character,
could only accommodate one case of letters and digits and a few punctuation characters.
Paper tape came to be preferred to punched cards for programs, because it occupied less
space and weight. One also obtained a printout from the flexo-writer of the tape that had been
punched out, which was easier to examine and check that reading the small lines of print that
a card punch would produce along the top edge of the punched cards. Cards continued to be
used for large quantities of data because it was easy to separate them into parts corresponding
to items of information, and to make amendments. For this reason for a long time

21

programmers writing the commercial programs that handled such large chunks of data also
used cards for their programs, mainly because they were familiar with the medium.

Punched cards were made from card, thicker than paper tape. Each card had eighty columns
of twelve positions in which holes could be punched. Each card represented a line of text. So
one was restricted to lines at most eighty characters long. The stack of cards necessary to
hold any given quantity of text would be considerably heavier than the corresponding roll of
paper tape. On the other hand, amending a deck of cards was easy. There was no splicing or
fiddling about with a uni-punch. One just had the replacement cards punched and threw out
the ones to be replaced.

There was a story about one programmer who was transporting a deck of punched cards from
abroad through customs. He was stopped by the customs officer, who asked him if the cards
had any commercial value. He gleefully replied that the cards themselves had very little
value, but that the holes punched in them were worth quite a lot — the holes representing
valuable data and the result of much labour. The customs officer thought he was trying to be
facetious and hauled him off for a long interrogation.

After data preparation staff had prepared the first version of a program, the programmers
usually produced any amendments and corrections themselves. The task would involve only a
relatively small amount of typing. However, handling long paper tapes and decks of cards
was cumbersome and prone to misreads. The chief programmer, Jules Zell, proposed that the
programmers might store their programs on magnetic tape, after the first read-in off paper
tape. The operating system took care of selecting which device was the source of any input to
a program, such as a compiler, through the job description. The only stumbling block was
editing the program when it resided on magnetic tape; we had no editing program because all
editing was done on the hard-copy medium of paper tape or cards.

So my next project was to produce the first text editing program for Atlas. It was not possible
to edit a program on-line, sitting at the computer and using a terminal, because there were no
terminals and all computer operations were conducted under the batch operating system. One
would have to work out what amendments were needed to the program and produce
instructions to carry out these amendments. These instructions would have to be interpreted
by an editing program. Fortunately it was possible to submit two or more successive
operations to the computer as one job, so an edit of a program could immediately be followed
by compiling it and even running it if the compilation was successful.

So my task was to devise the form of the editing instructions and to produce the program that
would interpret them. Normally when editing a piece of text using one of the current well
known word-processing programs like Word or Wordwise, one moves a cursor to the desired
place in the text in order to effect a change there like deleting or replacing a few characters.
With a batch editor one doesn’t have that luxury and I had to devise a means of instructing

22

the computer to, so to speak, home in on a desired piece of text and then do some editing on
it. Years later there were a number of line editors such as vi which did some of these things,
but if there were any such editors in 1966, my colleagues and I had not heard of them.

The kind of text that people would want to edit was a computer program rather than a prose
document. Computers were simply not used for holding pieces of writing then. Computer
programs were always prepared on some kind of coding pad with numbered lines, so I
decided that the best targets for editing were line numbers and quoted chunks of text. One
could instruct an imaginary cursor to move to line number 47, or to the next occurrence of the
characters “DS46”. Then one could delete, insert or replace a number of lines or characters. I
also supplied a global editing facility so that you could replace every subsequent occurrence
of one sequence of characters by another.

Preparing these editing instructions was an elaborate and clumsy process compared with
today’s “What you See Is What You Get” on-screen editors. For smaller programs, even the
process of editing a paper tape on a flexo-writer was less hassle. There was also a learning
curve involved: one had to learn my little editing language before being able to use it,
whereas the programmers already knew how to use the hand card punches and flexo-writers.
So in the end my editing program was used only by a few of the more dedicated programmers
who had large programs to handle and who found it definitely more convenient to store them
on magnetic tape.

At that time, advances in program language design were a hot topic in computer science, and
were to be so for many years to come. The advantages of high-level languages like Fortran,
Cobol and Algol60 were widely recognised. These languages were designed to reflect the
processes that programmers wanted to carry out, rather than to be convenient ways of
expressing the machine’s instructions. All three of these languages were available on the
Atlas and one of my colleagues, Chris Hobson, who was recruited after me and on my
recommendation, spent most of his time writing and extending a huge program in Algol60
that simulated the Atlantic Ocean for the meteorological office. Performing these simulations
used hours of computer time and was a fine source of revenue for ULACS. A new language
was being designed by researchers at the Institute called CPL. Although advanced, like many
other languages that were to be devised over the next ten or more years, it enjoyed only
limited amount of use. But this culture of developing high-level languages was to some
extent stimulated by the presence on the Atlas of, I believe, the first “Compiler-compiler”.
Brooker and Morris’s Compiler-compiler enabled one to state the syntax of a language and
define processes that performed the computations represented by statements in the language.
A fair amount of the work that is common to practically any compiler is thus provided by the
Compiler-compiler, or CC as it was called. We all regarded this facility on the Atlas as
exciting and somewhat technically avant-garde. Peter Hughes suggested to me that I might
want to use it in writing my editor, for it involved a compiler for a miniature language. I

23

looked at the report describing CC and found it rather impenetrable. I thought it would be
easier to write the input and parsing routines, for that was essentially what CC provided,
myself. Later I wished I had taken Peter’s advice and persevered with CC, for it would have
given me useful experience. But this first contact with CC was for me the beginning of an
absorption with language compilers and compiler-compilers, or parser generators as they are
more often called. I think that many programmers must have been similarly fascinated, for
perhaps the most well known parser generator to emerge in subsequent years was called
YACC, “Yet Another Compiler-Compiler”.

Being a bureau, ULACS used to run some commercial programs like payroll preparation and
updates, as a regular routine, once a month or even once a week. ULACS appreciated that
this customer’s data was valuable and backup copies were regularly made by the operations
programmers. On one occasion the update program, held on paper tape, was misread simply
because of a blocked sprocket hole. Instead of updating the data as intended, the program
produced blank information. This “new version” of the data was then copied back onto the
original as a backup. Only then did the staff discover the error – and they had carefully
destroyed the original believing that they were making a backup copy of the new data! There
were red faces, and the original data had to be reconstructed laboriously from a printout at the
company’s expense.

Many years later the analysis of programming and computer procedures was studied and a
whole discipline called “hazard analysis” was developed. It was early incidents like these that
prompted the whole area of computer security and hazard analysis in the nineteen seventies.

In about 1967 I was promoted to Assistant Chief Systems Programmer, which was very
gratifying. From time to time other members of the systems group would come to my office
to consult my advice about some difficulty they were having with their program. I would
listen and make suggestions, but most of the time the process of explaining their difficulty to
me would prompt the programmers to perceive the solution themselves and they would go
away satisfied. Sometimes they would depart satisfied, thanking me for my assistance, but I
had not understood a word of the intricate nature of their problem. Listening and asking them
to explain things was usually enough to reveal a solution.

Various other changes in staff occurred around this time, including the appointment of a new
managing director, Fred Gordon. He had a thoroughly commercial background, in contrast to
his predecessor, Dr. Robinson. By coincidence, his surname was the same as the address of
the organisation, Gordon Square. Fred Gordon capitalised on this by starting an internal
house magazine called “Gordon Square”. This bore a faint resemblance in style to the house
magazine of the imaginary firm of Heathco, depicted by the satirical magazine Private Eye.
The Prime Minister of the time was Ted Heath and Heathco symbolised the U.K. as a
business; indeed, a piece of political propaganda at the time was “U.K. plc”. I have the

24

impression that the Gordon Square magazine was written entirely by Fred Gordon himself.
Our new MD brought a more commercial slant to the firm, and he drafted many
advertisements promoting the services that ULACS could offer. The content of these seemed
to us technical staff to be vague and raucous, “We’re the people!” one of them actually said,
and we cringed somewhat, but in retrospect maybe we were being oversensitive.

There was a good deal of freedom and an easy attitude between most of the management and
the staff. Most of us rarely met any customers and the dress code was relaxed. One day early
in my time at ULACS the Chief Applications Programmer, Dr. Fred Dearnley, telephoned me
about a forthcoming project for a customer, which involved some advanced numerical
analysis, the integration of a function over an irregular surface. He had heard that I had a
degree in maths and wondered if I might do this contract. We agreed to meet in the entrance
foyer, which was equipped with comfortable chairs and coffee tables, to discuss the matter.
We had not met before. “How shall I recognise you” he asked. The only way I could think of
describing myself was to tell him what I was wearing. I liked to wear somewhat
unconventional clothes at that time. I told him that I was wearing a pair of red corduroy
trousers, a black shirt and a white woollen tie. “I see”, he said urbanely. “Well, I shall be
wearing a three piece, navy blue, pin-striped suit”. I felt a little unnerved.

We met and talked about the project. Although I indeed had a degree in maths, I had never
formally studied any numerical analysis, and did not feel too confident about tackling this
particular problem. During our conversation it became apparent that Fred would quite like to
take it on himself. We ended up agreeing that this was the best way forward. I think he
wanted to exhaust other possibilities before metaphorically getting up from behind his
manager’s desk, rolling up his sleeves and doing a job on the shop floor. But a short time
later another interesting application project came my way.

At that time in 1967 London had two airports, Heathrow and Gatwick. The government was
proposing to build a third airport to cope with the increasing air traffic to and from London.
There was the big question of where to site the new airport. Wherever it was sited, there
would be a cost. Houses and part of their neighbourhood would have to be demolished, and
other buildings would lose value and have to be sound-proofed with double or triple glazing.
The Board of Trade, a government department whose role is now largely carried out by the
Department of Trade and Industry, were conducting some preliminary studies into the
projected effect of aircraft noise on the neighbourhood of the proposed airport. They had
developed an empirical formula for a nuisance value of the noise produced by the expected
landings and take-offs of aircraft arriving and leaving an airport. By superimposing these
values on the actual habitations surrounding the various possible sites, they could compare
them and see which site produced the least overall noise nuisance.

25

However, the Board of Trade wanted to verify the accuracy of their empirical formula for
noise nuisance. They had therefore set up noise measurement meters around the existing
Heathrow airport and had conducted a house to house survey in its neighbourhood. They
wanted a program written which would interpolate the noise data produced by the meters so
as to produce a noise profile that could then be compared with the survey data and the
formula. This comparison would be done later, again by computer, using statistical
techniques. The program the Board of Trade was asking us to bid for would need to use a
great deal of interpolation, which needed to be reasonably accurate but could potentially use a
large amount of computer time. The computer time used in the analysis would be biggest cost
factor of the job.

The problem then, at this bidding stage, was to estimate a cost for the job. This meant
estimating the computer time required to run the resulting program on the data presented to it.
This in turn required having a good idea about how the program was going to work, in
advance of designing it for real. Only a programmer could do this, but it was the salesmen
who would bid for the job. This was a common situation and the salesmen would often come
into the programming offices and ask some programmer for an estimate. The salesmen
worked on commission based on the sale rather than the final profitability of the job, and so it
was in their interest to land contracts, even if they might subsequently make a loss. If the loss
could be blamed on the inaccurate estimate of some hapless programmer, that was all right by
them. The salesmen rapidly learned that they would get the lowest and least realistic
estimates by asking the least experienced of the programmers. After that the salesmen could
move on to catch the next contract. Not surprisingly, after a few mishaps the salesmen were
required to consult only the more senior programmers. But that directive came later and the
first estimate for the airport job was £50, supplied by a rather junior programmer.

Even the salesman was suspicious of this estimate, and asked another more experienced
programmer. “Nonsense,” he said, “it will cost at least £130”. News of this bid reached Fred
Dearnley, the chief applications programmer. He decided that someone in the systems group
should do the job, and I was approached. Fred and the financial controller, who often got
involved in particular bids, described the task to me and asked me what I thought of the
estimate. I reckoned on using a linear interpolation method to calculate the noise levels and
worked out the amount of computer time required to do the total calculations. My time would
be charged out a about £4 per hour, so the computer time was going to be the main cost
factor. “It will need much more than £130”, I said. I estimated £650.

This was made the basis of the bid, which was accepted. I duly set to work and wrote the
main framework of the program. After a week or so the Board of Trade wanted to talk to us
about how we were proposing to do the calculations. A meeting was arranged, two rather
seasoned men from the Board of Trade arrived and I told them how I was using linear
interpolation. They insisted that this would not produce accurate enough results. When I

26

asked them what method of interpolation they wanted me to use, they said that that was for
me to decide. This seemed a bit of an impasse. On the one hand they were not satisfied with
the accuracy of linear interpolation, but they would not agree in advance what would be
accurate enough. They would not budge on this point and I felt that we were in a difficult
position. If I devised another interpolation method, they might once again object to it, and
without any criteria agreed in advance, they would be able to refuse it again. The next more
accurate kind of interpolation to use would normally have been a polynomial, where you
would suppose that the given surrounding points were on a surface with an equation
described by polynomial expression such as a quadratic. With a very large number of data
points this would be much more time consuming and cost orders of magnitude more. We had
already signed the contract.

I had a talk with the financial controller. He said, fairly casually, that the worst that could
happen was that we came out of the contract and paid them £650. I said I would try to find
another solution. I went back to my desk and thought about other ways of doing interpolation
that did not go as far as polynomial calculations. One of the subjects I studied in my maths
degree was projective geometry. I recalled a theorem about conic sections, where one
establishes a one to one correspondence between pairs of points on the conic. Joining these
points produces a family of lines. A conic section is the curve you get by slicing through a
cone with a plane. Depending on where the plane is placed, the curve can be an ellipse, a
parabola, or a hyperbola, all called conic sections or just conics for short. However, if the
plane goes through the apex of the cone, the conic degenerates into two straight lines. The
theorem works just as well with a degenerate conic as with a normal one. Using this theorem,
I could get a parametrisation of the points within the area bounded by any four of the data
points. This could lead to a method that was a bit more accurate than straightforward linear
interpolation, and would take rather longer to compute. However, it would not take nearly as
long as a polynomial method. I worked out that running a program which calculated the
interpolation in this way would take up more computer time, costing about £1,250. The
management approached the Board of Trade with a new bid based on this figure, and rather
to my surprise they accepted it. I wrote the program and it was run with the Board of Trade’s
data. So our estimate for this contract moved over time and a number of hiccups from £50 to
£1,250, a twenty-five-fold increase.

One of the possible sites for the third airport was Stansted in Essex. This, as anyone at all
familiar with London will know, was indeed chosen and is now a thriving commercial
airport. Just how much influence the elaborate study conducted by the Board of Trade had on
the choice I shall probably never know.

This contract revealed a general problem that has become endemic throughout the computer
industry. The problem is that of eliciting the requirements of a computing task before
embarking upon it. If the two men from the Board of Trade had stipulated an interpolation

27

method themselves, that would have been fine for ULACS and me, but they would have the
danger of finding out that the computed results were, after all the expense of performing the
calculation, not accurate enough. In the event, we at ULACS chose the interpolation method,
but the contract could have turned out to be a great problem if the BoT discovered that, when
applied to the actual data, the method of calculation was again not accurate enough; it would
have been ULACS’s “fault” since we had made the choice. Neither we nor the BoT knew
enough about the characteristics of the data to predict with confidence what interpolation
method would be sufficient. We were lucky that the method I devised turned out to be
acceptable.

In retrospect, with the benefit of forty years’ hindsight, what I should have done was to try to
explain that the difficulty of making the technical choice was a mutual one, and to propose an
initial contract in which we applied several methods to a small but representative subset of
the noise data. Then the accuracy produced by the different methods could be measured and
estimates made of the cost of applying each method to the whole data. After this pilot study,
the BoT could select which method to use and then we could enter into a second, bigger
contract to produce the results they wanted.

In other words, we should have approached the problem progressively and incrementally,
rather than in a “big bang”, revolutionary way. I did not learn that lesson then, and have only
relatively recently come to realise that it applies to many situations. To this day, many
expensive computing disasters occur, usually when a particularly large system is being
procured, and usually by a government agency. The difficulty always arises when the precise
nature of the environment in which the required software is to operate is not fully known or
understood.

Elliott’s did not have photocopiers. Although they were not available as practical commercial
machines, the process had been invented. I first came across a photocopy in my last year at
university in 1961 or 1962. A local small enterprise offered a photocopying service to
produce the programmes of a university society that I was running. The process was called
“offset xerography”. However, the results were so speckled and distorted that I did not take
the offer up. By 1966 though, reasonably successful, commercial machines had become
available, and ULACS had one. All photocopying machines at that stage were manufactured
by Rank-Xerox, presumably because they held the patent, which had not yet expired. The
Xerox part of the company produced the photocopiers, so the machines were called “Xerox
machines” and the word became a verb: “I’ll just go and Xerox this document”. The company
were temporally in the happy position of their name standing for the type of product, like
Hoover for vacuum cleaners and Biro for ball-point pens. Photocopying machines were
certainly something of a novelty at ULACS, and the same was true in most office
environments. I remember a cartoon in which a secretary is painting her nails and an angry
boss says to her “Don’t just sit there – go and Xerox something!”. It was some time before

28

they became indispensable, simply because, not having had them for generations of office
life, it took time for practices to mutate to become dependent on them. If you are used to not
expecting to have copies of documents, you don’t start using a copying machine in a routine
fashion as soon as it becomes available. The single photocopier at ULACS was often idle for
long periods, despite serving the needs of over 100 people.

The staff common room, which the Institute and ULACS shared, was equipped not only with
comfortable arm chairs and coffee and tea, but all the journals on computer science. In those
days there weren’t many of these. The British Computer Society published the Computer
Journal and the Computer Bulletin, and the American ACM, the Association of Computing
Machinery, published several titles, the Journal of the ACM, Communications of the ACM,
and a few other specialist magazines. The ACM Journal had an Algorithms Supplement,
which described new algorithms for performing particular calculations or solving well known
problems. An algorithm is a step by step mechanical process, exactly what a computer
program performs. These algorithms were usually published in Algol60 or Fortran or, more
frequently as time went on, in pseudo-code, which is an idealised high level computer
language, understandable by a human reader and easily translated by hand into a real
computer language. Devising new algorithms and numerical analysis in general, which is the
study of computational methods of mathematical operations, were very much a principal
occupation of computer science in the 1960s. At the same time, the Institute used to hold
seminars and these were often about new methods in numerical analysis. Methods of
numerical integration and differentiation were a popular topic. I found these topics very
interesting and often attended the seminars.

One of the ways of solving differential equations using a computer is to turn them into
integral equations and use a variation of a method of Isaac Newton, doing calculations of the
function at discrete intervals and interpolating between them, either linearly or using a
quadratic or higher order polynomial. Second order, i.e. quadratic, and fourth order were
popular approaches. Going to higher orders is not usually cost effective. The interval between
calculations of the function determines the accuracy of the process. A frequent difficulty is
that the function’s regularity may vary a great deal from one point to another. A technique
which fascinated me was a variation on a second order technique, called Runge-Kutta. The
original method was devised by two German mathematicians, C. Runge and M. W. Kutta in
1901, before the age of computers. A crater on the moon is named after Runge. The variation
on the Runge-Kutta method was invented by Merson, so this variable interval method was
called Runge-Kutta-Merson. After each calculation, an estimate would be made of the error.
If this error exceeded a certain value, the interval would be halved and the operation repeated.
If the error was less than a certain smaller amount, the interval would be doubled. In this way
the integration process would stride ahead with big intervals over the regular features of the
function and crawl meticulously over the more difficult terrain. Since then several other

29

adaptive step size methods have been devised by Richardson and Fehlberg. 1 Further
developments have been named Cash-Karp and Dormand-Prince. I was eager to program the
Runge-Kutta-Merson algorithm and apply it to a real problem.W

In 1967 the Admiralty approached ULACS and asked us if we could solve a set of differential
equations. Some of the constant factors in the equations would be presented as parameters,
that is as data. So would the limits over which the variable was to range, and other
information such as tables to be printed out and graphs of results to be plotted. The Admiralty
would keep the actual data to themselves and only run it on the program when we had
finished writing it. They were careful not to tell us anything about the purpose of the
program, something that concerned me a little; I hoped that it was not associated with any too
malicious weaponry, but I have to admit I never discovered to what use my program was put.

We arranged a meeting with the Admiralty representative, a pleasant, retiring, red-bearded
man who sat back in his chair and listened while I described the principles of Runge-Kutta-
Merson and its advantages. We agreed to proceed. I wrote the program in Fortran, which was
a most suitable language for the job. The solving of a set of differential or integral equations
required repetitious arithmetic calculations, for which Fortran was ideal. Algol60 could
handle processes with a complex structure better than Fortran, but the structure of this
program was straightforward, and for repetitive calculations, Fortran would be faster and
therefore use less computer time, which was an important criterion, given the cost of
computing. Also, the Fortran compiler was better geared to printing out results in a prescribed
layout.

Because I did not have any of the customer’s real data to test the program, I had to make up
my own. I had no idea at all of what would be typical values, so I just invented them out of
the blue. I also plucked a value for the maximum permitted error out of the air. I got the
program working, but I decided that I had better consult the customer about the maximum
error value. I wrote him a letter explaining the issue and suggesting that I included it as a
final parameter in the data. He wrote back agreeing that this seemed a “very reasonable”
approach. We had a last meeting in which I demonstrated the results of running the program,
with data that I had invented off the top of my head. I explained to the customer how I had to
make a guess at this, and how I had no idea of whether the data values were realistic. He
assured me that they were quite realistic, indeed he was surprised that I had hit upon quite
typical values of his “secret” information!

So, one more happy customer. I wonder what he used my program for. I shall most probably
never know. Since graduating from university five years earlier I had come increasingly to
the view that I did not want my work to be used for military purposes or for contributing to
the manufacture or design of weapons. The popular perception is that one is full of ideals

1See Fehlberg 1969.

30

http://en.wikipedia.org/wiki/Fehlberg
http://en.wikipedia.org/wiki/Dormand-Price
http://en.wikipedia.org/wiki/Cash-Karp
http://en.wikipedia.org/wiki/Fehlberg

when young, but these fade away as one gets older and wiser or more cynical. In my case, the
reverse has happened. Before university I had spent a year working at Texas Instruments in
electronic semiconductor circuit design, and had unquestioningly worked on the control
system for an anti-tank missile. My mentor on that project, Bhiku Unvala, discussed the
ethics of such work, and was marginally willing to do it, since it was a defensive weapon
rather than an offensive one. A debatable point perhaps, but such questions were quite novel
to me at the time, and I regarded them as perhaps rather eccentric and quaint. Later in a
vacation job with ICT I worked on the logic design of a military computer, again without too
many qualms about the desirability of such work. But when I joined Elliott’s I stipulated that
I did not want to work on anything military. There was no problem about this. Although
Elliott’s had divisions doing work for the military, there was plenty of opportunity in the civil
sector. Previously, while an undergraduate, I had supported CND and had helped to campaign
for the abolition of capital punishment. My interest in philosophical and ethical questions has
continued ever since.

The 1960s were not just a time of individual liberation, but a decade in which the public
conscience was awakening, and stirred to ask ethical questions of many civic practices. The
Wolfenden Report had been published in 1957 but only ten years later in 1967 was
homosexuality between consenting adult males finally decriminalised. Capital punishment
was formally abolished, although no-one had been executed for several years, in anticipation
of its end. In the UK, it was still legal to discriminate against someone on the grounds of race
or colour, and advertisements for accommodation and jobs still often bore the stipulation “no
coloureds”, which would seem shocking today; also, equally often, “no Irish”, which would
simply be perplexing now. In the mid sixties, a considerable movement was afoot to get rid of
racial discrimination, and a colleague at ULACS, Gurmukh Singh, introduced me to the
Camden Committee for Community Relations. We would test night clubs and other places to
see if they practised discrimination, and bring them to the notice of the authorities if so. The
war in Vietnam was taking place, and it prompted a lot of moral debate, including in the
Gordon Square common room; there were several staff from the USA in both institutions,
most of them against the war but just a few for it.

There were some interesting and eccentric individuals working at ULACS and the Institute.
One of our programmers, brilliant but highly strung, would become extremely frustrated if
his programs failed to work as they should. At one time he began to believe that unseen
blackguards were creeping into the premises at the dead of night and altering his results. We
were always advocating that programmers should document their programs, which then
meant mainly writing a document explaining how the program worked. This was for the
benefit of any other programmers who might take over the work, especially important in a
time of high staff turnover. Another of our programmers was soon to leave and she was urged
to document her recent work. She did so, but after she had left, we found that she had written

31

her documentation in Hebrew. In years to come, firms would have “quality systems”, sets of
rules which ensured that work was reviewed and signed off as being of adequate quality.
Such procedures would have prevented this, admittedly humorous, caprice. One day David
Powell-Evans, an urbane, senior and perhaps the most competent of the applications
programmers, arrived at work carrying a climbing rope and rucksack festooned with
karabiners and other equipment, in preparation for a weekend of rock climbing. After his
colleagues had asked him several questions about climbing techniques, he demonstrated
abseiling by doing so from the top floor down the front of the building. Passers by found this
mildly intriguing.

In the ambience of the sixties, an era of new music, art and ideas, computer programmers
were still ambivalent about whether they were artists or engineers, individuals practising
individual skills and expressing elegance in their creations, or followers of disciplines aimed
at reliability and safety. There was to be a great movement towards repeatable quality, “ego-
less” programming and the maturing of software programming as an engineering discipline.

But enough of philosophy and personalities, for the present at any rate. More differential and
integral calculus was to beckon me. Before digital computers came on the scene, analogue
computers were used for solving mathematical problems, especially for solving equations and
calculus. Amplifiers, essentially the same as you find in hi-fi and radio circuits, can multiply
voltages together and the use of ohm’s law can be arranged to add them. Two simple
electronic components, capacitors and inductances, give the building blocks of calculus; the
voltage across a capacitor is the integral of the current flowing into it over time, and across an
inductance it is the rate of change or differential of the current. Engineers could patch
together basic electronic units that added, multiplied, differentiated etc., so as to solve a set of
differential or integral equations. These would be used to simulate mechanical and other
systems. They had been used a great deal in engineering, especially the aircraft industry. But
now they were becoming obsolete and engineers were turning their eyes towards digital
computers, which were potentially more accurate and perhaps easier to program. It would
certainly be easier to repeat calculations.

Elliott’s, another branch of the firm I had worked for previously, wanted to simulate an
analogue computer on the Atlas. We had a number of meetings with them in which they
showed us the kinds of “program” they would write for an analogue computer. These
programs consisted of sets of very short simultaneous equations, something like the
following:

x=ab
a=∫ yd t

y= x /a
b=3.4∫ x d t

32

On an analogue computer these equations would be programmed by plugging together an
adder, a divider, a multiplier and two integrators. Any of the terminals of the units, which
would represent one of the variables, could be attached to an oscilloscope and the voltage on
it examined.
<block diagram of adder, divider, 2 integrators with connectors labelled with variables, and
maybe an oscilloscope connected by a trailing line to one variable.>

So our task was to take the whole repertoire of these analogue computer instructions and
write a compiler for them. The compiler would have to turn the instructions into an Atlas
machine code program that would carry out calculations equivalent to the analogue program.
One interesting and unusual feature was that these equations are much more like
mathematical equations. They are declarative in that they declare what the definitions of the

x , y , a ,b are. It does not matter in what order they are written down, or in what order the
engineer connects the analogue units together. They will become active only when they are
all connected and the circuit switched on. This is totally different from a conventional
computer program, where the calculations are in principle done in the order they are written
down. So, having translated the equations into machine code, the compiler has to sort them.
Some equations, like the one defining x , require other variables, a and b , to be
calculated first. All the variables are in fact, functions of time and have values which vary as
time proceeds. The results of integrals do not have to be calculated in advance, so the little
program above would need to be sorted as follows:

a=∫ yd t
b=3.4∫ x d t

x=ab
y= x /a

These equations then have to be calculated repetitively in a loop, with “time” being
incremented in steps in each repetition. The task therefore required compiler writing skills,
and numerical analysis to perform the solution of simultaneous integral equations: a task for
the systems group, especially for the compiler design. Also, with possibly several hundred
instructions being presented to the compiler, the task of sorting them into an appropriate
order was not as simple as it might seem. It required a technique called precedence analysis.

x depends on a and b , and y depends on x and a . This dependency forms a
directed graph, a number of nodes (the variables) connected by lines with a direction, the
dependencies. This graph can be represented in the computer and there are programming
techniques for “walking” through the graph and finding its “leaves”, the nodes or variables on
which nothing depends, and tracking through the nodes in order of precedence. From this
directed graph, the instructions could be arranged into an order of precedence.
There mustn’t be any circular dependencies amongst the variables, which means that the
graph must be acyclic, without cycles or loops. Otherwise the equations could not be sorted

33

into order, but more importantly, they could not be successfully programmed. One can find
the same requirement in a spreadsheet today. If you make a set of cells contain expressions
which are circularly dependent, the spreadsheet package will object.

Conventional computer programs can look insidiously like mathematical equations, but they
are substantially different. It is quite in order in a program to write something like:

x= x1

meaning add 1 to the existing value of x and write it back to x . x is not a variable in
the mathematical sense but a name that is associated with a value. The equations in analogue
programs look even more like mathematics, but are still not the same, even though their order
is not significant. The equations

x= y –1
y=3 x

have a mathematical solution (0.5 and 1.5) but if you connected the units of an analogue
computer following those formulas they might well oscillate wildly. (Try putting these
formulas into two cells of a spreadsheet and see what happens.) So our compiler could have
the additional advantage over an analogue computer; it could catch erroneous programs and
report on them.

Peter Hughes and I joined forces in producing this compiler. Peter let me run the project,
which was generous of him, seeing that he was my manager. Peter wrote the front end of the
compiler using Brooker and Morris’s Compiler-Compiler. I designed the object code that is
generated on translating the instructions, the algorithms for sorting them and for doing the
integration. I estimated four months for completing the project. PERT charts, Project
Evaluation and Review Technique, had recently been invented, and I made a simple one of
these to plan the project and estimate the time we would take. We completed the program and
delivered it ten days before the deadline. I have to admit that I never repeated this, delivering
a project so early, although I have completed plenty on time. In years to come software
projects were to gain some notoriety for being late and over budget, although not, to my
mind, in reality any worse than in other industries like civil engineering.

When we were part way through the project we were asked to go to Elliott’s and give a
presentation about the program and what it would be able to do. The Elliott’s works was in
Farnborough, not the Borehamwood location where I had worked before. When we arrived I
was perturbed to see that there were a number of soldiers in uniform on the site. I had not
realised that Elliott’s was so hand in hand with the army. Peter and I went to the office of a
manager, David Morgan. His office was large, with a conference table and a cabinet beside it.
Our presentation was quite informal, with occasional writing on a whiteboard. Overhead
projectors were not in common use yet. I found myself working with David Morgan more
than twenty years later and got to know him very well. On this occasion he was fascinated

34

when we described the principles of the Compiler-Compiler. At lunchtime he opened the
cabinet beside the conference table and revealed an array of bottles, gin, vodka, mixers and
glasses. We had gin and tonic before lunch. I was most impressed. A cocktail cabinet in his
office, supplied by his company for business entertaining! I thought: this man has arrived!

The compiler we wrote, which was called SLANG, for “simulation language”, seemed to
work and produce believable results. Again, supplying it with test data and checking the
results was a somewhat tricky and uncertain process, but the solutions to some sample
equations that we invented ourselves showed the expected pattern of values. The time came
for Elliott’s to use SLANG for real. They tried a sample of their own data and were satisfied
with the results, and then presented the full range of values. This was to take an overnight run
of the Atlas at £950 per hour. My salary at the time was £2,000 per year, so Elliott’s were
spending the equivalent of a couple of years of my salary on a single computer run, using the
software I had designed. I was more than a little apprehensive. When running the Atlas, the
operators would perform a “restart” every couple of hours, usually in order to do some minor
hardware maintenance. The operating system would automatically back up the state of the
machine, memory, registers and so on, to a special magnetic tape every few minutes and
when the operators did a restart, the computer would resume from the last recorded state. A
couple of restarts occurred during the long run of the SLANG program that took place
overnight. Since the huge long tables of results of the program’s calculations were being
produced continuously throughout the run of the program, this meant that over the restarts, a
few results were repeated. I was horrified to see the next morning that these “repeated”
results were very slightly different, in the third or fourth decimal place. The repeated
calculations should have given identical results. Something was wrong. I discovered that I
had not initialised one of the variables in my program properly. If one fails to do this, the
variable can have any random value at the start of the program, so the program can produce
different results each time it is run. Usually, if there is a fault in a program, the results are
haywire and it is easy to spot that something has gone wrong. It is highly unusual for a
program to produce errors that are out by a fraction of a percent because of a fault like this.

We explained the difficulty to the customer. The error was easy for me to put right, but my
heart was in my mouth while we waited for Elliott’s reaction. They could demand a rerun
free of charge. I was most relieved when they said that such a small deviation was not going
to affect their subsequent analysis of the results to any significant degree. I breathed a sigh of
relief.

Although we had written the SLANG compiler for a specific customer on contract, the
compiler remained the property of ULACS. The reason for this was a pragmatic one: Elliott’s
could only use the program on an Atlas machine and the London Atlas was the only one
which was regularly used for commercial hire. Even then, the SLANG compiler would have
required some minor modifications before it could run on the Manchester Atlas or the

35

Cambridge Titan. Quite simply, there was no point in Elliott’s, so to speak, removing the
compiler from us, because they would not be able to use it anywhere else. Today, and for the
last twenty years or more, everyone is much more commercially conscious. A customer in
that situation would insist on royalties if we used the program, which they had paid for to be
developed, for profit with another client. But then, in 1968, we were free to look for more
users and customers for SLANG.

I was fascinated by SLANG. Here was a program, that I had designed, that in effect could
solve any reasonably well behaved set of differential or integral equations that you could
throw at it. I felt that it would be more satisfying if one could write fuller, more general
expressions on the right hand sides of the equations, instead of the very short forms that
reflected the old analogue computer elements. Then, instead of the four little equations for

x , y , a , and b shown previously, one could for example write:

x=∫ y d t3.4∫ x d t
y=x /∫ y d t

This would look much more like conventional mathematics and be less irksome to write out. I
could see how to write a compiler to do this, using quite standard compiler techniques for
analysing expressions.
I suggested this enhancement to Elliott’s. They weren’t particularly enthusiastic. Probably
they were accustomed to the form of the analogue computer programs and so did not see
much advantage in the change. However, they agreed to a further contract. The cost to them
would be very small compared to the amount they were spending on computer time to
actually solve their equations; it was “just” a piece of software development. Today the
economics are quite the reverse. Hardware is cheap, and so computer time is very cheap, but
skilled labour is expensive.

I produced the more advanced version of SLANG, again with Peter Hughes’s assistance.
After the success with the first version, I must have been suffering from a bit of
overconfidence. The enhancements turned out to be a little more difficult to do than I had
anticipated. But we delivered, a little late this time. The customer was not bothered about the
two or three weeks delay, presumably because they had no immediate plans to use the “Mark
II”.

Together with one of the salesmen, Bill Musker, I tried to find other customers for SLANG.
Bill was probably the best salesman we had. The others used not to do much more than issue
an advertisement from time to time and sit at their desks waiting for the telephone to ring.
Bill was much more proactive. At his instigation several potential customers came to visit
ULACS and talked to me about their application. One was a doctor who was having to
calculate the irradiation dosages for a cancer patient. He described how he had to make these
long calculations which determined the intensity of radiation in the diseased part of the

36

patient’s body, and to make sure that the intensity in nearby sensitive areas were low enough
to be safe. I was alarmed to think that the use of the SLANG compiler could result in such a
life critical procedure. But when he heard how much it would cost to solve his equations, he
sorrowfully said that it would be way beyond any budget he had. I felt a mixture of relief and
disappointment.

Other potential customers arrived from time to time. They all had military applications. I was
saddened by this. I began to think that perhaps differential equations were not the neutral,
intellectual concept that I had thought them to be, but had an inevitable, aggressive character.
In the event, no further contracts arrived for the use of SLANG.

A friend of mine from my undergraduate days, Michael Digby, had started working for the
computer manufacturer English Electric, which later merged with Leo and Marconi. English
Electric produced a physically large mainframe computer, the KDF9, and this was the
mainstay of its computer business. Mike worked on a vehicle scheduling program for them.
The general vehicle scheduling problem is a classical and practically important problem in
computing. If you have a fleet of vehicles which have, between them, to visit a list of
locations, shops for example, assigning suitable routes to the vehicles so that they cover the
least distance and therefore use the minimum amount of fuel, is a highly useful problem to
solve. A computer can be programmed to solve this. The difficulty is that as you add more
destinations for the vehicles to visit, the amount of computing time required to solve the
problem increases disproportionately, indeed, exponentially, and soon becomes impracticably
long, even with today’s central processor speeds. So various techniques have over the years
been devised to work round this difficulty, most of them being to find reasonably efficient but
sub-optimal solutions that require less computing time. IBM had a proprietary program for
doing this, but Mike had some ideas of his own. He left English Electric and set up his own
company, for a long time at first working on his own. He developed a program for vehicle
scheduling that out-performed the IBM product by a few percent. This was sufficient to prove
attractive to very large organisations that had equally large fleets of vehicles. He won
contracts to supply firms like Unilever and Whitbread.

Licensing his program to a software house was not initially what Mike planned to do, but
there came a point when he thought that doing so could be to his commercial advantage.
Knowing that I worked for ULACS, he approached Fred Gordon. Fred later called me to his
office. “This man Digby: is he reliable?” he almost barked. Well, yes, I assured him, he
operates perfectly ethically but he is not a charity. He has a business to run. Fred Gordon
entirely understood this, being very much of a commercial turn of mind himself. So they
reached an agreement and Mike leased his program to ULACS for customers who had
vehicle applications to use. Fred and Mike decided to market his program under the name of
“RouteMaster”. A new fleet of double-decker buses had been introduced into London’s
transport system and these were called “RouteMaster”. These buses were new, shiny and

37

popular, and in some ways the latest thing on the London scene. So the name was evocative
and upbeat. The buses had very rounded lines and a large open platform on to which one
could jump after running for a moving bus. Safety was less of an issue then: trains and buses
now have doors electrically operated so that no-one can accidentally fall out while in motion.
I sometimes think that we have become a bit too safety-conscious these days. Citizens should
be allowed to take risks, and on their own heads should it be. Nonetheless, there are still a
few RouteMaster buses operating today, venerable, almost vintage vehicles and reminiscent
of the sixties.

Another new appearance on the London scene was the Post Office Tower, now the BT
Tower. The PO Tower had a revolving restaurant near its summit, closed now for many years
because of a bomb planted there many years ago by the IRA. One food critic of the time
described it, damning with faint praise, as “by far the best 650 foot high revolving restaurant
in London”. However, its novelty value was also very high and to my delight, Mike invited
me and a few others whom he wanted to thank, to lunch in the revolving restaurant. The
views were magnificent and the floor in sections revolved slowly. The engines driving the
revolutions vibrated slightly through the floor and each time I looked up after a conversation
with my dining neighbour, a different scene presented itself. After a time I began to
experience mild travel sickness, but not enough to spoil my meal. The waiters were a little
pretentious, addressing one as “Monsieur” in a London accent. But the experience was
unique and memorable, never to be repeated. Thank you Mike.

The Atlas was becoming rather aged and expensive to run. Technology was moving on, as it
does, and the Institute had for some time been thinking that it should get itself a more up to
date machine. CDC, the Computer Development Corporation, was in the business of
producing large main-frame computers, as were IBM and other manufacturers. Various
changes in organisation began to take place. The Institute of Computer Science became
absorbed into Birkbeck College and bought a CDC 6600 machine. Many of the staff from
ULACS and the Institute, including Peter Hughes, moved to the new organisation and its
computer. I remained behind and was made Chief Systems Programmer. After some six
months, the technical staff within ULACS and the original Institute had become considerably
depleted. The intellectual environment was not what it had been and I began to get itchy feet.

Chapter 3 Workers in Control
I was disappointed that the original ULACS was, so to speak, evaporating into thin air around
me. It had been an organisation of great character. One effort in the neighbouring Institute
looked especially appealing. David Hendry had an idea for a more efficient way of writing
compilers. Compilers had fascinated me for some years, ever since I had worked right next to
the Algol60 development at Elliott’s. Yet more fascinating was the notion of Brooker and

38

Morris’s Compiler-Compiler, which was used in several projects in the Institute and in
ULACS.

A compiler translates the “source” language, that is the language in which the programmer
composes a program on a coding sheet, into a “target” language, which is usually the
machine code of the machine on which the translated program is to run. David Hendry’s idea
was to divide every compiler into two sections, the front end and the back end. The front end
would translate the source language into a standard intermediate code. The back end would
translate the intermediate code into the target language, that is the target machine code. Then,
by bolting the two together, one has a compiler for the source language producing code for
the target machine. The intermediate language would be simple, rather like the code of a
typical machine, so the back end would not have too much work to do and would, one hopes,
be relatively straightforward to write. Now, if one has to write compilers for Algol60 and
Fortran, say, to produce code on three different machines, then one has simply to write two
front ends and three back ends, obtaining six compilers. If a requirement comes for a
compiler for either of these languages for yet another machine, all one has to do is to write
another back end.

This technique is commonplace now, but in 1968 it was new. The idea of an independent firm
writing compilers for another manufacturer’s computer was in any case certainly unusual at
that time too. There were few independent software firms, so computer manufacturers would
nearly always write their own language compilers and other systems software. And they
certainly would not be writing software for their rivals’ machines, so until then there had
been little call for software to run on different machines, that is, to be “portable”. But things
were changing. Computers were becoming smaller and more affordable. The first
minicomputers were beginning to arrive on the scene and independent software houses, fairly
small organisations that could afford to buy such machines for themselves, were also
springing up. Furthermore, the industry was coming increasingly to recognise the value of
high level languages like Algol60, with their greater portability across machines and the
improved ease of understanding programs.

Because of the limited storage size of minicomputers such as the Digico Micro-16, the
intermediate code often had to be output from the front end onto a temporary medium –
usually paper tape – and read back in by the back end. We take it for granted now that the
binary representations of characters, letters of the alphabet and numerical digits especially,
are universally the same in every computer, whether as stored internally or on magnetic
media like floppy disks and CD ROMs. But it has not always been the case. At first almost
every manufacturer defined its own way of representing a character on paper tape. Standards
began to be defined, but there were still several different paper tape formats defined by rival
standards institutions. Eventually the representation known as ASCII became the accepted
standard, but in 1969 different machines still used various representations.

39

Radics wanted their compilers to be as portable across different machines as possible.
Fortunately, all the paper tape codes agreed about the representation of the decimal digits 0 –
9. So the intermediate language for the compilers was coded into decimal digits and the tapes
that conveyed the intermediate code from front end to back end were called decimal coded
tapes. We probably would have been able to use alphabetic characters too, but we decided
that a decimal code was safer just in case we encountered a really obscure paper tape code
that had different alphabetic coding.

Another twist to David’s idea was that the front and back ends would be written in a special
language of his own invention, called BCL. There was already a language ACL, Atlas
Commercial Language, which was used on Atlas for commercial applications. It was a neat
straightforward language using some of the better ideas from Cobol and Fortran. The first
incarnation of BCL ran on Atlas, and so it was called BCL as a kind of successor to ACL,
although having a very different purpose. Since the compiler for BCL was itself written using
the front end – back end technique, any compiler written in BCL could be transported to
another machine simply by writing a new back end for the BCL compiler.

The first compiler for BCL was written using the Brooker and Morris Compiler-Compiler
and ran on Atlas. A second version was written in BCL itself, which could be translated using
the first version. From that point on the first compiler could be thrown away and the second
one used. Then, by writing a back end for another machine, the whole technology could be
transported. David’s ambition was to start an independent software house, but he began with
a small group within the Institute. We had a few discussions and I was keen to join him.
There was one small difficulty: ULACS and the Institute had a mutual non-poaching policy.
This was sensible enough, since the two organisations were housed in the same building.
Without such a policy, there could be some chaos. So, to avoid this difficulty, I had to apply
for a job elsewhere. Then, David could come to the rescue and offer me a job, with ULACS’
agreement. That way, since I was likely to leave anyway, I would be kept within the fold, so
to speak. This ploy was and is used frequently when different divisions within one company
have a mutual no-poaching policy. So I had to go through the hoop of applying to CAP,
Computer Analysts and Programmers, in answer to one of their advertisements. Programmers
were in short supply, and software houses like CAP had recruitment advertisements in press
almost continuously. CAP was one of the first independent software houses, and had
established a high reputation for itself. They put particular emphasis on maintaining strong
business ethics, especially in the area of client confidentiality.

I had an interview with the managing director and founder of CAP, Alex d’Agapeyeff. He
told me how they pursued their confidentiality policy. The team working for one particular
client would be separated from teams working for others, especially if they were engaged on
similar projects. Compilers were becoming a frequent task, with high level languages like
Fortran, Cobol and Algol60 becoming used more widely. I asked him what would happen if

40

there were two contracts to supply an Algol60 compiler, for example. Wouldn’t it save a lot
of time and be less prone to error if the two projects shared design ideas at least? He replied
that, on the contrary, in that situation the two teams would not be allowed to speak to each
other, to preserve confidentiality. We had quite a discussion on that topic, and he admitted
that it was a question that was being debated quite strongly within his firm. CAP offered me a
job at an increase in salary, and after talking to the ULACS managing director, Fred Gordon,
David Hendry offered me a job in his team. Fred and I had a talk about this and he said that
he would prefer to see me in the Institute rather than with a rival software house. So I joined
the Institute of Computer Science, working in David’s group. After a few weeks David set up
his new company. All of us in his group changed employers, once again in my case, to the
new company, RADICS – Research and Development In Computer Systems.

I feel I should now, thirty eight years later, apologise to Alex d’Agapeyeff for taking up his
time at an interview under rather false pretences. My apology is belated, because Alex
d’Agapeyeff died in 2003, having achieved considerable distinction in the commercial world
of software engineering, including being President of the British Computer Society from
1970 to 1971. I did, however, find the interview an instructive experience and even that brief
hour’s encounter has added some more to my perspective on the evolution of software
organisations and the work they carry out. CAP thrived for many years and later underwent
various splits and mergers. CAP-Gemini is a successful international organisation today.
Many organisations had and continue to have non-poaching agreements between their
divisions, and similar agreements are routinely made between a supplier, especially a
consultancy house, and its clients. Obtaining an offer of another job elsewhere was a frequent
and widespread means of overcoming these barriers, especially when the demand for staff far
exceeded the supply.

RADICS moved out of Gordon Square into premises of their own in Drayton House, Euston
Road. This building was let to us by the Society of Friends and one term of the lease was that
we should not use the building for the manufacture of arms, alcohol or tobacco. We found
this mildly amusing, rather quaint perhaps, and thought that these terms were most unlikely to
restrict us. About ten of us occupied the lofty and rather gloomy rooms. David had radical
socialist ideas about how an industrial organisation should run itself. He wanted RADICS to
operate under a system of workers’ control. Every member of staff, administrative, technical
and managerial, had an equal £1 share in the company. Share-holders’ meetings tended to be
indistinguishable from staff meetings. Policy decisions were taken democratically, everyone
having an equal vote. I remember one decision that was rapid and unanimous: Christmas Eve
should be a company holiday! But most of the decisions were reached only after a lengthy
debate. Looking back on RADICS, I think we spent rather long periods in staff/share-holders’
meetings, time not very productively spent from a commercial point of view. It was quite a
large overhead and could not have improved the company’s productivity.

41

The first contract was with Digico, who manufactured one of the first minicomputers, the
Micro-16. Fortran and Algol60 compilers were required. A bi-product of this contract was
that we acquired one of these computers and it stood as a general work-horse in the corridor
beside the offices. It was fun working in a company that had just started up. We had to
acquire everything from scratch – coffee spoons, kettle, stationery, typewriters for the
secretaries, desks and chairs, you name it. I have to say that the office premises were a bit
dismal, but our enthusiasm and excitement for the new enterprise was enough to compensate
for many environmental disadvantages.

We numbered about twelve. One team worked on the front end for the Fortran compiler,
another for that of the Algol60 compiler, and a third team for the back end for the Digico
Micro-16. David Hendry was the managing director and Marshall Harris, also a director, was
marketing manager, with the important task of finding further work. High level languages,
like Algol60 and Fortran, were becoming more and more important in the industry’s eyes. A
language is “high level” if it is designed to express the solution to a typical problem, instead
of being a more or less convenient way of writing instructions for a machine. With the
increasing popularity of high level languages, David believed that Radics’ flexible compiler
technique would lead to prosperity for the firm and the workers who owned it. “Those who
control the languages control the world!” he would say, with some hyperbole. David’s
charisma and the combined sense of new enterprise and new technology fired us all with
enthusiasm.

David had done a little initial work on the Algol60 front end, and I was given the task of
completing it, helped by an able assistant, Pat Whalley. When I was at Elliott’s, I had
witnessed the team there produce the first commercial Algol60 compiler, in the next room, so
to speak, something that made me both excited and envious. Now at last I was to design and
produce my own. I was both delighted and a little overawed by this prospect. Algol60 was a
language which had many features that were difficult to implement. The language was “block
structured”, which meant that new areas of data could be defined while a program was
running. The allocation of a program’s working space was therefore dynamic. It could not be
decided in advance by the compiler. Pieces of code could be designed as procedures or
functions, which could be called from other parts of the program, much like subroutines in a
low level language program. But Algol60 procedures and functions could be recursive, that
is, they could call themselves or call each other mutually. For some problems this was a
superb feature. The usual example is that of a factorial function:

integer procedure factorial(n); integer n;
factorial := if n = 0 then 1 else n * factorial(n-1)

In mathematics the factorial function is written n! For all positive values of n the factorial is
the product of all the numbers up to and including n multiplied together. 0! is defined as 1. In

42

fact this example of recursion is not a particularly good one because it is perfectly easy to
program an efficient factorial function without using recursion, but it illustrates the principle
neatly. Compiling recursive procedures and functions is a bit tricky because each time the
procedure or function is called, new working space has to be allocated for it, and de-allocated
after each call is finished.

Recursion on its own is nonetheless reasonably easy to cater for in a compiler. In Algol60 the
whole feature becomes much more complicated because one is allowed to jump out of the
body of a procedure using a “Go To” instruction. In high level languages Go To instructions
are really relics of machine code programming. In all machine codes, there are jump
instructions, which alter the path of control. Instead of the computer obeying the next
instruction in sequence, it obeys the instruction whose address is given in the jump
instruction. Furthermore, in Algol60 and some other high level languages, labels, which are
attached to instructions and can be the destination of Go To instructions, can be passed as
parameters to procedures and functions. So working out just how much recursive unwinding
is required when jumping out of a recursively called procedure or function is a bit of a
nightmare.

Using Go To statements in Algol60 and other high level languages often led to programs
being very difficult to understand and analyse by a human reader. In fact, in 1968 the
renowned computer scientist Edsger Dijkstra published a letter to the Communications of the
ACM with the title “Go To Statement Considered Harmful”1. This two page letter caused
immense controversy at the time and led to a whole discipline of how to write software
clearly and effectively. This discipline was called “Structured Programming”. To this day the
Go To statement is notable by its absence in modern programming languages such as Java.

Partly because of the difficulties of combining recursion, Go To statements and dynamic
storage allocation, several different “levels” of Algol60 were defined by ECMA, the
European Computer Manufacturers’ Association. Each level of the language contained
different features. The highest level contained all the features of Algol60. The lowest level,
level 0, did not contain recursion or dynamic storage allocation. Because the Digico micro-16
was a small machine, we were only asked to provide a level 0 compiler for it, but for two
other contracts, with ICL and Honeywell, we were asked to produce a level 2 compiler. Level
2 contained virtually all the principal features of Algol60, including recursion and dynamic
storage allocation.

So Pat and I set about designing and writing the compiler for Algol60 level 2. I thought we
could do most of the work for the level 2 compiler and then produce a new version, removing
some features to obtain the level 0 version for the Micro-16. But I found that the level 0

1See Dijkstra 1968.

43

compiler was so much simpler in requirements that producing it was in reality a separate
project, albeit a much easier one.

The Digico micro-16 computer had a mere 32 kilobytes of main store. A modern PC with its
two-level store shared between random access memory and hard disc has, by contrast,
typically 160 gigabytes of which 512 megabytes are in RAM. So today’s RAM is sixteen
thousand times the size and the whole main store is five million times the size of the main
store of the Micro-16. Furthermore, by the time this book is published, these figures will no
doubt be out of date; the factors will be even greater compared to what is available as you
read this. The Elliott 803 had a main store of a similar size to that of the Digico micro-16, so I
recalled the strategy used by the Elliott’s Algol60 team to shoehorn the compiler into such a
limited space, and followed their example.

The Algol60 language is full of opportunities for “forward referencing”. As you, or the
computer, read the program, there can be references to elements of the program which have
not yet been fully defined. The compilation of these references cannot be completed until the
definitions have been found, later on in the script of the program. This means that the
compiler has to remember a great deal during the input of the program script. With a small
amount of main storage, only very small programs can be compiled.

The way round this problem was to compile a program in two passes. The traditional method
was for the compiler to read the program two, or maybe more, times. On the first pass the
definitions would be read and stored in some codified form. On the second pass the full
compilation would be carried out, with the knowledge, so to speak, of all the definitions. In
this way, the compiler had much less to “remember” during the compilation process and
much larger programs could be compiled.

This was a rather crude approach and had another disadvantage. Programs were still mostly
prepared on paper tape. After reading the program the first time, the tape will have been
dumped out of the tape reader into a tape bin. To read the program a second time, the tape has
to be rewound from the bin on to a spool and fed into the tape reader again. For long
programs this takes some time, during which the computer would be idle, unless it was a
sophisticated time sharing system like Atlas. The Elliott’s team had another idea. Instead of
rereading the program, during the first pass the compiler would output a partially compiled
version of the program on to secondary storage, typically paper tape. By the end of the first
pass, all definitions would have been found and output on to the intermediate tape. This tape
would be read back in on the second pass, in reverse direction. This has two advantages. The
tape does not have to be rewound, and the definitions, which would be completed at the end
of the first pass, could now be read in front of all the rest of the partially compiled program.
The compiler has to remember even less than with the crude and simple two pass approach
and so even larger programs can be compiled.

44

I followed this same approach with the Micro-16 and other Algol60 compilers that we were
commissioned to produce. However, I added an extra, simple feature. The intermediate
information would be written into a main store area until it was filled up. Only then would it
be sent out to paper tape. This meant that programs could be compiled in one pass if they
were small enough. If they were too large for one pass compilation, the compiler would
detect this and automatically move into two pass mode. Our compiler could compile small
programs in one pass on the 32 kilobyte Digico Micro-16 and respectable sized ones in two
passes.

Our other two Algol60 projects were for Honeywell and ICL Dataskill. Honeywell
manufactured their own range of computers and Dataskill was a software house wholly
owned by the computer manufacturer ICL. Many of Dataskill’s contracts were for writing
software for their parent company, ICL. For the first of these projects, RADICS had to
produce a back end for a Honeywell machine. For the later stages of development and testing
we needed access to the Honeywell and ICL machines. So four of us, Mary Lee, Clive
Jenkins, Pat Whalley and I had to commute to Honeywell in Hemel Hempstead, some thirty
miles outside London. For the ICL Dataskill contract, the machine was the Cambridge Titan,
similar in design to the Atlas, for which a back end had already been produced. The commute
to Hemel Hempstead was tedious, given that we had to travel to our starting-point first, which
was Highgate underground station. But the offices at Honeywell were pleasant and modern.
We all sat in an open plan office and had easy access to the computer. We mainly needed this
for the back end work, but the Micro-16 at RADICS was beginning to be in demand for other
projects, which were approaching their final stages. The style at Honeywell was a little
different from anything most of us had been used to. Managers were held in high regard and
used to act accordingly. One of them once asked one of us to do some menial task for him,
without realising that we were visiting consultants and not one of his own subordinates. I
remember a secretary telling Clive: “You mustn’t hang your coat there; that’s my boss’s coat
stand!” But by and large we carried on without difficulty.

To carry out the same task for Dataskill was much less of a chore. The customer set up a
telephone link from the Institute’s premises in Gordon Square to the Cambridge Titan, and
we could access it directly using a Flexowriter and the equivalent of a modem. Programs still
had to be run as batch jobs just as on Atlas, but the turn round time was far more rapid. I
found I could edit, recompile and run a program in half an hour, often getting eight or nine
revisions done in a day, instead of just one or two, which was the limit on the London Atlas.
This felt like a breakthrough in productivity. Progress was rapid and, because we were
producing the same front end for the two projects, the work for both the Honeywell and ICL
contracts benefited. This was a very early experience of using a computer by means of a
remote terminal, which, furthermore, in this case, was 48 miles distant. It was to be some
twenty years later before I used such a system again, when working at Praxis in 1987.

45

Algol60 compilers were complex pieces of software and several books and many papers had
been written on techniques for writing them. Sample test programs had been published which
would stretch the capabilities of compilers and help to distinguish those that behaved
correctly and those that did not. I read many of these texts and thought long and hard about
the details of solutions. Our premises were a mile or so from the embankment by the river
Thames. I found that walking down to the river and letting my eyes rest on the water-borne
traffic was an aid to thought, and spent extended lunchtimes working out solutions to some of
the problems on these perambulations.

Then came a disaster. The other early contracts that Radics had won were completed and no
new business had come our way. The commercial climate at that time had taken a dive and
small computer firms started going into liquidation at an ever increasing rate. The periodical
“Computer Weekly” published a lengthening list of the latest casualties every week. At one
point it was actually easier for less experienced staff to find work and people began to
conceal their qualifications when applying for jobs. In a time of commercial depression
organisations cut back on using services, especially the relatively sophisticated services of
computer consultancies. Radics had to look for a buyer to survive. Negotiations were well
under way with SDL, Systems Designers Limited. They interviewed all the staff and gave us
presentations about themselves and their company. In the end SDL decided not to buy Radics
after all, but offered individual jobs to six of the personnel they liked the look of most and
small redundancy packages to the rest. This caused some resentment, as one might imagine.
Radics the company had to go rapidly into liquidation, and the six, of whom I was one,
considered whether to accept their offers.

I was a little torn. My wife and I had recently bought a house, our second child had just been
born, we were making ends meet on one salary and our personal finances were very tight. But
none of the members of my Algol60 team had been offered a job by SDL and the two
contracts for compilers were not complete. They needed about another six weeks’ work and
the other members of the team did not feel confident about completing them without me. So I
spoke to SDL and declined their offer, asking if I could have the redundancy package, which
was equivalent to about one month’s pay, instead. They agreed. I then set about trying to
negotiate new contracts between both Honeywell and Dataskill and us as a small group of
individuals.

The next day we travelled to Honeywell in Hemel Hempstead as usual, although, with Radics
terminated as a company, we would not be paid. Once arrived we had a short discussion
between ourselves to agree our position, and then I went to see the Honeywell manager. This
negotiation did not go well. To my surprise, Honeywell did not seem to be all that interested
in preserving the results of the work. I would have thought that having invested in the project
so far, a small extra sum to see the finished product would have been worth their while. But
Honeywell calculated solely on the basis of their own budget that they had set aside for the

46

original contract. The amount they offered us would have effectively reduced us to less than
half pay for the remaining few weeks of the work. I returned to my colleagues and told them
the news, recommending that we reject Honeywell’s terms. There was still the contract with
Dataskill to renegotiate, which if successful would still leave us with the satisfaction of
having produced a final version of the compiler, completed the work and delivered the
product. Also, we were all eminently employable despite the temporary minor recession in
the computer industry. My team were disappointed and a little dejected. There was some
considerable feeling of wanting to complete the Honeywell compiler despite the miserable
conditions, but after further reflection all agreed that we should terminate. I went to the
manager once again to relay the news. “All right then” he said, almost with a smile. He did
not show any concern that having invested in the project, they were left with nothing. I
wondered just how much they really wanted the compiler. There could easily have been some
internal difference of opinion about the value of equipping their machines with Algol60. If
so, it had been concealed from me. I returned to my colleagues and we straight away packed
up all our possessions and left. There seemed a heavy finality about this action. Lunchtime
was not yet even upon us.

The next day I visited John Chilvers, the technical manager at Dataskill who had let Radics
the contract. This meeting was a great contrast to that with Honeywell. John Chilvers was
enthusiastic from the start and determined to find a way to complete the work. We worked
out the financial package first and then talked about the logistics. Radics’ premises in
Drayton House were no longer available, since the contract to rent them had terminated along
with Radics. John had contacts at Imperial College in London and after a few days we were
able to use a basement room in a building that belonged to Imperial in Exhibition Road. A
telephone line was sorted out and a link to the Cambridge Titan machine installed. Once
again we were in business, this time as a group of individuals. The front end of the compiler
was virtually complete; there was just some testing to be done, some last work on the back
end, and testing the integration between the front and back ends. Pat Whalley, who had
worked with me on the front end, had found herself another job, and left soon after Radics’
liquidation. In a quiet and unassuming way, she had done splendid, sterling work on the
compiler, often in spite of my own lack of lucidity in explaining some of the difficult
technicalities to her. After SDL did not buy Radics out, Radics’ management persuaded Pat
to take SDL to the Industrial Tribunal, something of a David and Goliath situation, especially
as Pat was almost the most junior member of Radics. The result was that SDL was deemed
not to have done anything illegal, but we were told that the tribunal gave them some strongly
worded advice.

The remainder of us progressed with completing and testing the compiler in that little white-
painted basement room. It was a short walk from the Science Museum in Exhibition Road
and I spent several lunchtimes visiting there, seeing again the mechanical and electronic

47

exhibits. There were no entrance charges to national museums then, a freedom that has since
come, gone and come back again more than once. I soon finished the front end work, and
oversaw the final testing and integration of the complete compiler. After some ten days there
was only the final work to be done on the back end and I reckoned I was no longer needed.
With their consent, I left the others to it, continuing for another ten days or so without a
project leader. My absence enabled the limited budget to fund the pay of the others a bit more
equitably. They subsequently delivered the compiler in working order.

Many suites of test programs were available in Algol60. John Chilvers presented some of
these to us, along with the results that a compiler on another ICL machine had produced. We
could run the tests on our compiler and simply compare results. I felt some satisfaction that
there was only one discrepancy, and it was the ICL compiler that behaved incorrectly.

In writing the Algol60 compiler, there was one thing I would now have to do differently.
There are two kinds of division operator in the language, written / and ÷. The / operator
always produces a result of type real, such as 5.32 or 1.0. The ÷ operator produces an integer
result, that is a whole number like 5 or 1. If the context expected an integer, I allowed the /
operator to deliver an integer result. This would allow some programs to be compiled
successfully with an expected meaning, whereas the Algol60 language rules would reject the
program as faulty. Thus our compiler was very slightly more lenient, as it were, than one
which was strictly according to the book. I felt we were giving the customer more value for
their money this way. But, in due course of time, such a policy would have been regarded as
erroneous. A good compiler should accept and compile correctly exactly those programs that
are allowed by the language definition. It should reject programs that the definition does not
allow, even if the intention of the program is obvious. The reason for this is standardisation,
universality and portability. Someone who wrote a program that made use of this extra
feature that I provided would not have been able to compile their program on another
accurate compiler. But recognising the importance of standards was in its early years,
although growing.

Algol60 was by this time, over ten years old. A few years before, in 1968, a new language, a
successor to Algol60 called Algol68, had been devised, again by a committee. This had many
interesting features and treated a greater variety of programming concepts as manipulable
data, for example. But it never really gained popularity in the same way. It had gone up a
technical cul-de-sac. Many new programming languages were being devised at that time, but
the ones which took off and persisted for the next decade were more notable for their
simplicity rather than their advanced intellectual features.

But, it was 1979, I was out of a job and had a family and a mortgage to support.

48

Chapter 4 Running through Treacle
Just as I gathered the Sunday newspapers together, where most of the professional jobs were
advertised, there was a postal strike, which lasted for some weeks. I could not reply to
advertisements by post. However, the strike gave me a perfect excuse for telephoning instead,
and receiving perhaps a faster response. I actually set out on one or two days and cold called
a few firms in person, and was received because of the postal strike. In other circumstances I
would have been sent away and told to apply in writing. I telephoned Univac, Burroughs and
ICL, all computer manufacturers. Univac were situated by Euston station in central London,
in a tall office block covered in tinted glass. It had long been a noticeable landmark on my
daily commute to work, both to Radics and to ULACS. Burroughs had offices on the Thames
embankment. ICL were in Bracknell, a new town forty miles to the west of London. All three
agreed to give me an interview.

When I arrived at Univac, directed to an office on an upper floor, I found that my interviewer
was another mathematician I had known at Cambridge University, John Marsden, a year
ahead of me at Trinity college. We had a relaxed conversation, and I was left with an
optimistic assurance that the personnel department would be in touch with me.

Next I went to Burroughs’ offices on the embankment: another tall modern building, with a
sunny outlook over the river. The concierge directed me to an office on an upper floor once
again. In the lift I encountered another man, who greeted me heartily: “Are you a Burroughs
man?” My heart sank a little. This began to seem like a firm with an over-strong sense of
corporate loyalty. No, I replied, not yet at any rate, I was here for an interview. My fellow
traveller in the lift wished me well and left. I continued upwards and met my interviewer, a
fairly young man with a slight northern accent. He was enthusiastic from the start, not so
much interviewing me as trying to persuade me to accept the job offer, which he well nigh
took for granted. He quickly described the company, which was American owned, something
he frankly described as a disadvantage, without going into details. Burroughs were designing
a new machine, a minicomputer, and the post they wanted to fill was manager of the systems
software team. This team would operate from the factory where the machines were to be
manufactured. The factory was in Cumbernauld, in Scotland, a new town to the north of
Edinburgh and Glasgow. I was rather taken aback, because no mention had been made of this
in the job advert. My job would be to lead the team producing the systems software for the
new machine. This sounded a very exciting and challenging task. Their conception of the
systems software sounded very pared down: an operating system and just two compilers, for
Fortran and Cobol. Still, I pointed out, the OS would have to include items like an editor,
because programmers would need to write and produce their programs, loaders to load code
in and out of store, and device drivers for whatever devices they proposed to attach to the
machine. The next shock was that they were planning on a team of just six people to do all
this. I was rather amazed: even for a small machine, I was thinking in terms of twenty to

49

thirty or more. I said six people did not seem to be enough to me, and he asked me, well, we
would welcome your advice, how many do you think would be required? I thought rapidly. I
began to see that my interviewer probably did not know much about software production. But
if I said thirty, he might be put right off, thinking that it was I who was being unrealistic and
extravagant. Maybe it could just be done with twelve: two on the front ends of each compiler,
two on the shared back end, two working on the core of the operating system, which would
have to manage the interrupt system, two people working on device drivers, one more for
utilities and myself managing and coordinating the whole thing and helping out in the
individual programming tasks where necessary. So I said it might be done with twelve
people. I was expecting him to look shocked at my doubling his estimate, but he looked
unperturbed. Well, we’d certainly listen to your advice on the matter, he said.

This first interview was fairly brief. My interviewer said I should come to the factory in
Cumbernauld and meet the managers there, and I should bring my family with me. He
appreciated that it would be an upheaval moving up to that part of Scotland. It was important
that we should see the environment and get some idea of what would be involved in moving
there. We should all spend the weekend in Cumbernauld, hire a car and look around. The
company would pay.

This was a completely different proposition. The only addresses for Burroughs mentioned in
the advertisement were in London, in particular the one on the Thames embankment, one of
the pleasanter parts of the city. A new town in Scotland would mean a change in lifestyle. I
went home and talked to my wife Hazel about it. We thought about the change, being 450
miles away from our friends in London and probably losing touch with many of them, and all
the other implications. But, although there were more jobs available in and around London,
those in computing and engineering in general were spread over the whole country, precisely
because many were associated with manufacturing facilities, which were deliberately placed
in areas of low employment and cheaper land for building. We accepted the invitation for all
of us to go to Cumbernauld for my interview and the weekend following.

Burroughs was perhaps my first encounter with big-company largesse. I had only flown a few
times before, once to a job interview at CERN in Geneva, and the other couple of times on
short holidays in Paris. A cut-price flight left from Lympne on the south coast of England and
landed in Beauvais on the north coast of France. The rest of the journeys were done by coach,
so the flights were alternatives to ferry crossings across the Channel. This time we left from
Heathrow, flew the 400 miles to Glasgow and were accommodated in a hotel in the centre of
Cumbernauld. The town centre was laid out with all the facilities, shops, pubs and so on, in a
three-dimensional concrete construction with several levels. There was a green area
surrounding this, laced with footpaths, and surrounding that the residential area. All the
houses were of a uniform pale grey pebbledash, with small rectangular windows giving the
appearance of slots. My two children were under four years old and we all slept in the same

50

hotel room. In the morning I was collected to go to my interview. I left my family to explore
the town.

I had put on a suit and wore my best shoes for this interview. We arrived at the works and
walked through the shop floor on the way to the offices. This interior was more like a heavy
engineering workshop than an electronics manufacturing plant. The floor was screed concrete
and the area peopled by men in blue overalls. I felt self-conscious in my suit. The blue-
overalled men seemed to look at my shoes especially, as we walked across the concrete floor.
We arrived in a conference room and met several other managers, including Ed Henderson,
who would be my immediate manager if I accepted the job offer. The other two were
American. The conference room was decorated in hideous taste, with dark orange and green
vertical striped walls. They told me that the room had just been decorated and they were very
proud of it. We talked again of the estimate for the number of staff required to produce the
systems software for the new machine. The most vociferous American was a bit more
cautious about my proposal that a minimum of twelve would be necessary, but he didn’t rule
it out. He left the proceedings quite soon, saying – Well I sure hope you come on board,
Brian. That is my first name but everybody calls me by my second name, Tim. This man had
read my application form and gone straight into first name terms without the usual
preliminary negotiation. Today, indeed for a long time now, this has been the way, but in the
UK in the 1970s, we were all a little more formal. His attempt at familiarity annoyed me
slightly.

My escort, who had originally interviewed me at the Burroughs premises on the Thames
embankment, had proposed that he showed us all the rural sights over the weekend. I was
impressed by this offer, but now he seemed less enthusiastic. He mentioned a girl friend, and
I realised that he would, understandably, rather spend his time with her. I assured him that I
could hire a car and we would drive around ourselves, especially if he could give us some
indicators as to where to go. This made him very happy! So I returned to our hotel.

Hazel had spent the day with our children in Cumbernauld. She told me how she had talked
to a lot of residents there, and how all of them seemed to have said words to the effect: Oh!,
you don’t want to live here!. I thought maybe towns need to grow of their own accord rather
than be planned and planted in the middle of somewhere where it would be useful to have a
habitation. We spent the weekend driving around the beautiful Trossachs, an area where now,
by strange circular circumstance, I have chosen to live. But then we were townies and the
rural charms did not impress us so much.

A few days later I took the train to Bracknell and made my way to ICL’s offices in Lily Hill
House. I realised I had been there before. I had had an interview there on the “milk round”
series of interviews in my last year as an undergraduate. On that occasion I had missed the
stop on the train, not realising how close the stations were together and how short a time the

51

train paused at each one. That first interview had been a bit of a disaster; the person who was
supposed to interview me was not available and no-one else knew that I was arriving. I was
not offered a job, but I was not too concerned. I had plenty of other offers to choose from.
This time, nine years later in 1971, I was seen by a senior manager, Mr. Pearson. ICL were
embarking on the design of a new computer, the “new range”, later to be named the 2900
series. They were also having a modern new building constructed, and all the programming
teams would be moving into it when completed.

Mr. Pearson described the various teams and projects associated with the production of the
systems software for the new range. There would be about twelve hundred people involved
altogether. I remarked to Mr. Pearson that Burroughs were also embarking on the production
of a new machine and were proposing a team of six people to achieve essentially the same
task. Pearson calmly remarked that with a paired down group of that size, they might well be
successful. As well as the various software construction teams, the ICL structure had a
number of “technology centres”, which carried out a coordinating and advisory role. With my
experience and enthusiasm for compilers, the Language Systems Technology Centre seemed
a good choice for me. It turned out that this group was led by John Buckle, another Trinity
mathematician and contemporary of mine. I was offered a job there and then and told that I
would receive a formal offer in writing as soon as the postal strike permitted.

I still had not received any communication from Univac. I was out of work, but had received
two good job offers. Burroughs were pressing me for a reply to theirs, saying that if I was
going to reject it, they would like to know as soon as possible so that they could interview
other candidates. On the principle of striking while the iron is hot, I accepted the job with
ICL.

I still wonder whether I should have pursued the possible opportunity with Univac. I took
their lack of a reply as a lack of interest, but my papers could easily have been sitting in some
administrator’s ‘pending’ tray. I have since had much more experience of large corporations
and have learned that their large administrations, especially personnel departments, can be
detached from the units that do the real work. They can sometimes seem more of a hindrance
than a support. If I had telephoned my colleague from Cambridge who had interviewed me,
who seemed quite keen to employ me, things might have turned out differently. We would
not have moved house; we would probably have stayed in south London and had a
completely different set of friends, our children going to different schools later on. Lives
close to me would have been different. I wonder this, especially since I was not happy at ICL
and we moved back to London just a year later. But I did not have this foreknowledge at the
time.

ICL had many offices, most of them in the Reading area. I was to work in Bracknell, at first
in Lily Hill House. This building was a rather rambling early twentieth century country house

52

set in grounds densely planted with trees, giving a faintly claustrophobic effect. Much of this
part of Berkshire had this feeling of being crowded by trees. One can rarely see a distant
horizon. But ICL were fitting out a brand new purpose-built building at the other end of
Bracknell, and we were to transfer to that when it was ready. The move was welcomed by
everybody in the Language Systems Technology Centre, called LSCT for short. Our offices
in Lily Hill House were cramped, old and poorly decorated. John Buckle, whom I knew from
former times, was in charge of the group, but he was soon to move on and his number two,
Peter Dove, would take over as leader. I spoke to John about my joining the LSTC and
discovered to my surprise that he had not seen my job application, CV or any details. So I
gave him a rapid run down on my career to date. At ULACS it would have been unheard of
for even a junior manager to have staff assigned to them without complete consultation. I was
slightly shocked that I had been assigned to John's group without his knowing more about my
experience, but I was to learn continuously over the next twenty years how different
organisations behave very differently from each other in these manners of people and
organisational relations.

There were many highly skilled and gifted people working at ICL. But their reputations
remained mostly confined to ICL: they produced relatively few publications and did not
display their technical work very much in the forums of the professional institutions like the
British Computer Society or the Association of Computing Machinery. With my experience
of compilers, I was given the task of trying to unify the design of the different language
compilers across the New Range machine.

For all the languages that ICL regularly provided with their computers, Cobol, Fortran,
Algol60 etc., there was a separate team of programmers developing a compiler. I found a
great deal of resistance among the teams to any change. They had developed their designs
over the years for previous machines. The compilers worked and I can understand the
reluctance to introduce even unifying changes. Transporting a design of a program to work
on another machine was relatively straightforward. There were always claimed to be special
reasons unique to each language why the design had to be as it was. The opportunities for
unifying the designs were great. I had visions of a common intermediate language into which
the front ends of every compiler could translate the source code, and then a single common
code generator for the new range machine, a standard parser generator system for all the
languages with the syntax expressed in a common language based on BNF, and more. These
unifying approaches to design would have presented the users of the compilers, that is those
programming in the various user languages, a similar feel and response to the compilers. But
I soon began to realise that these were vain hopes. And the compiler teams indeed had some
justification along the lines of “if it ain’t broke, don’t fix it”. Their compilers had worked
well over several generations of ICL computers.

53

I decided to take it all a small step at a time. I thought that if the LSTC could build a parser
generator and demonstrate it, this may be a way forward. A first step in building one is to
produce a macro generator, a program that substitutes short pieces of computer text with
longer sequences, possibly with parameters, like a form letter only more elaborate. Such a
facility is also of general use in building compilers and other items of systems software. The
language used for developing the systems programs for the New Range had been decided. It
was “S3”, a fairly simple subset of Algol68 devised by ICL. So it would be natural to
program my proposed macro generator in S3. I put forward the proposal to do this as a first
step at several meetings and it was agreed to go ahead.

I produced a design for the macro generator and it was implemented by a young programmer
in the LSTC team. Meanwhile I had other regular duties: reviewing documents from other
departments, helping to outline principles of development policy, and so forth. I began to find
most of this work intensely frustrating. There seemed to be a great weight of inept and
stubborn opinion to overcome in order to get anything done, despite the fact that there were
many extremely capable people in the company.. People have likened ICL to a section of the
UK scientific civil service, and I can see why. There was a vast amount of internal discussion
and debate, with people taking stances and striking poses.

ICL was the result of several mergers, the most recent between ICT, with whom I had worked
on a vacation job while at university, and English Electric Leo Marconi. Different divisions
still retained some inheritance of the company cultures from which they were descended, and
some isolating barriers remained. I felt I was not achieving very much and began to look
elsewhere once more.

Chapter 5 The Country Club
In the Sunday Times an advertisement appeared asking for a leader of a “basic software
control centre”. I assumed that “basic” software meant systems software, operating systems,
compilers and so on, and tentatively replied. I was invited to attend an interview at STL,
Standard Telecommunications Laboratories in Harlow, a new town in Essex to the north-east
of London. The letter, from the personnel officer, Martin Jenner, said I was to meet “Mr.
Flowers from Antwerp”. I was a little puzzled, because the job advertisement made no
mention of any connection with Antwerp. However, I drove with my family to Harlow, partly
to let my wife and family have a look at the town and surrounding area, and arrived at the
laboratories. I met security guards in the entrance foyer and checked myself in. I asked them
if they had any idea how long I would be required. “Oh, you will be hours, hours!” they said.
I returned to my wife waiting in the car and suggested she returned in an hour and a half.

I was soon summoned and walked along a ground floor corridor to the personnel department.
A younger man with fair hair introduced himself as Martin Jenner, and the older of the two, a

54

friendly bear of a man from Florida, shook hands with me “I’m Lou Flowers” he said. I had a
lot of questions to ask, and learned that STL was a telecommunications research laboratory
belonging to STC, Standard Telephones and Cables, a well known British firm that supplied
much equipment to British Telecom, which then was part of the Post Office. What I did not
know was that STC was part of an American multinational conglomerate called ITT,
International Telephones and Telecommunications. STL was one of three research
laboratories in ITT, the others being in Versailles to the south of Paris, and the third in
Madrid. STL did much research into materials and physical devices, but not a lot in the area
of computers and software.

In the earlier days of telephony, exchanges were manual, operated by many operators who
would answer when you picked up your phone and manually route your call through to its
destination, relaying instructions along the line to other operators if necessary. I remember
the first telephone in my parents house. It had no dial, just a handle to turn which generated a
calling signal to the operator. The mouthpiece was mounted on the wall too high for me to
reach and speak into as a seven year old. The first automated exchanges were operated by
pulses generated by dials which caused relays to switch the call to its destination. The next
generation were electronic, replacing the relays by electronic switching circuits. In 1972 these
electronic switching circuits had begun to be replaced by computers and software. ITT had
developed two computers for this purpose, the 1600 and the more powerful 3200. The 3200
was a development of a previous STC machine, the Stantec Zebra.

Teams of programmers in many ITT companies developed software for telephone exchanges,
and also for telex “store and forward” exchanges. Younger or future readers may not know
what a telex is. Almost from the beginning of telephony, it has been possible to send typed
messages across the public telephone network. Telegrams would be dictated to an operator
who typed them out on a teleprinter in the exchange. The message would be printed on a strip
in the destination exchange, glued to a sheet of paper and carried in haste by hand to the
recipient, usually by a telegraph boy on a bicycle. Telexes had begun to supersede telegrams.
Any firm could have a teleprinter and a telex line, just as they could have a telephone line and
handset. The message could be typed out onto paper tape, the number of the receiving telex
machine dialled, and the text sent via a paper tape reader. Telexes were a cheap way of
sending messages internationally and had the advantage that you did not have to wait for a
mutually convenient time of day. If the message arrived in the middle of the night, it would
not disturb the recipient; it would be waiting ready to be collected in the morning. Telex
exchanges would store these messages electronically on magnetic tapes and forward them to
their destination when a route was free. These telephone and telex exchanges were often
called “switches”. Fifteen years later, telexes would be overtaken by email.

In this first brief interview, I asked many questions about the software development
technology that was being used. In fact, I think Lou Flowers probably learned all he needed

55

to know about me from the questions I asked. I began to realise that this part of the
telecommunications industry was way behind the sectors I had worked in before in their
software development techniques. The applications software, that which drove the telephone
and telex switches, was mostly written in assembly code rather than in a high level language.
The 3200 and 1600 machines were small minicomputers designed to be embedded in
telephone and telex exchanges, so the best way at the time to develop software for them
would have been to use a standard workhorse, a mainframe like the IBM 360, with specific
compilers producing code for the target machines. A mainframe machine would bring many
advantages like editors and the ability to produce test programs, analysers and so on. But the
company’s attitude was against buying “unnecessary” computers. There was always a target
machine awaiting delivery to a customer, so at first the development teams had to use that
target machine for developing the software. This policy had moved on a little bit. At STC in
Cockfosters and STL there were computer centres containing a 3200 machine, as there were
in other ITT production factories, some fourteen altogether situated around the world from
Des Plaines in Illinois, USA to Sydney in Australia, but most of them in Europe. The mission
of the 3200 Basic Software Control Centre was to keep these fourteen computer centres
supplied with a simple operating system, test programs and various other facilities including
an assembler for the 3200 assembler language. But the machine at the centre of these
computer centres was still a typical target machine, that is a machine of the type that would
be found in the centre of a telephone exchange.

The 3200 Basic Software Control Centre, or BSCC, was being moved from STC in
Cockfosters to STL in Harlow. Cockfosters was on the north-east edge of London, and its
underground station is noted for being the end of the Piccadilly line. Harlow was some thirty
miles further out of London and not that easy to reach by public transport. Part of the team
would be transferring to Harlow, others would stay in Cockfosters and move to other
departments there, including its current manager. A few new people would be recruited to
replace those that remained behind. STL would become the BSCC’s new home and, if I got
the job, I would be its new manager. I realised that this would pose interesting and
challenging problems. I would have to overcome possible resentment that the promotion was
not from within; the current team members would be wary about the character of their new
boss; it was clear that the host organisation, STL, knew little of the BSCC’s operation,
providing only administrative support. I would be reporting directly to Lou Flowers, who
worked in an ITT company in Antwerp.

After a surprisingly short forty minutes I was refunded my travelling expenses and
discharged through the entrance hall. So much for the security guards telling me I would be
hours. I had another three-quarters of an hour to kick my heels waiting for my wife and
family to return. Mobile phones were twenty five years away in the future, so I could not get
in touch with them. I was, however, to have two more interviews.

56

Lou Flowers worked in a part of the ITT organisation called the Computer Engineering
Centre in Antwerp. His manager, the director of the Centre, was Gerry Jacob. My next
interview was to be with him, in central London at the hotel where he was staying, the
Cavendish in Jermyn Street, over dinner in the evening. I arrived at the appointed time and
we went straight into the dining room. The Cavendish was one of the higher rank of
fashionable London hotels. We were shown to a table and, as I surveyed the row of six
waiters literally waiting on our bidding, I saw that we were the only diners in the room. I
rapidly realised that Gerry liked the good things in life, was, indeed, a man who valued “good
taste”. After we had chosen our dishes, Gerry accepted the wine list. He said, “well, as you’re
eating fish and I’m eating meat, we’d better have half a bottle of red and half a bottle of
white. Would you like to choose some white wine for yourself?” and handed me the wine list.
I looked through the long list of white wines and felt that my choice was perhaps going to be
the first test in my interview. I decided not to go for anything at the high end of the range,
which would obviously be greedy, but also not to go for the cheapest ones either, for that
would display nervousness, lack of an ability to fight my own corner and possibly an
unsophisticated palate. I chose something about a third of the way up. I believe it was a
Pouilly Fuissé.

I must say that this meal was not easy to enjoy. We were the only diners in the restaurant
throughout. The line of waiters on the other side of the room unnerved me, watching us with
some disdain, or so I imagined. Unlike Lou Flowers, Gerry asked me many questions, most
of them about what I would do in various hypothetical management situations. How I would
respond to unjustified complaints from customers, how I would handle various examples of
inter-group rivalry, even how I would react to overbearing interference from my manager
while I was away from my office. Gerry’s questions came quite frequently, several of them
while I had a forkful of food on its way to my mouth. At one point he had to give me time to
catch up with eating my dinner. However, I believed I answered his questions well enough.
They also indicated that the job was going to require quite a bit of diplomacy and tact, and
that there were a lot of conflicts and pressures to deal with.

I received a telephone call from Lou Flowers at home in the evening. I had “passed” the
second interview, and there was to be a third one with Mr. Don Combelic. “I want you to
remember this name carefully” said Lou. “Don Combelic has a lot of influence”. A date was
arranged for us to meet over a meal once again, at the Excelsior hotel close to Heathrow
airport. I was a little puzzled as to why I was being dragged along to a third interview. My
wife, Hazel, reckoned that Lou Flowers and Gerry Jacob had decided they wanted to give me
the job, and that they now had to convince this third man, who had some controlling say in
the matter. This indeed turned out to be the case.

I walked into the entrance foyer of the Excelsior hotel. Lou Flowers was there, slightly to my
surprise. I was expecting just to meet Don Combelic. “I felt I should come along too” said

57

Lou. “Mr. Combelic should be with us in a few minutes”. We chatted for a short while and
then a tall grey haired, rather gaunt man came in. “Well, good evening gentlemen”. Don
spoke in a relaxed, gravelly drawl. Lou introduced us and we made our way to the dining
room. Two waiters laconically sauntered to our table pushing a trolley bearing a hinged
covered dish. “Would you like the roast of this evening gentlemen? It is a honey-roasted
ham”. He rolled back the silver cover and revealed a very large, steaming joint of ham glazed
and studded with cloves. A section had already been carved off it and the flesh beneath was
attractive and succulent. “Wow, that looks pretty good” said Don and we all agreed to have it.

This meal cum interview was in some ways a little less uncomfortable than the one I had with
Gerry Jacob, and in some ways more. Gerry asked me more searching questions, but I felt
much more strongly that I was on the same wavelength as him. Don’s questions were more
oblique and he was more conversational, but I felt less sure of his priorities. He seemed to
want to know if I could be “tough” if the circumstances demanded it. “Why did it take so
long to fire him?” he asked when I recounted some previous event. I explained a bit about
industrial relations legislation in Britain and he took it that my hands were tied by the rules.
Afterwards I gave him and Lou a lift in my car back to the airport and then drove Lou to the
nearest underground station, which then was Hounslow West. Lou was visiting STC in
Cockfosters the next day, but I realised with some amazement that Don Combelic had flown
from Paris to London for the sole purpose of interviewing me. With just the two of us in the
car now Lou Flowers became much more forthcoming. “I thought about it and decided there
was no way I was going to let Don interview you on his own” he said. Don was in what Lou
called a “staff” position, and worked in the ITT laboratories in Versailles, on the outskirts of
Paris. “I think he’s agreed that we can take you on” he said. It occurred to me that in all three
interviews I had not mentioned that people seemed to like working for me, so I said words to
that effect, adding “I’m not quite sure why”. “Well I think I know why” said Lou, and began
to eulogise my character and generally extol what he thought were my good points. I was
surprised and slightly embarrassed. “How does he know?” I thought. We parted and a few
days later I received a letter from the personnel department at STL formally offering me the
job at a salary of £4,250. I felt pleased with this offer. It was twice what I was earning some
five years earlier. I accepted, although I was a bit apprehensive, since the job at ICL had
turned out within a year not to be to my liking. Could the same thing happen again? We had
worked hard establishing ourselves socially in Bracknell while I was at ICL, setting out to
make friends and join local groups. Suppose I found that the job in Harlow was likewise not
what I wanted? So we decided it would be safer to move to north London, near a train route
so that I could commute against the flow by rail to Harlow. That way if I moved jobs again at
least I would have all the London opportunities to choose from without moving house yet
again. We also had friends in London already, from the time before I worked at ICL. We

58

weren’t to know that I would stay at STL for the next thirteen years, the longest I was ever to
work anywhere.

Because so many, widespread, companies comprised ITT, they made great use of telexes to
communicate between each other. Indeed, a couple of weeks before I started at my new job,
Gerry Jacob sent a few telexes to me at ICL. I was a bit alarmed, and hurried down to ICL’s
telex room to collect these messages from the operator before too many people saw them. I
did not want my managers to think I was starting work on my new job while still on ICL’s
payroll and premises. Few people at ICL ever used telexes and the operator began to treat me
with great respect, thinking that I must be very important to receive all these messages!
Gerry’s first message said that unfortunately Lou Flowers would be on holiday for the first
two weeks after my arrival, and that he was afraid they had arranged a heavy travel schedule
for me. I was to go to STL for the first two days, where I would make the acquaintance of
Hunter Mitchell who headed the documentation group. He would arrange travel tickets for
me and I should visit Gerry at the Computer Engineering Centre in Antwerp on the
Wednesday, continue on to the LCT laboratories in Versailles to visit Don Combelic on the
Thursday, and finally visit the ITT company STR in Zurich on the Friday, all in my first
week. I realised that my passport needed renewing! Fortunately I could get a visitor’s
passport over the counter at a post office as a temporary measure.

My first two days at STL were interesting. A large research laboratory, set in the countryside
just outside Harlow, STL had a sports and social club on the premises, including tennis
courts, and employed about a thousand people. Its immediate surroundings were agricultural
land. The staff at ITT headquarters in New York gave STL the nickname of “The Country
Club”. Hunter Mitchell explained a little of the arrangement that had been agreed between
STL and the Computer Engineering Centre in Antwerp. STL were to provide my group with
offices, administrative support, the services of the personnel and accounts departments, in
other words all the infrastructure required to run an office within a big organisation. But I
would report to the Computer Engineering Centre. So my group, the BSCC, were a bit like
lodgers at STL, and they would be our hosts. Hunter himself ran a group of technical writers
which likewise reported to the CEC, under the same kind of arrangement. Gerry Jacob was
his manager too.

STL had a travel department which used the services of a commercial travel agent. About a
year after I had been working there, both firms realised that this travel agent had a single
person dedicated to all of STL’s needs, and so they made the very sensible decision to place
him actually in STL while still keeping him on the travel agent’s payroll. This reduced
telephone calls and speeded up obtaining air tickets and so on. The agent was also more than
happy to arrange holiday travel for employees. Don Combelic’s trip from Paris to London
just to interview me, and my schedule of three destinations within my first week were typical
of the casual attitude in ITT to air travel. As soon as anyone at STL went on a trip, they

59

would be given an expense account. Hunter guided me through the procedures for filling in
claims and gave me some useful advice about the conduct expected while on company
business. Staying in three or four-star hotels and eating in decent restaurants was the order of
the day. There were some specific rules about supporting one’s claims with receipts. The
Computer Engineering Centre itself was a small office in Antwerp, but similarly hosted by a
Belgian ITT company called the Bell Telephone Manufacturing Company. I was to discover
that Gerry and his staff had to contend with a much fiercer bureaucracy within this company
than Hunter and I did in STL.

I spoke to the STL site manager and he showed me the offices earmarked for my group, who
were still at that point working at STC in Cockfosters. There were a number of rooms,
equipped with new desks and chairs, and a couple of cabinets designed to hold large
engineering or architectural drawings. STL did not have very much idea of what computer
programming really was, except that it was some kind of engineering activity. The site
manager and his assistant said that they were not sure what we would require. I explained that
we did not need the drawing cabinets, but that we would need telephones in each office with
outside, international lines, and a few filing cabinets. Altogether the admin at STL were
extremely helpful at this early stage of setting up the new group.

I flew to Antwerp and stayed in a rather drab hotel. I was to learn that this was “scarcely
adequate”, but it had been booked for me by the Computer Engineering Centre. The CEC was
organisationally part of ITT Europe but was on its own, occupying a floor of an office
building on the edge of the red light district in Antwerp. At the beginning of a working day in
the CEC one could see from the office windows sleepy sailors emerging from houses of ill-
repute and young women continuing to seek custom from the last of the all-night revellers.
Our software staff were always bemused by a seedy pornographic cinema across the road
from the office, bearing a sign in Flemish-English “Sexy Programmers”. ITT Europe itself
was in a large tower in Brussels. Antwerp and Brussels are a short train ride apart, but
Antwerp is in the Flemish speaking part of Belgium and Brussels in the French part. Gerry
explained in more detail the relationship between the BSCC, which was my group, and STL.
STL were our hosts, and so we had to conduct ourselves like well behaved guests, obeying
their admin rules to the letter, not making any exceptions for ourselves compared to other
staff and so on. He also explained a bit about inter-company rivalry between the European
companies within ITTE, especially between the French and British companies. There were
indeed two rival operating systems for the ITT 3200 machine, one produced by the BSCC
currently in Cockfosters and the other by LCT, Laboratoire Centrale de Télécommunications
in Versailles. All the French ITT companies used the LCT operating system, all the British,
Australian, South African and USA companies used the BSCC system, and companies in
other European countries varied but mostly used the BSCC software.

60

ITT was a company with an engineering tradition, manufacturing telecommunications
equipment. But it was also a multinational conglomerate, owning many companies some of
which had nothing to do with telecommunications. It owned Sheraton hotels, Maws baby
bottles, a company that made bacon slicers, and many more. From time to time the USA anti-
monopoly laws required ITT to sell off some of its companies. The grand total of ITT’s
employees world wide was a staggering eight million, more than the total populations of
many significant countries such as Austria, Denmark, Norway, Finland, Israel and New
Zealand. ITT’s headquarters were in New York, with a European headquarters in Brussels.
The managers and staff from headquarters used to spend much of their time in aeroplanes,
flying from one ITT company to another, debriefing local managers and handing out
decisions on funding. The European headquarters, ITTE, was cynically known as
“International Talking, Travelling and Eating”. I was entering this very different working
world where business relationships were across national boundaries and one had to be
sensitive to cultural differences.

The Computer Engineering Centre controlled the standards and practices for the manufacture
of computers that formed part of the telecommunications equipment produced by ITT, in
other words, the computers that were embedded inside computer controlled telephone
exchanges. The company had a strong engineering tradition and had a large set of standards
for engineering equipment. Great store was set by engineering quality, and there were
standards for manufacture, testing and documentation of all products produced in ITT. Every
product had a product number, with a structure to it to cater for different versions and
variations. ITT’s expertise was in electrical and electronic engineering. There was little
understanding of computer software, and it was a challenging change for me to work in a
company that had little tradition in my own expertise. The intangible nature of software
puzzled my managers. Because it did not use any significant materials, had no weight so to
speak, many managers could not understand why it was expensive and time consuming to
produce. So they regarded software as being something a bit like the standards documentation
for hardware products. Everything was recorded, documented, but did not add anything you
could physically measure when loaded into a computer. There was a story of an aircraft
manufacturer demanding to know how much extra weight the software would add to the
aircraft when loaded into the on-board computer. They thought it might make a difference to
the handling and fuel consumption!

Gerry told me something about the fragile relations between the BSCC, which was part of the
CEC, and the French laboratory LCT in particular, who had built a rival operating system to
the BSCC one, and who therefore had a suspicion of, not to say an antagonism towards, both
the CEC and the BSCC. And my next visit the following day was indeed to LCT, where I
would meet Don Combelic. Don was employed by ITT headquarters, and was assigned to
oversee the software production in ITTE. It was perhaps an odd choice for Don to work in

61

LCT, which was a slightly maverick member of ITT and did not make life particularly easy
for him. He could have easily worked in ITTE itself, in Brussels, which would have been a
much more friendly working environment for him. But Don preferred to live and work in
Paris because he had grown to like it there, although he complained often and loud about
French customs. He had, however, taken on board the French attitude to food, hook, line and
sinker. He did not have Gerry’s gastronomic discernment, but if anything he was more
fastidious. Don had learned to speak French slowly, with an accent that barely acknowledged
French pronunciation, but on the other hand with complete and, to me, enviable fluency. The
result was that French people would always pay attention to him and appear to respect him.
When I met Gerry he was gallantly trying to learn French and was having intensive lessons.
For that reason he chose to live in Brussels, where French was spoken, and commuted to
Antwerp.

Don had a small enclave of staff working at his direction in LCT, all of them imported from
elsewhere. This group was called the ASG, Advanced Software Group, to the slight
embarrassment of some of its members. Don introduced me to the leader of the ASG, Bob
Parenti, an American, who had initiated a language for the 3200 machine called ESPL1. I had
not been told about this language until this moment, so I was slightly surprised. A compiler
had been developed for the language and was working and used, although by only a few
projects, I was to discover later. On introducing Bob Parenti, Don told me that he was “Mr.
ESPL1”. This was the first of many Americanisms that were to escape me in my early times
in ITT, so he had to explain to me what it meant. I had scarcely met anyone from the USA
until then, and there was much less American influence on British television. This language
difficulty was two-way at first. I had to curb my use of specifically British English terms,
after discovering which, indeed, these were. Some weeks into the job I sent a report to Lou
Flowers, my boss, which contained the phrase “can be found overleaf”. Lou later told me he
had turned to a colleague in Antwerp and asked “What in hell’s name is an overleaf?”. At
ICL people competed to use expressive language in their documents; anthropomorphic
metaphors being a favourite. With employees of many nationalities, the stylistic imperative in
ITT was clarity and simplicity.

Bob Parenti told me that ESPL1 stood for Electronic Switching PL/1. IBM had developed
PL/1, a high level language, in the mid 1960s, and had promoted it energetically. It was
originally called NPL, for New Programming Language, but the name was changed to avoid
confusion with the National Physical Laboratory in Teddington to the south of London. PL/1
had many advanced facilities, so my ears pricked up when Bob told me of ESPL1’s claimed
provenance. I asked him if it had some of the more interesting features of PL/1 – recursion?
Block structure? Union and Structure data types? Bob shook his head: “Nope”, “Nope”,
“Nope”. I stopped my questions to avoid embarrassment. In fact ESPL1 was a fairly simple
autocode, a kind of programming language that is a step or two above machine code and

62

assembler languages, but at the low end of the range of high level languages. Instructions in
an autocode begin to look much more like simple mathematical formulae rather than
instructions to a computer. ESPL1 was a very considerable advance over the symbolic
assembly language used for all the basic software and most of the telephony applications
programs, but scarcely bore comparison with PL/1. In writing a few experimental programs
of my own, I found it far preferable to use ESPL1 than the 3200 assembly language. Don
introduced me to several other people in LCT, including John Devoil, an Englishman who
worked on the ESPL1 compiler along with a small group in STC Cockfosters.

At Gerry Jacob’s prior request I also met Peter Liou, who worked for Hunter Mitchell but
was located at LCT. He was working on several projects producing documents associated
with some of the electronic designs that LCT were devising. One of the LCT projects was a
new version of the ITT 3200 machine, the 3202, compatible with the present one so that
existing programs would still work on it, but using more up to date technology, which would
make it faster and cheaper. Peter Liou was producing some of the documentation for this new
upgraded 3200, following ITT’s in-house documentation standards. I had had some contact
with big company document standards already at ICL but ITT’s were much more
comprehensive and part, so to speak, of the company ethic. The ITT standards manual ran to
several volumes and was continually being updated.

So this was why the BSCC was called a “control centre”. The software for the 3200 was a
standardised ITT product and the BSCC “controlled” it. This meant that we allocated a
product number to the separate items of software and ensured that their documentation
conformed to ITT standards. The documents themselves also had numbers, with suffixes
indicating the version and variant, and for the software itself, a further part of the suffix
indicating on what medium, paper tape, magnetic tape and so on, the software was recorded.
The structure of these numbers was arranged so that the number for a piece of software and
the documents describing it had a common stem, with standard segments indicating that this
was the software itself, or the user manual, or the design description, and so on. The BSCC
had a range of numbers at our disposal and we allocated numbers not only to our own
software but also to software produced by other groups. These included one or two in STC
Cockfosters and in LCT itself.

A great bone of contention for LCT was that the BSCC operating system for the 3200
machine was recognised as an ITT product and given numbers, but the system produced by
LCT was not. So although LCT’s operating system was distributed and used by a number of
companies, mostly French ones, for producing telecommunications software, it was not
recognised as an ITT product which conformed to standards. And this was not because of any
particular lack of technical or even bureaucratic criteria, but on principle, because Don
Combelic had instructed the BSCC not to grant it the ITT status of a standardised product.
This was the source of great resentment for LCT. Yet Don Combelic worked from an office

63

within the LCT laboratories, establishing his own clique of programmers there and, to add
insult to injury, given them the title of “advanced”. It was as if the strategic officer from one
side of a battle had pitched his tent with some chosen officers in the middle of the
encampment of the other side, furthermore by choice, not by necessity. I never ceased to be
amazed by this choice of Don’s, but it indicated the impregnable character of the man; he had
a persona constructed of granite.

I returned to England with my head brimming with information. I had made notes throughout
my trip and prepared to compose a report on my observations. I had found the conversation
with Peter Liou confusing and could not work out what his rôle was or why he appeared to be
working alone at LCT. It was some time before I learned that he worked for Hunter Mitchell.
I felt glad that shortly before I had set off for Antwerp, I heard from my contact at STR in
Zurich that it was not convenient for me to visit him. He had told the CEC in advance, but the
message had not reached me. I was very unclear about the significance of ESPL1 in the
company. ITT was an advanced, complex organisation, which nonetheless used software
technology ten years behind the times. ESPL1 was the only glimmer of a high level language
in sight in the organisation. By contrast, ICL for its systems programming was using a subset
of Algol68, believed to be the most advanced language at the time, whereas ITT was using
assembly language. Who actually used ESPL1?

Until the BSCC people at Cockfosters were actually moved, I alternated my time between
them and STL. The offices in Cockfosters were a miserable environment to work in. The
views from the windows were dominated by the shunting yards of the Piccadilly line
terminus and plenty of noise from the trains found their way indoors, the screeching of metal
wheels without differentials as they were slowly pushed along curved track interconnections.
The building itself was tall, narrow and cramped, with grey metal partition interior walls. If I
had been working there I would have welcomed the change to the buildings and environs of
STL.

Nonetheless, I still had a considerable management hurdle to overcome. I was a newcomer
from outside, taking command of this group that might have had a manager promoted from
its own ranks. There was bound to be some initial wariness, if not possible resentment, and I
had some reassuring to do. Ten years had passed now since I had graduated, and I had spent
those ten years working in software engineering. I was somewhat older than the rest of the
group, with one exception, Alan Jones. He, like me, had graduated from Cambridge
University ten years before, and we were the same age, within a month or two. He therefore
was a potential candidate for the job I had stepped into. I needed to give him some special
attention.

Over the next couple of weeks I invited each member of the BSCC to come and talk to me. I
had taken over the office of my predecessor, EK, who had been moved sideways. From the

64

various conversations I had had with Lou Flowers, Gerry Jacob and, especially, Don
Combelic, I had learned that they had not been satisfied with him. Indeed, Don referred to EK
as having been “fired”. So I wondered if any of the BSCC staff thought he had been unfairly
dismissed and felt a defensive loyalty to their previous manager. But I found no such
concerns. Indeed, when I told Alan that Don had said that EK had been fired, Alan was
surprised. “Fired? Oh no! He was promoted”, he said. I wondered if the Peter Principle had
been at work here. In my chats with the members of the group I encouraged them to tell me
what their rôle was and to talk freely about how they felt about the work they were doing and
their job in general. Every single one of them complained that EK had been extremely
secretive, not letting anybody know what was going on, revealing only the minimum of
information to let them do their work. They all would like to know more about the context
and organisational situation of their jobs, and all of them felt rather isolated. A few also
complained about their salaries.

I thought, this is going to be fairly easy to deal with. All I have to do is to take every
complaint they have made about EK and do the opposite, in spades if possible. He was tight-
fisted with management information; I will be generous with it. He operated a closed door;
my door will be open. I looked at the personnel files of all the staff and found that their
salaries were quite haphazard. People with the same experience and doing very similar work
were paid remarkably differing amounts. I suspect that EK or his managers had paid the staff
individually as little as possible without losing them. I thought there would be an opportunity
to put this right once everyone was at STL and working under a new personnel
administration.

After I had spoken to everybody, I invited Alan to share my office in Cockfosters. “I’m only
going to be here for half the time. I shall be working at STL two or three days a week”, I said.
“And it will relieve the pressure of space in the open plan office”. He was grateful for this,
and I thought it might make him feel slightly better just in case he was resentful at not having
got my job himself, for in some ways he was the obvious choice for it, especially if it was
going to be filled by promotion from within. Furthermore, sharing my office would be
temporary. When we were all permanently at STL in a couple of months’ time I would have
my own room there and the offices for the rest of the group would be more spacious.

So, for these first few weeks I worked half the week at Cockfosters and half the week at STL.
There was much to be done at STL. I had to arrange for the facilities for the group, interview
and recruit a secretary, and get to know the infrastructure there. STL was quite a big site. It
had its own medical department and even its own company fire brigade. The accounts
department provided comprehensive support, not just payroll accounting but project
accounting too. I had to divide the activities of the BSCC into different projects and set up
accounts and budgets for each of them. The staff would record their time on time sheets as
spent on the different projects and the accounts department would give me reports of

65

expenditure against budget. The total would be reported against our total budget for the year.
All this had to be set up from scratch in discussions with the accounts department. Part of this
was straightforward, as each year one had to make a case for the next year’s expenditure
under various headings. The “case” would identify and cost a number of activities. So it was
sensible to match the projects and budgets for accounting with the activities in the case for
that year. This was how the ITT research and development system worked: every year a R&D
case had to be made for the following year’s work, and the case presented in ITTE
headquarters in Brussels. There was some uncertainty about this process. It was in theory
possible for a piece of work to be abruptly stopped if the case for it was not accepted one
year. In the following years I was to become very involved in the preparation of these all
important R&D cases.

During my first two weeks my manager, Lou Flowers, was still on holiday. When I returned
to STL after my trip and first visit to Cockfosters to meet the staff, I met John McEwan. He
had been recruited and was doing some background reading on the 3200 machine at STL,
sitting in one of the BSCC offices. We had several relaxed lunchtime discussions in the sports
and social club, which was an amenable place to have a snack and a drink. With Lou Flowers
being absent at this early stage, I had not been told of the names of any of my staff at
Cockfosters; I had had to find them out for myself. I had heard that one or two new staff had
been recruited into the group directly into STL, but I hadn’t been told the names of any of
these either. I thought maybe John McEwan was one of them. At one point over lunch, he
said to me: “Are you my manager?”. “Well, I think I must be”, I replied. This was correct,
but I did not have the matter confirmed until Lou returned from holiday a couple of weeks
later. Looking back, I am horrified by the lack of organisation and communication that forced
me to work so in the dark, but it all made for interesting times.

I invited all the BSCC staff at Cockfosters to come and view our new offices in STL. I
arranged this as early as possible, for I felt that the foreboding prospect of the change of
location would seem less daunting for the staff when they saw the new place with their own
eyes, especially the far pleasanter environment, the better standard of offices with higher
ceilings, fresher paint and more solid building. But I lost two of the staff before this visit and
a third afterwards. Each of them told me they had decided to accept an offer of a post in
another department at STC Cockfosters. There was something exciting about looking at these
empty offices in STL that were going to be our home, and making decisions about placing of
desks and so on. I made sure that everyone chose which of the three or four rooms they were
going to be in. Then, as soon as they were gone, I arranged for nameplates to be put on the
doors of the rooms. This had been done for me when I had arrived at ICL and I was very
struck by it at the time. It had made me feel welcome and accepted. So again, a ploy if you
like, but I thought it would add one more touch to smooth the path of the change of location
and office for these staff. And indeed, when they arrived, there were several exclamations:

66

“Oh, look; they’ve put our names on the doors!”. I did not let on that I had gone to some
lengths to make it happen. I thought that it would do no harm for them to think that the
establishment itself had somehow recognised and named them. The BSCC staff had not had
any attention given to their periodical technical training, so after a few weeks I arranged for
them all to attend Data-Fair, a regular software event held in the UK, where latest
developments were given an airing. One significant design method, JSP, was presented there
by its author, Michael Jackson. This was to become something of a ground breaking method,
but I am not sure how many of the BSCC staff appreciated its elegance at that early stage.
But I think it must have had some impact on them.

Lou Flowers flew from Antwerp to visit me soon after he arrived back from holiday. Several
more people were lined up for interviews to join the BSCC, most of them having responded
to the same advertisement as I had. These trips between Harlow and Antwerp were the
beginning of a pattern that was to continue for some years. Once a month Lou would come to
see me and once a month I would fly to Antwerp to see him. That way we were in face to
face contact every fortnight or so, and we would be on the telephone to each other several
times a week. Lou liked to keep track of what was happening in detail and would give me
specific instructions, but he left the day to day running of the group to me. I had to write a
monthly report for Lou. To do this I asked for reports on their activities from most of my staff
and combined them into the required form, for even monthly reports were subject to an ITT
standard, with particular headings – Achievements, Problems, Red Flags, and so on. Another
group, the 1600 BSCC, also reported to Lou, and he would incorporate our two reports into
his own monthly report to Gerry Jacob. Gerry in turn took information from Lou’s report,
composed it with reports from his other staff and sent his own monthly report up the
hierarchy to his manager – and so it went on up the management pyramid. Since every report
had to be completed by the end of the month, they were all always done in great haste, but
somewhere along the line some slippage must have occurred. Much later it struck me that
ITT top management would in this way make decisions of massive consequence, starting or
halting projects, even occasionally closing companies, based on misunderstood and
misrepresented accounts of the work being done by the lowliest members of the organisation
several months earlier. I am not sure whether this is really true, but it seems to be an
inevitable consequence of the process.

Gerry did not actually write his own monthly report. He used to delegate the task to one of
his junior managers, often to Lou Flowers or, later, to me. Delegation was something of a
watchword in management practice at the time. A manager who could not delegate was by
definition a poor manager. Gerry therefore used to delegate as much as possible. He once
advised me, with a bit of a twinkle in his eye, “Never do anything yourself!”. So a few years
later I would find myself flying to Antwerp for the express purpose of taking all the
contributing reports that had arrived on Gerry’s desk, including my own, and composing his

67

report, which he would then review, ask for alterations, and so on. I have to say, I did wonder
if this was a cost-effective way of going about things, but that was part of his management
style.

I had learned from Hunter Mitchell the process of filling in and submitting my expense claim
to the STL accounts after a trip away. After about my second trip, Lou asked me if I could
show him my claim. When I did so, he asked me why I had included receipts for a couple of
items. “You only have to attach receipts if the meal costs over £5”, he said. “Well”, I said, “I
thought I would show willing”. “No”, he said. “That’s not the thing to do. Let me tell you a
story.

“There was this group of engineers working on site in Arizona. They were far from
their main offices and were out there, isolated and working in a temporary hut with
poor air conditioning. With the hot weather, they kept the windows open, but flies
used to come in. So they bought a fly-paper and renewed it every month.

In fact, they did not have much to do and spent a lot of the time hanging around doing
nothing very much. Each month when the time came for them to write their monthly
report, they had to scratch their heads to think of some thing to put in it. One day one
of them had a bright idea: ‘Let’s write a fly-paper report’, he said. So they counted the
flies on the fly-paper and included a brief item in their monthly report:

Fly-paper Report

This month’s total was 119.

They wondered if they would receive some castigation from their management for
this piece of mischief, but they heard nothing. So the next month they counted the
flies again and included another “Fly-paper Report” in their monthly narrative, and
continued.

After about four months they decided that perhaps the joke was wearing a bit thin, and
they decided to stop including the fly-paper report. Besides, more real work was
coming their way for them to report on, and the weather was getting cooler; the flies
were getting fewer and they soon would not need the fly-paper any more.

Very soon after they submitted this latest monthly report they received an urgent
telex:

Where is this month’s fly-paper report?

Please telex the total by return.

The Area Division Manager needs the figures for his report to World
Headquarters.”

68

“The moral of this story”, said Lou “is: never give the bureaucracy more information than
they absolutely require. They’ll only start insisting on having it!”

Well, this was an interesting change. Here was my manager telling me to treat The System as
an opponent, rather than an authority.

Chapter 6 Service as Usual
All but three of the group moved from Cockfosters to STL in Harlow, a distance of some 25
miles by road, but not served at all well by public transport. Most of the staff stayed in their
existing homes and commuted by car. Meanwhile I was interviewing and recruiting more
new people. STL had a good canteen, used by all the staff including the directors. There was
no divisive separate management canteen, as there was in some large companies. Most of us
used to have lunch there, and the food was good value, the main courses being subsidised. A
favourite dessert was “golden sponge pudding with golden syrup sauce”. Campaigns for
healthy eating were yet to arrive on the scene.

The ITT 3200 was the embedded computer in two new telephone exchange systems that were
being designed. STC in Cockfosters was developing System X and LCT was developing
Metaconta L. Other ITT companies tailored these systems in specific contracts for new
exchanges, and all these companies needed computing facilities to develop and customise the
embedded software. These computing facilities consisted of centres containing 3200
computers again, with peripheral devices, paper tape readers, punches, magnetic tape drives,
line printers and so on. The BSCC and LCT provided the operating systems for these
computer centres, the BSCC for those used in developing System X and LCT for the
Metaconta L.

In this way, the BSCC was serving the needs of fourteen computer centres scattered in many
different places in several different countries. We supplied the operating system, compiler for
the symbolic assembly language, which was called SYMBAL, and a collection of test
programs for testing the computer and its peripherals. One might think that having supplied
this software once to a centre, there would be little need for further visits, but for two reasons
frequent visits were often necessary. The first was that the 3200 machine itself was
extraordinarily variable. With a computer today, if a peripheral such as a scanner is attached,
there is usually just one way to attach it, a single device handler can be supplied on a disk,
and with a few adjustments secured by a dialogue (the “installation wizard”) it will work.
With the 3200 machine, there were an astounding number of choices to be made. A
peripheral could be attached to a choice of channels, interrupt lines and priority levels,
addresses for information exchange and so on. Every computer had a different arrangement
and the operating system and test programs had to be prepared in advance and, usually,
installed on a visit to the centre. Very often the BSCC programmer would find that the

69

information given did not quite reflect the reality and last minute adjustments had to be made
on site and the whole lot tested out. The second reason was that most of the centres seemed to
change their computer configurations with remarkable frequency.

Some of the centres were a bit more stable and needed only occasional visits. These were
mostly the more distant ones, particularly in Des Plaines, Illinois and Sydney, Australia. I
suspect that the distance and cost of visits concentrated the minds of the computer centres to
keep their configurations in a stable state.

Another reason for personal visits was that the operating system and software itself was not
all that well geared to facilitate these changes. The parameters controlling the peripheral
information like channels and interrupt lines were strongly embedded into the code of the
operating system. The same information was not even shared between the operating system
and the test programs: it was duplicated in each. If all this peripheral-related information had
been put together in tables and referred to by the software, then the tables could be altered by
a dialogue program (a wizard in today’s terminology), possibly even by the staff in the
computer centres. About a year into my job I suggested this to members of the BSCC, and
they mostly thought it was a good idea. However, we could never get it done because always
the priority was to fix the next installation urgently and, more to the point, my management
could not be persuaded to agree funding for what they saw as an improvement to our software
that was not strictly necessary. In a way, if we had been able to make these changes, we
would have been doing ourselves out of a job; amendments following reconfigurations would
be much faster and simpler to make, and could even be done by the user. But I was and am
sure that other work, perhaps of a more progressive kind, would have been found for us. We
were rather like medical practitioners, who strive to improve the health of the population
under their care. Even with the best preventative medicine, there will always be a need for
doctors.

So the lives of the BSCC members were dominated by requests for software installations
from our computer centre customers, and were consequently filled with visits to Antwerp,
Paris, Madrid, Munich, Zurich, Cockfosters and, less often, Des Plaines and Sydney. We
needed 3200 computer time ourselves to check out the modifications to software that we
prepared for these installations. Being away from Cockfosters now, the group made use of a
small computer centre at STL, which until then had been mainly used by another group. At
first this centre could not provide all the time we needed, and Gerry Jacob suggested that we
used some spare time in a similar computer centre in Zurich, which was currently under-used.
Even the much travelled members of my group were a little startled by this suggestion. Today
one can hire computer time in a public library or a cyber-café, and the process and nature of
the transaction is essentially the same: one is paying money to use time on useful equipment
owned by another party. But the idea of flying from the south-east of England to Zurich in
order to do so seemed a trifle extravagant. Nonetheless, we arranged a few visits to STR in

70

Zurich and several of my group flew there and used their computer. I remember visiting STR
myself, partly to set up this arrangement, but also on a kind of diplomatic mission to establish
good working relations with the company. My management encouraged me to do quite a lot
of oiling such wheels in order to keep everything running smoothly. I remember STR being
situated in extremely pleasant surroundings, with views of a Swiss lake and mountains and
my hosts there being very relaxed. I think they did not have much to do at that stage and
seemed not to be under much pressure of work.

The bureaucratic procedures of STL required me to fill in a purchase order for this computer
time, which I duly did. Then the BSCC programmers flew out taking with them the software
they wanted to test. They simply carried these as rolls of punched paper tape in their hand
luggage. They spent time on the Zurich computer, made any amendments necessary after the
tests they carried out, and came back home bringing a possibly updated version of the
software and the confidence that it now worked successfully. Then I received an invoice from
STR for the computer time we had used, and I sent this to the STL accounts department,
authorising it for payment.

Here the trouble began. At that time there had been quite a large number of scams in which
rogue traders sent spurious invoices to big companies for services and goods that had never
been provided. The fraudsters relied on companies processing such large numbers of invoices
that they would not spot the mendacious nature of these demands, and these invoices were
frequently paid. Most big companies were getting wise to this kind of fraud and took
precautions against it. They required that invoices quoted a purchase order number originated
by themselves, and verification was required that the goods had been delivered. STL
demanded that goods were received through Goods Inwards, a physical door to the
laboratories, and a Green Ticket would be written out, which would find its way via the
originator of the order to the accounts department. In the case of a service, a visiting
representative from the supplying company would normally provide this. The visitor would
have to fill in a lot of paperwork on entering and leaving the building, and these pieces of
paper would similarly be correlated with the purchase order. But when we used computer
time in Zurich, nothing passed through the doors of the STL Goods Inwards, nor did any
visiting rep come in and out. I started receiving puzzled phone calls from clerks in the
accounts department telling me they could not pay the invoice I had authorised. “We haven’t
received a Green Ticket!” they said.

I ended up going to see Dennis Gray, the purchasing manage, a cheery good-humoured man I
had dealt with several times already. I tried to explain the nature of the transaction. At some
point Dennis said to me, “I think I’ve got it, Tim. Do they ship their computer to STL so you
can use it, and then you ship it back to them?” Oh, no, not quite. The computer is far too big
and heavy to do that. It is much simpler for Mohammed to go to the mountain so to speak: for
my guy to go to Zurich taking the software with him and use the STR machine. “Suppose you

71

have a cat”, I said. “You decide to take your cat to the vet’s to give it its annual health check.
The vet has a big X-ray machine, bolted to the floor for safety and costing £50,000. You put
your cat under the machine and see that, happily, all is well. You can be confident that your
cat will probably be fine for the next year. So you pay the vet for the use of his expensive X-
ray machine and go home happy”. We ended up agreeing that I could keep a small stack of
Green Tickets in my office and, when I was satisfied that we had received computer time
which corresponded to that on the invoice, I could send the Green Ticket to the accounts
department. But Dennis still looked a bit uncertain about the whole business.

This did indeed make me ponder exactly what we were paying for. If, as was moderately
likely, no change was made to the software being tested, if all the tests were successful, what
had we bought with our money? An increase in confidence that the software would work?
That was a pretty intangible kind of commodity. Had the software increased in value after we
had tested it, even if no change had been made to it? Perhaps it had. Our own knowledge had
increased, knowledge about the reliability of the software, but it was intriguing to think that
its value had increased even though the software itself was physically exactly the same as
when it set out on its journey to Zurich.

Many years later, when working for Praxis, once again I came across this question of how
much a piece of software is worth. The value will depend very much on how much we know
about it, whether we know how to use it, and whether we can understand it well enough to
maintain it, that is to find faults in it and mend them, and well enough to alter and extend it.
Almost all software is going to be working in a changing context, a changing world, and so it
has to be adaptable. Software can only be understandable and adaptable if it is well designed
and well engineered, and if it is documented with descriptions of how it can be used and how
it has been designed. Without these documents, even if it is well designed and put together,
software can be virtually worthless. When members of the BSCC had tested their software in
Zurich, they understood it better, knew of errors that had to be put right, and could write the
documents that certified the passing of tests.

So started a routine. We would receive requests for installations of software on new or altered
machines and their peripheral devices. New versions of peripherals were often being attached
to the central processors, and we would have to write handlers for them, which would go into
the operating system, and we would write new test programs for them. We would often
receive fault reports relating to our software. We had a procedure for processing these, which
was the subject of yet another ITT standard. The procedure consisted of passing several
documents back and forth, Change Requests, Change Notes and so on. Sometimes a fault was
reported, but the faulty behaviour could not be reproduced. This was often caused by
unreliable hardware, in other words by electronics inside the computer that misbehaved from
time to time. Some sites, who had less rigorous maintenance practices, were more prone to
this happening than others. BTMC, the Bell Telephone Manufacturing Company, in Antwerp,

72

was the administrative host for the Computer Engineering Centre where Lou Flowers and
Gerry Jacob, my managers, worked. In BTMC there was another systems software group, the
1600 BSCC. This group, smaller than mine, served the needs of computer centres that used
the 1600 machine. There were only a few of these, and all of them were in Belgium, within
BTMC. But BTMC also had a 3200 centre, and its maintenance and general administrative
procedures were very haphazard. Many times they would report a fault, and we would find
that they were not actually using the most recent versions of the software we had already
supplied. One of the programmers in my group, Cliff Lamb, described how he saw with some
despair the “software administrator” open a cupboard which was full of boxes of programs on
paper tape, jumbled together and without any filing or reference system. He would just reach
for the nearest one, without checking that it was the most recent issue. All computer
memories had an error checking feature called parity checking. Each word of memory,
usually 32 or 64 bits (4 or 8 bytes) had an extra bit, called the parity bit. This was always set
so that the total number of bits in the word which were set to a 1 was even. The parity of the
bits in a word, that is whether the total of 1s were even or odd, was checked on every access.
If the parity was ever odd, an error had occurred, the machine had misread or miswritten
information, and the machine would stop. The parity checking could be switched off, but this
was most unwise as it meant that the machine could behave in an aberrant fashion, and not
follow the instructions that the software in it was telling it to do. Cliff discovered that the
BTMC programmers were routinely running their 3200 machine with the parity checking
switched off. “It keeps on stopping of we don’t”, they said. Cliff was horrified, and explained
to them why they needed to keep the checking switched on. Because of the unreliable
machine, they had to restart it often, but at least it would not make it spuriously look as if the
software was at fault. He felt a lot of sympathy for the programmers having to work with
such unreliable hardware.

There were two other ITT research laboratories in Europe. As well as LCT in Versaille, there
was the ITTE laboratory in Madrid. Felix Vidondo, a man of some charisma, managed the
software research there. He recruited programming staff fairly regularly and a tradition had
grown up that he would send a couple of his trainees to the 3200 BSCC to gain experience.
So two of my staff were in fact from Spain and took part in the regular activities and duties of
the group. I must say that I would not have called these individuals “trainees”. They had had
two or three years post-graduate experience and were doing the same job in principle as the
rest of the group. The two of them, Paco Lopez and Manuel Varela, were to spend several
years in my group. Indeed, Manuel married and brought up a young family in England.

My manager, Lou Flowers, frequently asked me to accompany him on a trip abroad, or to go
and investigate some situation myself, at a few days’ notice. Within a week or two I realised
that my social life had henceforth to be confined to the weekends. Making a theatre or cinema
booking midweek in advance was no longer possible. The problem of the two rival operating

73

systems for the 3200 machine was a continual bugbear, which engaged the attentions of many
figures in ITTE and even some in the headquarters in New York. It was clearly wasteful to
have two software systems doing exactly the same thing, being continually upgraded and
maintained. Yet there seemed no way out of it. The issue became the subject of discussion in
numerous meetings. Don Combelic took a fairly uncompromising stance, not allowing LCT
to register their operating system software as ITT products and generally denouncing it as a
kind of rogue artefact that shouldn’t be there. Other ITTE staff recognised the de facto
situation that many organisations used the LCT software as part of their essential work, but
no-one could see a way out of the unsatisfactory situation of there being two rival co-existing
systems. Many managers kept trying to persuade Don to relent about granting ITT product
status, thinking that at least it might help LCT to become a bit more cooperative in general,
But Don remained adamant for some years.

It occurs to me that this wasteful but rival situation of competing software reflects that which
prevails today in personal computers. The Microsoft Windows range and Unix are rivals
offering the same function, as does the Mac OS on Macintosh machines. The different
versions of MS Windows to all intents and purposes compete amongst each other, for
upgrading becomes difficult, often requiring hardware upgrades to support them, and then
elderly but entirely functioning application software has to be replaced to be compatible with
the later versions of Windows. But if one stays with an old system, new facilities, even
replacement hardware, become unavailable through obsolescence. There are almost no
recently produced pieces of hardware or software packages that will run even on Windows 95
any more.

Don Combelic was in a high ranking position. He had reached this partly as a result of
making an extremely valuable technological contribution. Telephone exchanges used to be all
electromechanical. When you dialled a number from your domestic handset, as the dial
rotated it sent electric pulses down the line to the exchange. The bigger the digit, the further
the dial had to rotate, and the more pulses were sent. Dialling a 1 sent one pulse, a 9 sent nine
pulses and a zero sent ten. These pulses operated electromagnetic relays in the exchange
which switched the connection through to the telephone belonging to the number you dialled.
So telephone exchanges consisted of many relays and vast arrays of interconnecting wires.
When an electromagnetic exchange was replaced by a computer controlled one, the incoming
and outgoing wires were cut, the old exchange removed, the new one put in its place and the
wires reconnected. This process was called “cut-over” and would have to be done as quickly
as possible to minimise the suspension of the service. After that there would usually be many
teething problems: would the new exchange work properly, would it handle the pattern of
telephone traffic in its environment of incoming and outgoing calls?

Combelic devised a test rig called “environmental simulation”. Another computer would be
programmed to simulate the demands for connections produced by the telephone traffic that

74

was typical of the environment of the old exchange. Then the performance of the new system
could be tested as exhaustively as desired before cut-over. Programming the environmental
simulation could be as extensive a task as programming the exchange software, but the effort
and expense was worthwhile and turned out to be an extremely effective way of enabling the
technological upgrade from electromechanical to computer controlled exchanges. By the
1970s Combelic had become something of a software grandfather figure in ITT.

Computers had been used for simulation of one sort or another for many years already. At
ULACS Chris Hobson had been writing an Algol60 program to simulate the Atlantic ocean
for the Meteorological Office and the language Simula67 was devised in the first place for
various simulation tasks. Simula67 had the first features of Object Orientation, which are the
principal properties of the present-day Java language. Computers were beginning to be used
to simulate financial economic trends, performance of stock markets, seismic activities,
weather and much else. So using computers to simulate technological phenomena like
telephony traffic was in a sense a natural course to take. This use of computers for simulation
has since blossomed. In the 1980s the University of Oxford developed the ELIZA program to
simulate the interaction of a psychotherapist with a client. This was sufficiently successful
that trial users wanted complete privacy while they were communicating with the program,
despite its relatively primitive, textual interface. Every computer game today involves
simulation of visual scenes, events and a narrative.

Don Combelic had his own proposal to resolve the problem of the dual operating systems for
the 3200 machine. He proposed that both should be replaced by a much superior system,
which he called DPSS. He believed that this new system would show such superiority over
the BSCC and LCT systems that all users would want to migrate to it. He arranged for the
ASG, headed by Bob Parenti, to start developing DPSS. Don had not been able to secure any
funding for this activity, mainly because many other managers were very sceptical about his
plan. They thought that introducing a third rival operating system might well make matters
worse, not better. So Don managed to get the work done by stealth, so to speak. I was due to
have two more trainees for the BSCC from the ITTE laboratories in Madrid, but Don
arranged for them to stop on the way at LCT for a “temporary period”, and assist with the
DPSS development. This became something of a logistic struggle between me, my managers
and Don, especially since the two trainees were funded from my BSCC budget, and indeed
rather later Don referred to his having “stolen” these staff from me.

There were numerous discussions and arguments about the wisdom or otherwise of
developing DPSS. I had been thinking about a different strategy to replace the two existing
systems. I had worked out a series of piece by piece modifications to the two operating
systems in which sections of each software would be replaced. The two replacements would
be identical, so over the course of the strategy, the two systems would merge together, until
they were the same. The progressive work on modification could even be carried out jointly

75

by the two teams. The scheme would require the cooperation of the two groups, something I
knew would be very tricky. I put this idea first to Lou Flowers, then to Gerry Jacob, and
finally at a meeting with both of them, their manager and Don Combelic. Don was strangely
quiet during this meeting and at one point left the room. I wondered if he felt unwell or even
angry. My proposal did not receive his blessing and so did not move forward.

Some few months later Don, Bob Parenti, Gerry Jacob, Lou Flowers and I met once more and
yet again spent some hours discussing the problem of the rival systems. We had reached an
impasse. Then Gerry suggested that we hired a consultant to consider the problem and report
back to us. Here was a possible way forward. We all eagerly agreed that this seemed a good
idea. Getting a fresh view on the dilemma from someone outside the company, who could
take a detached look at it and see the wood for the trees could add just the insight we needed.
We started trying to find a name we all knew, someone whose experience and judgement we
could all respect enough to have confidence in them. Don and Bob suggested a couple of
names I had not heard of. Gerry, not having a software background, was relying on me to vet
any suggestions from the other two, so I demurred. I suggested Tony Hoare who had been my
manager at Elliott’s, where he was responsible for the first commercial Algol60 compiler,
and who now in 1974 was Professor of Computing Science at Queens University Belfast.
Parenti in turn demurred and, after a few moments thought said “How about John Buxton?”
Apparently they had both worked together at IBM laboratories. I had known John Buxton
slightly when I worked at ULACS. He had been at ULICS, the Institute of Computer Science
at London University, and ULACS and ULICS had shared computing and other facilities in
the same building in Gordon Square. John had worked on significant systems software
projects, parts of the Atlas system and the CPL compiler1. I also remembered him as being a
man of solid good sense and judgement, and he certainly had the right kind of technical
background. I said I would be happy for John Buxton to perform the rôle. So the ambience of
the meeting became more relaxed once again: we had reached at least some kind of interim
agreement. I was asked to contact him and make the necessary arrangements. It seemed that I
was the only one with a budget that could reasonably easily absorb a short consultancy
contract, so I was to handle the contract with him too.

I had no idea where John Buxton was working at this point but, back in my office in Harlow
after a few telephone calls I managed to find him. I explained the situation and that we were
looking for a consultant to give us advice on a problem of technical strategy. The task should
require about four days’ work. It turned out that John had been on an assignment in Hungary
for several years and had just returned home. He was between employments, prior to taking
up a chair at the University of Warwick the next academic year. So a piece of consultancy
work was, it seemed, most welcome. We arranged to meet and John came to STL. I gave him
more background about the rival operating systems and Combelic’s proposal for DPSS, and

1See Barron et al 1963.

76

told him a bit about the factions involved. John took it all in and I made arrangements for him
to visit LCT and find out about the LCT operating system and DPSS.

John Buxton studied the documents describing the two rival systems and the work done on
DPSS to date. Then we had a last meeting at LCT. This time quite a lot of the players were
present: Gerry Jacob, Don Combelic, Don’s assistant John Devoil, Bob Parenti, Lou Flowers,
myself and, I think, several others. John Buxton ably and in a relaxed way presented his
findings. His view was that the work on DPSS should never have been started. The best way
to achieve technological advance is by incremental development, not by sudden revolutionary
change. He strongly stressed “incremental development”. But having come as far as this on
the DPSS path, it would probably be best now to continue. He found that the individual
programming staff involved whom he had met seemed well competent enough for the task. In
a nutshell, that was the gist of his findings. It was as if we had travelled on a mountain trail
and asked an experienced stranger if we were on the right track. The stranger advised us that
this was not the best way to go at all, but now we were here, we might as well continue; bear
round that way and we would reach our destination. I felt a small private glow of pride,
because my idea of merging the two operating systems would have precisely been an
“incremental development”. But I knew that that idea was no longer up for grabs.

Everyone became lively and started talking about the consequences of this, effectively a
cautious recommendation that DPSS should proceed. Gerry asked John, “This is probably an
unfair question, but do you have any recommendation about who should head the team to
develop DPSS?”. The others all declared that this was indeed not a fair question, that John
should not feel obliged to answer it, but John said, “Oh, I rather like unfair questions, and
yes, I have come to a view about who would be the best person to lead the work”. Everyone
became a bit startled, I think. Here was an external consultant who was about to recommend a
personnel matter, not something he was asked to do, and possibly liable to cause
embarrassment. “That person” said John Buxton, “is John Devoil”. John Devoil could not
help looking flattered. At one point a little later, he was enlarging on some detail, and Gerry
said to him, “Hey, you haven’t got the job yet!”. “I know, I know” said John.

After some time the meeting broke up, with everyone looking reasonably content. I mused
that John Buxton had been rather clever. By saying that we should never have gone along the
DPSS path, but that the best thing to do now was nonetheless to continue along it, he had at
least partially satisfied all the factions. Those who had opposed DPSS had had their views
confirmed, but Don and his allies were given the go-ahead to proceed with it. All round,
honour had been satisfied. Furthermore, whatever the outcome if DPSS was completed, if it
came to be accepted or not, John Buxton would be proved right, at least in substantial part.

In fact, what happened was that DPSS always struggled to receive ITT funding. Don
continued to try to appropriate effort from my staff, and succeeded in doing so from time to

77

time. DPSS was eventually completed, was used to a limited extent by one company, but
never came into widespread service.

Meanwhile, most of the business was continuing as usual. Like all except the very smallest
companies, STL, being part of STC, had personnel procedures, including annual salary
reviews. STC had a company wide scheme of appraisals. I used to review the performance
and salaries of my own staff, and mine was reviewed in turn, but in my case no face to face
interview took place. I assume this was because my managers were not actually employed by
the company, but by BTMC. The personnel department at STL would send a letter to each
individual, informing them of their salary increase for January each year. These letters were
of standard form, starting with the words “Thank you for your contribution to STL in the last
year”, and were sent to everyone’s manager to sign and pass on to the employee. Gerry Jacob
did not feel he could sign a letter thanking me for my contribution to STL, because he did not
represent STL. So I never received my annual letter. Each year I discovered what my salary
increase was by examining my pay slip at the end of January.

Staff turnover was fairly average for a software team. I recruited more people fairly regularly,
including the first female member of the team. Software was an industry that was in some
areas a mainly male preserve, but in others the reverse. At ULACS and RADICS there was a
small majority of women in the teams, but in STC there were very few. Firms which had a
mainly engineering tradition would in general be dominated by men, but where the emphasis
was principally that of computers and programming, women graduates in mathematics and
computer science felt more welcome. Computer Science degrees, non-existent when I was an
undergraduate, were now offered by many universities. Denise Brown had a first class degree
from City University and showed a great deal of alertness and intelligence at her interview. I
instructed the personnel department to offer her a job. She had mentioned that her husband,
David Brown, a computer engineer, was also considering a job at STL in another department.
Only later did I fully realise that they were applying to STL as a kind of package deal – they
would either both come or neither would. I met David from time to time. He was a man of
considerable ambitions and later joined Motorola UK, eventually becoming chairman, and
was made president of the IEE in 2003. Several other new members joined the BSCC,
including Tani Haque. When interviewing him, I was finally convinced when he mentioned
in passing, right at the end of the interview, that he had sold encyclopaedias during a summer
vacation when at university. He had been so successful that the firm wanted to make him area
manager. “But I had to go back to finish my degree!”, he said. I thought we could use some
sales skills.

As well as technical staff, the group needed administrative staff. At first we engaged a
secretary from an agency. Some of these were excellent, and I asked several if they were
interested in a permanent position, but they always had some reason not to. Others were very
temporary indeed, leaving of their own volition after two or three days. One actually left at

78

lunchtime, leaving a half typed sheet of paper in the typewriter, with no explanation. I could
tell that the personnel department began to eye me suspiciously, wondering if I was making
unwelcome advances to these mostly young women. I had always behaved with decorum, but
I felt quite uncomfortable under the gaze of the personnel department for a while. Eventually
one of the temporary secretaries asked if she could become permanent, and I agreed, against
the advice of some of my staff. She was not the most efficient secretary, but I was beginning
to feel she would be better than a continual string of temporaries. A year or two later we
engaged a second “clerk”, as Lou Flowers called them, for our need for typing documents,
filing them and arranging travel was considerable. I also believed that it was a good, cost
effective policy to use clerical staff to do as much as possible for the programmers, leaving
them to spend more of their time on technical work. Other managers thought that the more
they spent on secretaries’ salaries, the less they could spend on technical staff, and would
minimise their administrative budget. I have always thought that this was a mistaken policy,
which led, among other things, to a more tedious working style for the technical people.

I continued to experiment with my policy of matching the work required from my staff to
their abilities. Project leaders found it a chore to deal with project accounting. So I engaged a
business studies sandwich student for a year, and got him to do the project and other
accounting for the group. I encouraged everyone to give him tasks where possible, and kept
an eye myself on his workload to make sure he wasn’t overwhelmed. I hoped that this
arrangement would relieve the programmers from the aspects of work that they found less
interesting, but the experiment had only limited success and I did not repeat it. Delegation
itself takes time, and it does not necessarily save effort. A few years earlier I had had
difficulties persuading the programmers to fill in their time sheets on time, until one day I sat
back and thought to myself, “why do I need their time sheets anyway?”. I needed them to
supply the accounts department with the information necessary to calculate the project
accounts, which I in turn included in my monthly report to Gerry Jacob. So I decided to hand
the problem to the project leaders: I explained to them the need for project accounting and
delegated to them the preparation of the project information and asked them to send it to the
accounts department each month and report on their project accounts to me each month. For
this they needed their own and their project members’ time sheets. I no longer needed to ask
for anyone’s timesheets, except those of the admin staff. The project leaders were quite
pleased to accept this extra responsibility; it elevated their status, giving them more of a
management rôle. The time-sheet problem disappeared overnight. Even I was surprised.

We started to engage a computer science sandwich student each year, following a campaign
from the personnel department. STL had an institutional vocation to foster research and
education, and their liaisons with universities gave a motive to provide meaningful work
experience to sandwich students. I had myself spent a year at Texas Instruments between
school and university, and had deliberately done vacation jobs in the electronic and computer

79

industries, to gain work experience. I was quite enthusiastic to engage a sandwich student for
these reasons, and because I thought it could also enable the more experienced programmers
to concentrate on the more advanced aspects of their work, if only to a limited extent. So
Nick, an undergraduate from Nottingham Polytechnic, as it then was, joined us. He rapidly
learned how to prepare software installations for the 3200 BSCC and other very useful tasks.
One day we had a request for an installation at LCT in Paris and none of the full-time
programmers was available to do it for some time. I asked Tani Haque, whom I had come to
nominate as my deputy when I was away, if he thought Nick could do it. Tani thought he
could, and so I went to consult the personnel department. I was not sure whether we were
allowed to send a sandwich student abroad on business, or whether the personnel department
might advise against it. But they saw no objection at all; indeed, they thought that it was a
good thing to give the student a challenging task if I thought he was up to it.

So I asked Nick into my office. “Nick”, I said, “have you got a passport?” His jaw dropped
visibly and I went on carefully to explain what we wanted from him and gave him advice
about the hotel to stay in and how to reach LCT, the people he should speak to and so on. He
was willing to go on the trip and carried it out without any apparent difficulty.

After I had been in the job for some three years, Lou Flowers, my manager, left. I got the
impression that he was made redundant, for I and one or two other staff who had reported to
him now simply reported directly to Gerry Jacob. I engineered a meeting to go to in Antwerp
so that I could be at his office on his last day. He was rather surprised, and pleased, to see me
there. It was the first time I had had the temerity to organise a trip for myself without
consulting him first. With Lou’s departure, I was now in charge of the 1600 Basic Software
Control Centre, as well as the 3200. The 1600 BSCC’s manager had been promoted
elsewhere and so the group was temporally without a leader. Lou had been guiding it himself
while working out his notice. But I could not do this effectively from STL, in a different
country, never mind a different town. Lou advised me that none of the 1600 BSCC staff were
competent enough for the job. One member had the technical ability for it, but not the
diplomatic skills needed to interact with other groups. I was asked to find a leader for the
group, possibly from the ranks of the 3200 BSCC.

I wondered how to set about this. Taking on such a position would involve the aspirant’s
moving location to Belgium, managing and inspiring staff of a different nationality and
working in an environment with unfamiliar traditions of employment protocols and working
practices. But in the multinational ITT these features of work were normal, one might almost
say run of the mill, and taken in one’s stride. I decided to take the slightly risky but simple
course of announcing the vacancy to all the BSCC staff and inviting them to see me if they
were interested. I reckoned that in fact any of them could handle the job. After all, they had
had me as an example of how to manage a group of programmers! I also wondered how I
would choose the candidate if there was competition. But in the event, only one knocked on

80

my door and said he was interested – Cliff Lamb. So Cliff went to live in Antwerp and led the
1600 BSCC, and proved to be a popular and successful leader of the group. Having worked
for many years under the rigid approach of their former manager, the group found Cliff’s
style of open, fair and relaxed leadership a welcome change.

About this time, when I opened my pay slip at the end of the month I found that my salary
had taken a sudden and welcome leap upwards. I deduced that I had been promoted, but once
again this step function in my pay was the only indication I received. Some six months later,
after Lou had been gone some time, Gerry Jacob implicitly confirmed this. Apropos my
taking responsibility for some matter, he said: “You’re Lou Flowers now, remember?”

Now that I reported directly to Gerry Jacob, instead of Lou, he would visit me in Harlow and
I visited him equally frequently in Antwerp, sometimes elsewhere. Gerry was keen on
modern management principles such as “management by objectives” and the principle of
delegation. Delegation was believed to motivate staff and give them a sense of self value and
confidence. Gerry liked to delegate. Every task that could be done by someone else, he would
choose one of his staff, often in rotation, and give them instructions on what he wanted done.
So I would often go to his office in Antwerp just for the purpose of carrying out one of these
delegated missions. It certainly gave me a lot of insight into the context in which his
organisation, the Computer Engineering Centre, worked. One regular task was the writing of
his monthly report, which would be sent to his manager at ITT Headquarters in New York.
When it was my turn to do this I would sit at a spare desk in the CEC and read through all the
monthly reports of Gerry’s staff, and try to compose them into a unified whole. All these
reports had a fixed format: Highlights, Achievements, Problems and Red Flags. A Red Flag
was a serious problem. I would consult the authors if I had difficulty in interpreting their
reports. I remember one occasion when two of Gerry’s staff had reported on the same event,
one of them describing it as a “Problem” and the other as an “Achievement”.

Chapter 7 Reorganisation and Research
The Computer Engineering Centre moved from Antwerp to Velizy, just outside Paris, next to
LCT. Gerry and most of his technical staff uprooted and found new homes in France and the
Centre detached itself from BTMC and became administratively part of LCT. Gerry was
happy enough still to be in a French speaking country, after having spent a great deal of effort
learning the language. Much of the CEC’s equipment was left behind, bequeathed to the 1600
BSCC. I was to arrange payment for this to the CEC, so that they could in due course buy
more. This was much more practical than physically shipping the machines from Belgium to
France. But LCT refused to accept the payment; as far as they were concerned, nothing
belonging to LCT had been sold, so they could not accept payment for it. I went to see the
Comptroller at STL about this. He was quite amazed. “If someone wanted to give me eight
thousand pounds, I’d accept it and think of a way to make it legal afterwards!”, he said. I was

81

bemused to hear this from our respected chief accountant. We all shrugged our collective
shoulders and I kept the sum in my budget, with an understanding that we could repay the
CEC in various ways as opportunities presented themselves.

Advances were being made in the software world. We were in the mid-seventies. I had been
in the industry for about thirteen years. In the mid fifties Noam Chomsky had carried out
canonical work in linguistics on defining the grammars of human language. This was the
starting point for finding ways of defining the syntax of computer languages. Writing a
compiler for a programming language is far easier if its syntax can be precisely defined.
Indeed, people have written “compiler compilers” which input a syntax definition of a
computer language and produce the front end, that is the parser, of a compiler for it. I used
Brooker and Morris’s Compiler-Compiler while I was at ULACS in the late sixties, and now
there are numerous such compiler-compilers. YACC, Yet Another Compiler-Compiler, is
probably the most well known one today. The first generally accepted notation for defining
syntax was developed by John Backus for the definition of Algol58 in 1958. This was called
BNF, Backus Normal Form1. BNF was extended by Peter Naur for the definition of the better
known Algol60, and the notation became Backus-Naur Form. Now there is an international
standard for BNF developed by the British Standards Institution and adopted by ISO, the
International Standards Organisation, and IEC, the International Electro-technical
Commission2.

A lot of theoretical research work followed the Algol60 development in the sixties. But the
really interesting problem was the much more difficult one of defining the meaning of a
computer language, rather than its form or syntax. If that could be cracked, the writing of
compilers could become a much more precisely defined task and the quality and correctness
of compilers could be greatly improved. As it was, compilers for the same language varied
one from another, largely because there were vague areas in the definitions of all the
languages, open to interpretation, no matter how hard those defining the languages tried to
make them exact and complete. Nonetheless, during the early sixties more and more intricate
work was done on syntax definition. Somebody likened it to a joke: a policeman at night sees
a man looking under street-lamp. He goes up to him and asks him what he is looking for.
“I’m looking for a coin I dropped”, he replied. The policeman asks him, “Did you drop it
under this lamp?” “No”, replies the man, “I dropped it over there”. “Then why are you
looking here?”, asks the policeman. “Well, I can see under this lamp, but I can’t see over
there” is the reply. There seemed to be a reluctance to investigate the more difficult problem
of the meaning of languages, so some researchers spent time on the largely solved problem of
syntax.

1See Backus 1960.
2See ISO/IEC 14977 1996(E).

82

However, there were some efforts being made in the late sixties into the meaning, or
semantics, of computer languages. In 1963 John McCarthy outlined a theory of computation
which, among other things, separated abstract syntax from the more cumbersome concrete
syntax of a language3. Abstract syntax separated out the essential parts of a grammar,
ignoring the precise form of the components, the punctuation and spelling so to speak. This
eventually made defining a language’s semantics a lot easier. In 1965 Peter Landin related
the actions of Algol60 programs to a branch of mathematics called Lambda Calculus4.
(Lambda Calculus is a notation in mathematical logic, devised by Alonzo Church5). In 1966
Christopher Strachey used an extended form of lambda calculus to help define the meaning of
programs6. His approach subsequently became known as Denotational Semantics. In October
1969 Tony Hoare published a seminal paper in the Communications of the ACM
(Association of Computing Machinery), “An Axiomatic Basis for Computer Programming”7.
This paper laid out some principles for deducing whether or not a program was correct, that
is, whether it achieved its desired result. But in so doing, the paper gave a means of defining
the semantics of the individual and composite instructions that lay at the heart of most
conventional programming languages of the time. Two lines of research sprang from these
pieces of work. One led to being able to define the semantics of computer languages. The
other led to a way of developing programs and proving them correct.

The word “semantics” just means “precise meaning”. In popular use it has come perhaps to
have a negative association. When someone says “That’s just semantics”, they mean that
their disputant is responding to the literal precise meaning instead of the intention of their
words. In normal discourse between people, responding to the semantics of someone’s words
when the intended meaning is clearly different is deliberate misunderstanding, an act of social
hostility. But in most scientific disciplines the precise meaning, the semantics, of one’s
descriptions are very important. Precise description is much to be desired.

In 1975 Edsger Dijkstra, professor at the Technical University of Eindhoven, published a
seminal paper, “Guarded Commands, Non-determinacy and the Formal Derivation of Programs”8.
In many ways his ideas were similar to the Hoare axioms of computer programming, but
there were important differences. In particular, his notation smoothly led to a way of proving
that a program fulfilled a desired objective. Dijkstra wonderfully illustrated this method of
proof in a small but classic book, “A Discipline of Programming”, a year later9. He took a
number of elegant examples of problems and walked through his proof method, developing
the program as he went along. Some of the problems had never been solved by computer

3See McCarthy 1963.
4See Landin 1965.
5See Church 1941.
6See Strachey 1966.
7See Hoare 1969.
8See Dijkstra 1975.
9See Dijkstra 1976.

83

before, the most notable one being the convex hull in three dimensions. Suppose you are
given a number of points in three dimensional space, no four of them lying in the same plane,
like a scattering of stars in a galaxy. If you take a set of three of the points, they define a
plane. If all the other points lie on the same side of this plane, define these as “boundary
points”. Another way to think of the boundary points is to imagine a large balloon enclosing
all the points. Then shrink the balloon until it is in contact with all the points on the extremity
of the set. Those points are the boundary points. The result will look rather like a
Buckminster Fuller geodesic dome, but completely closed. The problem is to write a program
to find all the boundary points. This is not an easy programming problem by any means, but
Dijkstra used it to illustrate his method of developing programs, producing a proof that the
program is correct as he went along.

I was fascinated by Dijkstra’s method of developing programs. In some ways, the technique
seemed back to front. Instead of taking a program and stepping through it proving that it
achieved the desired result, you take the last statement of the program and work out what are
the minimum preconditions required so that after it is obeyed, the desired result is delivered.
Then you step back progressively working out the minimum preconditions until you reach the
program’s starting point. If then there are no preconditions at all, you have proved that the
program is correct.

Dijkstra’s method, his “discipline” of programming, also involves separation of concerns,
breaking up a problem into sub-problems, and other techniques of simplifying a complex
problem. I tried it out on some programming problems of my own and became enthusiastic
and convinced by it.

I was still in a management rôle, and had not done any real programming myself for a long
time. I was missing the technical challenge and, at the same time, there was one programming
task I longed to do. I have mentioned compiler-compilers, which are often and perhaps more
accurately called parser generators, because they generate a parser for a language. I had used
Brooker and Morris’s compiler-compiler years earlier at ULACS. I had also used David
Hendry’s language, BCL, when working for RADICS. BCL also performed the rôle of a
parser-generator. The Brooker and Morris program was difficult and awkward to use, and
BCL was considerably easier. It would be easier still if the input to a parser were a grammar
written in BNF, the notation devised by Backus for the Algol60 definition and already the
subject of a British BSI standard. I decided to write a compiler-compiler that would input
standard BNF. The only computer I had access to was the 3200 machine, and the only
languages available on it were the symbolic assembler language and ESPL1, the autocode
developed by Bob Parenti’s team. I used ESPL1 and developed a parser generator that used
BNF for its input. I used it to produce a couple of small utility programs and sent details of it
round a number of programmers in the company. One programmer in BTMC in Antwerp,

84

Rudi De Belie, used it to produce an editor, but the whole exercise was mostly for my own
elucidation.

Amongst the community of software developers, as well as these rather theoretical advances,
there was a lot of effort being put into “software engineering”. Until the late sixties,
programming was seen as a somewhat individual task, carried out by loners sitting at their
desks and producing inscrutable works of art, programs that produced wonderful efficient
results but which were comprehensible to no-one but their authors. There had been a lot of
persuasion to move away from this attitude, requiring programmers to document their
programs, to explain how they worked and generally to be “public” about them. But in the
1970s a much stronger push came to turn programming into an engineering discipline, with
the writing of programs carried out by coordinated teams of people working together and to a
budget. Estimating the cost of developing software and the time it would take was
notoriously difficult, and software managers began to follow a variety of initiatives.
Programmers were encouraged to stop thinking of their programs as their own individual
pieces of cherished work. Programs would become team efforts, using peer reviews, walk-
throughs and other ways of trying to ensure that the end result would be delivered to
specification and on time. Cost estimating became a big effort, and the “software
development life cycle” became a big topic. Too often programmers had embarked on writing
the code for the program prematurely. Emphasis was now put on producing a design, which
was an abstract, more general form of how the program was going to work. The very earliest
of these were called flow diagrams and consisted of a diagram showing the program’s flow of
control, with lines, arrows, boxes and decision points. But flow diagrams tended to describe
the program at a low level of detail and did not give a view of its overall design. More
general and sophisticated design methods proliferated, all enthusiastically promoted by their
originators. JSP, the Jackson Structured Programming method was one of the better of these.
A movement called “structured programming” had emerged and was very strong. It was all
started by a two-page note published by Dijkstra titled “Go To Considered Harmful”10. “Go
To” instructions appear in the repertoire of every computer’s machine code and were present
in almost every high level language. Dijkstra criticised the use of these instructions, claiming
that they led to unstructured and arcane software. To quote the obituary of Dijkstra by
Krzysztof Apt11, the note “led to a huge uproar” of controversy. But his view came to be
accepted after a few years and, as Apt writes, “thirty years later the Go To statement shines
by its absence” in the Java programming language. I recalled that coping with the Go To
statement in the Algol60 compilers that I wrote when at RADICS occupied a truly
disproportionate amount of effort and compiler code.

10See Dijkstra 1968.
11See Apt 2002.

85

So Structured Programming, of which JSP was a particular flavour, became a watchword in
programming development. But structured programming was mainly about the design of
programs. People began to talk of the “software development life cycle”. Before writing the
code for a program, one should produce the design. The design may be produced at several
stages of detail. Before producing the design, one should however write a functional
specification. The specification defines what the program will do, without saying anything
about how it is going to do it. The design, by contrast, defines how the program is going to
work. This separation of focus between the two stages was an example of the Dijkstra
principle of “separation of concerns”. After the code is written, a testing phase begins and can
lead to repetitive revisions and repetitions of the previous stages. Many models of this
process were put forward, the first and simplest one being the Waterfall Model, because the
picture of it resembles a fall of water dropping from one pool to another. All agreed that it
was very important to get the early stages right before embarking on the later ones. It was no
use producing a brilliant design if it did not do what the specification demanded, or if the
specification was wrong. More attention to the design would lead to fewer errors and less
time testing and retesting, which could be extremely time consuming. In the later part of the
seventies a huge amount of effort was spent studying this syndrome. It was found that
attention to the early part of the life cycle would save a great amount of time detecting and
mending errors later. One movement encouraged programmers to read each other’s code
before committing it to testing. Doing this, typical error detection rates were 600 during code
reading, 300 during unit tests, 200 during system tests and 15 detected when the software was
in service. The amount of effort required to put these errors right would dramatically increase
as the life cycle progressed. The correction of errors after the software had been delivered
required orders of magnitude more effort than during the earlier phases.

Some years later an earlier stage was added to the life cycle, that of analysing requirements.
Customers for software very often could not specify exactly what they wanted, so even if a
customer agreed a specification for some software, it might not reflect their real-life
requirements. This mismatch has resulted in some notorious and expensive disasters, such as
the system for handling emergency calls for the London’s ambulances. *** more examples
here, with dates. Look up on internet*** Requirements elicitation and requirements analysis
were to become hot topics a decade later in the eighties. But in the nineteen seventies their
significance was still not generally recognised. <More on the push to quality – look up some
stuff>

Meanwhile, my own work environment was changing. ITT was selling off STC – they
referred to this process as “divesting themselves” of a company. STC was to become an all-
British company. STL was traditionally the laboratories of STC, so STL was going to be an
ITT company no longer. I breathed a private sigh of relief, for I had always felt a little uneasy
at being employed by a multinational conglomerate. A company that employs eight million

86

employees has an uncomfortable and possibly dangerous amount of power. Unfortunately my
relief was to be short -lived; we swapped a tolerant US management style, which rewarded
initiative and listened to innovative ideas, for a rigid, rule-bound British one. But it took a
couple of years for the change fully to take effect.

My group, the BSCC, used a 3200 computer centre at STL continuously. After a couple of
years its chief operator left, to go into the Anglican church and study to become a priest. He
was replaced by a new chief operator. We began to have many problems with the service
from the computer centre, and I sent frequent memos of complaint to the manager whose
department included the centre. After a while, he and I had several meetings with our mutual
division manager, Dave Dagwell. Dave devised a brilliant solution, at least, brilliant from his
and others’ point of view. He transferred responsibility for the computer centre to me, and
congratulated me on this minor promotion. Now the chief operator reported to me, and I had
no-one to complain to except myself. Indeed, there were a few other users of the 3200
computer centre, and now I became the recipient of their complaints. At least I had a small
promotion, with a modest extra increase in salary. I had to field many complaints about the
service from the centre and the performance of its chief operator. In due course we had to go
through the process of giving him official warnings, the later ones in writing. According to
the rules of industrial relations, after three warnings, he could be sacked. He received two,
and a short while later one morning members of my group kept dropping into my office,
saying, “Hey Tim, have you heard? He’s had a job offer. He’s going to show it to you!” So
by the afternoon I was prepared. After what I suspect was a well lubricated lunch, the chief
operator came into my office and placed an envelope on my desk, saying only, “Der-dum!”,
an imitation drumbeat. I opened the letter and read the offer of a job he had received, a
position for a chief operator of a substantially bigger and more modern computer centre in
another company. “This looks like a really good career opportunity for you”, I said.
“Congratulations! I hope you’ll be happy in your new job!” I reached across my desk and
shook him by the hand. He looked a little stunned, murmured “I see you’re not trying to
persuade me to stay”, and left the room. Had he really expected me to persuade him to stay
after all the complaints, the meetings and warnings? I suspect not, not seriously. But he
probably did not expect me to show such brutally honest relief at his departure.

Nonetheless, I think the British industrial relations rules about giving people clear
unambiguous warnings is essentially fair. It is very easy for someone to have no idea that
they are under-performing if a well-meaning manager is too polite or equivocates about
letting them know the true perception of their work. With clear messages the individual has
some opportunity to improve.

The activities of the BSCC began to shrink and some of its staff transferred to other
departments in STC, most of them working on new telephony projects. I put Tani Haque in
charge of the now reduced group. At the same time, a hardware research and development

87

group was put under my wing. I was wary about accepting this, because it was many years
since I had any experience of electronic circuit design, not since I worked at Texas
Instruments and Cambridge Instruments some eighteen years previously. I talked at some
length to the section leader of this group, and he was confident that the principles of
electronic design had not changed, only the technology supporting it. So I agreed to take it
on, but I never truly felt I could understand their work thoroughly enough to make
judgements about the wisdom of their development policies. I became more confirmed in a
belief I have had for a long time, that you cannot properly manage an activity unless you have
worked at it yourself.

I no longer reported to Gerry Jacob or the Computer Engineering Centre. Now I was part of
the STL management hierarchy. After several further organisational changes, Frank Simpson
became my Division Manager. The Microprocessor Research group, headed by David
Wright, moved into my department. This group developed software to drive microprocessors,
computers whose central processors were on a single integrated circuit or chip. Until then
central processors, which carried out the extraction and execution of instructions stored in a
computer’s memory, consisted of a substantial amount of electronics, transistors, chips and
other components, on one or more circuit boards. Printing the entire central processor on a
single chip was a very recent development and STL, being a leading research laboratory,
were keen to explore the potential of these new microprocessors. David Wright, an
extraordinarily energetic character, led this research group. Its work was mainly software,
intimately bound up with the hardware but also comprising operating system and basic utility
functions. I was more than happy to have this group reporting to me. They talked the same
language as I did. We had to make many policy decisions, because manufacturers of
microprocessors began to proliferate. The company had to choose which manufacturer’s
products to concentrate its efforts on. TI, Intel and others were contenders. Microprocessors
were beginning to be used in telephony. They would need support for the development of
their application software, just like the 3200 had. David Wright’s team had produced an
autocode language for microprocessors, PLM. Other smaller languages for various purposes
were in use. We had to set up ground rules and sort out questions about who uses these
different languages, how can they be controlled, who should produce documents on style,
usage and so on. Many small committees were set up to do these things and an STL language
management group was set up. All this was a small reflection, a microcosm of what was
happening in the industry at large.

More staff moved into the division and a software research team was formed, starting with
Bernie Cohen. With all these groups, my department was beginning to become overweight,
so to speak, and more reorganisations followed. Bernie and I were made Chief Research
Engineers. There were just a few people with this title in STL. We were no longer line
managers but were more like free floating gurus, with the same rank as Division Manager. I

88

got a company car as a result, and was attached to the software research group. I thought this
was ideal for me. I did not relish the prospect of continuing up the STL management ladder,
for the higher ranks concentrated too much on the financial and not enough on the technical
side of the work for my taste.

Organisations and their management began to look upon computer programming as part of
“engineering”. Engineering products should not have faults, should work properly and be
genuinely useful. A drive for “software quality” became widespread. Many of the problems
with software arose because it was easy to build. It did not require components to be
manufactured and assembled together. It “only” required a programmer sitting at a desk
writing code, which was then punched onto paper tape or cards and fed into a computer. The
result was that pieces of software could be built which were extremely large and complex.
This inherent complexity was the source of errors. Furthermore, because of this great
complexity, even exhaustive testing could fail to uncover some errors. One such error in a
Fortran program caused the destruction of the NASA Mariner 1 mission to Venus in 1962. A
transcription error substituted a comma for a full stop, causing the navigation software to
miscalculate, causing the rocket to lose control. It had be destroyed over the Atlantic ocean.
There is a long list of other disasters resulting from software engineering errors. Many
programmers and managers flocked to resonating halls to listen to conferences on software
quality. Programming languages, methods for developing software, and “architectures”, ways
of putting the large number of components of a piece of software together, were intensively
discussed. The fact that massive programs consisted of many components, all with different
versions and variations for slightly different customer requirements was a particular problem
itself. It was called “configuration”, and configuration control became a discipline, with rules
and computer support tools. These rules and support tools would try to prevent mismatching
versions and variants of components being put together.

The USA Department of Defense and their bigger contractors and associates such as TRW
and the Jet Propulsion Laboratory were among the largest ever customers for software. They
could afford to do extensive research studies into causes and sources of errors, for they had
the most to lose from them and the most to gain from learning how to avoid them. They
carried out extensive statistical studies into the sources of errors, what part of the life cycle
produced the most, which were the most expensive to repair, and so on. Removing an error
early in the development process saved a great deal of effort, and therefore money, down the
line. One of the first practices adopted was “code reading”. When a programmer had written
a piece of code, another programmer had to read and understand it, looking for mistakes,
before the code was submitted for testing. A typical proportion was 600 errors detected
during code reading, 300 during unit testing of that individual piece of software, 200 when it
was consolidated with other pieces of code into a system and finally 15 when the software
was in service. The latter, 15, were the most costly to repair, for in effect the software had to

89

be recalled, like a car with a part found defective after many examples of the model had been
delivered. The 600 found during code reading were the cheapest to repair, because not much
work had to be redone and recombined.

Code reading was just one form of “peer review”. Producing a piece of software was divided
into a number of stages. One started with a statement of general requirements that the
software had to meet. Then someone produced a specification, which described what the
software would do, the functions it would carry out. Then came a design document, which
described how the software was going to work, the layout of its internal and external data and
the step by step processes, the algorithms, which it would use to perform the necessary
calculations and manipulations of the data. Finally would come the code, the actual
instructions which were fed to the computer and be automatically turned into a program by a
compiler. The writer of one document would be the customer for the next one to be produced.
So the writer of the requirements would be the customer for the specification, the writer and
hence supplier of the specification would be the customer for the design document, and the
supplier of the design document would be the customer for the code. This way of looking at
the process was known as the contractual model. Each player in the process had a contract to
fulfil, even if the same person was writing two or more successive documents. This simple
model of the life cycle, with each document being a predecessor of the next in the chain, was
one of the first models of the life cycle and was called the Waterfall Model. Many more were
to follow. People soon realised that the waterfall model was too simple; it did not take into
account the many revisions and backtracking that took place as mistakes and misconceptions
came to light during the process. Often, even the requirements would be revised as the end
customer realised that their needs were not quite as they had at first perceived. The “V”
model was a variation of the waterfall model and showed the typical backtracking up the
waterfall and down again. Numerous lifecycle models have subsequently been
enthusiastically put forward by their protagonists, and are so to this day, Prototyping and
Agile Computing being among the more recent ones.

Different styles of design reviews were advocated by different gurus. In a design review,
which was on the whole a good practice borrowed from other engineering disciplines, the
designer would explain the design to an audience of other designers, who would question and
probe to in order to uncover any errors or shortcomings. There was an emphasis that this
review was in no way a check on the competence of the designer and would have no effect on
his or her pay or promotion prospects. For this reason the reviewers would be “peers” of the
presenter. Design reviews were an example of “walkthroughs”, where the writer of any of the
documents in the life cycle would walk through it and explain it to an audience.

ITT had established user groups for many of its products. This was a practice being adopted
by many engineering suppliers and manufacturers. The supplier would gather representatives
of its customers together into a kind of club and consult them about the acceptability of its

90

products. Doing this was considered to be a commercial advantage, spiking complaints before
they became too annoying and also being in control of any customer antipathy. But it was
also another way of improving quality of the products, ensuring they were fit for purpose.
STL set up a user group for the internal and external customers of the microprocessor group’s
software. This was one more mechanism typical in the industry for improving quality.

The studies done by the DoD and their contractors showed that more errors occurred during
the design phase than during the coding phase. They also showed that using high level
programming languages, as opposed to machine or assembly code, reduced the cost but not
necessarily the error rate. The reductions in cost occurred in some of the later phases,
including testing and maintenance. Some organisations found that it was difficult to motivate
staff to do software maintenance work. This is not altogether surprising; experience in
maintenance was not and is still not regarded as particularly valuable on someone’s CV. The
activity does not impart design experience and involves little creativity, even though
ingenuity may often be required. Design has always been the more glamorous part of the
process. Yet studies showed that maintenance costs formed 60% of the total. Some
organisations seemed to employ large numbers of less qualified staff instead of smaller
numbers of graduates. This seemed to have given rise to difficulties, both technical and
organisational. Less qualified staff seemed to take much longer to learn a new programming
language. It was as if they had to unlearn the language they previously learned and the whole
relearning process would take several months.

The DoD used many different computer architectures, software development methods and
programming languages. This increased the amount of effort they needed to maintain their
systems, not least because many people had to relearn and adapt all the time. They decided to
try and standardise on one new all purpose high level programming language. A document
listing the requirements for this new language was published in 1975. It was called
“Strawman”, after the fairground game in which a straw man is set up and knocked down by
throwing balls at it. The Strawman document was intended to be criticised and “knocked
down”, following which it would be replaced by a more resilient version, a “Woodenman”.
Strawman was published in 1975, and Woodenman and its successor Tinman in 1976.
Proposals were then invited to design a language meeting the Tinman requirements. The new
language would not be imposed on existing projects, but only introduced in new ones. The
DoD believed that the reluctance of programmers to change languages would be a critical
factor. The style of the language, quality of compilers and other tools, and user experiences
would all be critical. Seventeen designs for the language were submitted and these were
reduced to a short list of four. These four language designs were given code names, the
colours Green proposed by CII Honeywell Bull, Blue proposed by Softech, Red by
Intermetrics and Yellow by SRI International. The short list was reduced further to two, Red

91

and Green, in 1978. The contenders, Intermetrics and CII Honeywell Bull, were given a
further year to refine their proposed language designs.

This initiative on the part of the DoD caused great excitement in the software community.
The DoD was a huge procurer of software projects, some of them requiring enormous
amounts of effort, like 300 person years, to complete. The DoD was very influential and the
technical features of the new language was going to have a lasting effect on the shape of
software and programming for some years to come. The proposal chosen was Green and the
final language called Ada after Ada Augusta Lovelace, the assistant of Charles Babbage who
in the nineteenth century invented the mechanical calculating machines now in the London
Science Museum. Ada Lovelace is considered to be the world’s first ever computer
programmer, for she devised programs for Babbage’s calculating engines. The requirements
were revised one more time as Steelman and the final version of the Ada language produced
in 1980. However, in 1978 the process of procuring and designing the language was not yet
complete but well on its way.

With systems getting larger and larger, more difficulties came along, arising more from
human limitations rather than technological ones. Software could often be written to meet the
wrong requirements. Specifications were frequently open to interpretation by the
programmers and analysts, who did not know the details of the total design. Top-down,
hierarchical design could be the way to defeat the problems of size and complexity. The
industry began to look for methods of stating requirements that were unambiguous and that
supported top-down design. Projects needed management tools providing automatic analysis
and giving information on progress and other features. But there were many contenders. In
one software management conference in 1978 a speaker from the Royal Aircraft
Establishment gave a list of 24 different software and system development methods. Project
audits became popular for a time. An independent, specially trained, auditor would be
requested to audit a project, examining it following specific guidelines, check-lists,
procedures and standards for measurements. There were some apprehensions: the results
could be misused and full time auditors could lose touch with the advancing technology they
were supposed to assess. There was also a strong danger of equating progress with aspects of
a project that were simply easy to measure, like lines of code, expenditure, or milestones that
did not properly reflect a project’s advancement. The measurement of progress needed to be
based on the planned structure of the work, the amount of work remaining to be done and the
cost to completion. Even today, some projects and organisations have yet to learn these
lessons.

Software is useless if it does not work to a certain degree of correctness, and in some
situations, like on board a spacecraft where it is remote from human intervention, it needs to
function well-nigh perfectly. But other properties of software began to acquire importance.
Examples were its portability, that is, whether it could be transported to new hardware or a

92

new physical type of computer without too much rewriting; maintainability, the ease with
which it could be corrected and upgraded as requirements evolved – this could depend on
many things, the documentation, the clarity of structure, and the simplicity of design; and
usability or user friendliness, the phrase coined in later years.

ITT and the telephony industry in general shared the DoD interest in programming languages.
In some ways, the available high level programming languages were unnecessarily general
for many purposes. Specialised, “Problem Oriented” languages could have advantages. They
would be smaller and hence easier to learn, and would avoid features that were not going to
be used. People who were not programming specialists might be able to use them. On the
other hand, use of problem oriented languages could lead to a proliferation of languages just
at the time when most of the industry was try to reduce the number and investment in them.
Along with other organisations which produce computer programs, ITT devised its own
guide to programming style. The overriding criterion was visual clarity, but other motives
were portability, the ability to transfer the program to other machines. The program should
not make assumptions about the architecture of the machine, how many bits are in each word
of store, for example. Procedures implementing related functions should be grouped together.
Major data items of complex structure should be accessed by a few specific procedures
grouped together, rather than spread throughout the program. This assists later modifications
and extensions to the program, and foreshadowed much later ideas of object-orientation. New
programming languages were being developed and becoming available. The older languages
had a fixed collection of data types: variables could be of a limited choice of types like
integers, character strings, Boolean or truth values (True or False), arrays of these and so on.
More modern languages gave the programmer a much greater, unlimited choice, and there
were consequent advantages. Arrays, that is linear or multi-dimensional collections of values
of a simpler type, could be dynamic, that is their size need not be determined in advance.
Different types of data could be grouped together ad lib into records. All these facilities made
life easier for the programmer and could enable clearer programming, more closely related to
the concepts of the application. Researchers drew out some principles of language design
which made programming languages easier to learn and use. The earlier high level languages
were designed as convenient ways of driving the machine. As time went on, the impetus was
to design languages that expressed application problems well. Hand in hand with this,
computer architectures were considered that would facilitate the implementation of advanced
languages, but less progress has been made on this front over the years.

One of the most advanced programming languages of the time, Algol68, was coming up for
its tenth anniversary. I went to a conference on Algol68 in 1978, but it was becoming clear
that the language was falling out of use, for no very obvious reason. ICL still used an in-
house subset, S3, for its systems programming, but there were few users outside academia. I
was a little disappointed about this; I liked the language, but maybe its lack of popularity was

93

due to some difficulty in learning and implementing it. On the other hand, Ada, yet to be
finally defined, was to be much more difficult both to learn and to implement. In fact, the
acceptance and popularity of languages and methods over the years seems to have been
almost arbitrary at times.

So Algol68 was not for the telecommunications industry. The CCITT is the international
standardisation authority for telecommunications. It is an influential and respected
organisation, probably because, without strict standardisation, telephone calls and other
communications between different countries and telephone systems would be impossible.
The CCITT observed the DoD initiative to standardise on a single high level language, with
its series of requirements documents Strawman, Woodenman, Tinman, Ironman and so on,
and decided that they should conduct a similar study themselves. CCITT set up a high level
language committee to choose or design a language for telecommunications. The committee
considered simply using Ada, the forthcoming DoD language, but decided this was a little too
elaborate for telecoms purposes. So the committee designed a new high level
telecommunications programming language, CHILL. By mid-1978 the definition was in an
advanced state and the US research laboratory of ITT prepared to write a compiler for it.
There was even discussed the possibility of my division at STL being involved in writing the
compiler. A growing number of telecommunications organisations started to want CHILL
compilers. STC in the UK wanted one for developing code for the 8086 microprocessor.
Philips expected to produce a compiler by October 1978. Donn Combelic arranged for me to
join the CHILL implementers’ forum, a CCITT committee. This committee was next meeting
in London in December 1978, and then scheduled to meet every quarter, February in Rome,
June in Geneva, and September in Melbourne. At the London meeting the different
participants shared brief news about their progress in producing compilers, putting on courses
and so on. Somewhat to my surprise, no-one discussed compiler techniques or difficulties
with implementing any features of the language. However, the act of implementing compilers
for CHILL revealed ambiguities and some incompleteness in the language definition, so most
of the discussions centred on resolving and agreeing details of the definition. At least this
made sure that the compilers produced by different organisations were consistent.

In the computer industry at large, people were beginning to give some thought to methods of
designing software, the stage in the development process that would naturally precede the
writing of the programs, as well as to the languages in which they wrote the programs. The
earliest form of design was a flow diagram. These were not conducive to well structured
programs, as they allowed unrestrained use of jumps, or transfers of control. For ten years
now, since 1968, this was recognised as poor practice and so the next step in design
techniques was to devise a form of flow diagram that would tend to well structured
programming. The most well known form of these structured flow diagrams are Nassi-
Shneiderman diagrams, but these did not gain great popularity, although they still have their

94

devotees, are the subject of a standard (DIN 66261) and have a body of support tools. The
main problem with them was that they did not lend themselves to abstraction and the other
principle of well structured programs, separation of concerns.

At the beginning of 1978 at STL we too began to think more seriously about methods – the
ways we developed software and systems, looking at several pieces of academic and not so
academic research. For that reason, our efforts could perhaps genuinely be called
“methodology”. Was a development method the same thing as devising a language in which
to express different steps of the life cycle, requirements, specifications and designs,
languages which could perhaps be processed by computer in the same way that programming
languages are compiled by computer? Much of our discussions conflated the concepts within
methods with the languages they used. We made a case for internal ITT funding research into
SW, “investigating techniques which will move the programmer’s task nearer to a
formulation of what the computer is required to do, rather than how it is to do it. Each step in
this direction will reduce the costly, error prone activity of programmers reinventing ways of
realising specifications of problems. This overall objective is to be attacked on three fronts:
specification, program design and program implementation”. A traditional design technique
used in the telecommunications industry was Finite State Machines and State Transition
Diagrams, loosely based on a theoretical computer science concept called Finite Automata.
Other techniques were being developed in academia, Petri Nets, a diagrammatic notation with
a strict mathematical definition invented by the computer scientist Carl Petri, and other
approaches based on mathematical logic. There were also some more pragmatic approaches
being developed elsewhere, PSL/PSA, Gamma, and SADT, “Structured Analysis and Design
Technique”. PSL/PSA, the Problem Statement Language – Problem Statement Analyser, had
been started at the University of Michigan under Professor Daniel Teichrow as early as 1968,
and continued to be developed until the early eighties. It was developed with the help of
many industrial sponsors. The Problem Statement Language was used to define a system’s
requirements, using techniques from relational databases. The Problem Statement Analyser
consisted of a set of tools for generating reports and checking the integrity of the database
created from the PSL description. PSL/PSA is still alive and well today, with its enthusiastic
devotees, a web site and a series of conferences. We invited the proponents of a further
development of SADT, SAFP/2, to come and give us some extensive presentations. Several
ITT companies were to take part in this software research activity. In 1978 we held the first
of several seminars, to which we invited known people from other companies as well as
software programmers and managers from ITT companies. There was a tacit, almost
subversive, conspiracy amongst the researchers in different, even rival, companies to share
our technical ideas with each other, as a way of helping to persuade all our managements to
encourage and fund the activities we believed were worth advancing. We could then use a
subtext when talking to our managers, “look, company X is investigating technique Y, we’d

95

better not lag behind”. Participation in international standards committees, research
conferences and professional bodies like BCS special interest groups was a great help in
promoting this unofficial collaboration. In writing and presenting the case for our software
research activity we included a “scenario”, like a story, of how software might be developed
in the future (the future then being the 1980s). This use of scenarios presaged the European
Community initiative Framework Six, twenty five years later, which used a number of
scenarios of computers in everyday life to give a direction to the aims of current research in
IT. One can then list the kind of technologies needed to make the scenarios possible. Our
software research case was to be part of a coordinated collection of activities from different
ITT companies, so we had quite a few meetings with people from ITTLS in Madrid, SEL in
Munich and others.

We began to concentrate on development methods even more. SADT and its derivatives
seemed to prompt people into dashing off to do the design of a system before working out
fully what the specification was, what the system was intended to do. Much of
telecommunications software involved parallel processing, using a computer to service
demands and data input that was arriving in parallel from different sources. Analysing and
designing parallel or concurrent systems was a much less well understood art. Petri Nets
could handle concurrency, and so could CSP, Communicating Sequential Processes, a
specification formalism devised by Professor C. A. R. Hoare, then at Queen’s University,
Belfast12. CSP has since thrived, is the basis for the concurrent programming language
OCCAM, celebrated its twenty-fifth anniversary with a conference in 200413 and continues to
stimulate research and development.

I went to a conference on “Fuzzy Reasoning”. It explored the relationship between
mathematics, linguistics and computer applications. The classical syllogism:

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

uses the deductive rules of classical logic. One can contrast it with fuzzy reasoning:

Healthy men live long.

Socrates is very healthy.

Therefore Socrates will live a very long time.

The terms “long”, “healthy”, “very” are not cut and dried. The truth of statements like
“Socrates is very healthy” is not absolutely decidable or determinable, but can be slightly
true, very true, debatable, etc. Different rules of deduction have to be used for these “fuzzy”
12See Hoare 1978.
13See Abdallah et al., 2005.

96

statements. These new rules of logic were called “fuzzy reasoning”. Fuzzy reasoning could
be used in certain kinds of control systems in chemical plants for example, where temperature
readings could start getting “a bit hot” and so on. The conference suggested that there were
applications in system modelling, artificial intelligence, medical diagnosis, social sciences
and medical information systems. This was a conference full of interesting ideas, but I did not
think they were particularly applicable to telecommunications14.

The National Computing Centre was already over ten years old, having been founded by the
UK government in June 1966. Its aim was to encourage the growth of computer usage in the
UK, simplify the work involved in using computers and ensure that the necessary education
and training were available. Since its foundation it has produced copious useful booklets,
guides and studies. In 1978 the NCC was planning a booklet on program design methods. We
tried to be as up to date as possible in program development methodology by meeting with
many organisations, the NCC, the SRC – Science Research Council, now the EPSRC,
Engineering and Physical Sciences Research Council – Software Sciences, the Digital
Equipment Corporation and others. You could say we were thirsty for knowledge and
understanding.

We invited two members of the SRC to a meeting and told them about our research
programme, both in software and computer architectures. Another group at STL was
investigating novel microprocessor based architectures. We also visited Software Sciences in
Macclesfield and heard about their Gamma method. They had been tutoring the data
processing department of Barclays Bank in its use. Barclays bank had a team of eighty
programmers who were programming the first cash point or ATM facility. Cash points were
in their infancy but coming into use as the nineteen eighties approached. We decided to
provide some funds to assist the development of Gamma, along with Barclays Bank, and
made a case for ITT funding planned cover three years from 1978 to 1980. Cases for ITT
funding had to be made for each calendar year afresh, which hampered the planning of longer
term projects.

Digital electronic technology was also advancing. Software resided in new computers
constructed from this new, miniaturised technology. Because computers were becoming
smaller and cheaper, it was possible to have several intercommunicating with each other.
With the advent of microprocessors, this was even more the case. We were, indeed, starting a
collaborative project on a new microprocessor with the Intel Corporation. This computer was
expected to be ready to take new systems software on board in the early eighties. We had to
restrict information on the project to protect the commercial security of Intel and we were all
charged not to talk about it. The fewer people who knew about it the better! To enable

14See Mamdani & Gaines, 1981.

97

computers to communicate with each other, specific communication software has to be
written. The ways of doing this are far more problematic than with simple, linear programs
that sit inside one computer and are executed one instruction at a time. Protocols are needed
to make sure that information is sent and received at the right time, to ensure proper
synchronisation and to resolve possible conflicts if more than one computing process is trying
to communicate with another. “Semaphores” were one of the first techniques for doing this
and were invented by Edsger Dijkstra15. They were a technique for ensuring that critical
sections of code could not be interrupted, and also provided a mechanism for forcing
different processes to wait and allowing others to resume. Another computer scientist from
the Netherlands, Per Brinch Hansen, devised a method called Monitors, which could be
implemented using semaphores. Monitors could ensure mutual exclusion, so that for example
two different processes could not work on the same piece of data at the same time, with
resulting confusion. With an airline booking system, you can imagine that two or more travel
agents might be trying to allocate the same seat to two or more customers at the same time.
Used judiciously, monitors could prevent this. Monitors were incorporated into some
programming languages that were specially designed for concurrent programming. Modula-2,
based on the earlier language Pascal, was a notable one of these. But these were low level
mechanisms, programming techniques, that had been around for some ten years. The
theoretical understanding which would lead to more general rules and specification languages
for parallel programming were just beginning. Petri Nets16 and Hoare’s Communicating
Sequential Processes17 were two such theories that had recently been published, and were
soon to be followed by a “Calculus of Communicating Systems” by Robin Milner at
Edinburgh University’s Department of Computer Science18.

But the advancement of computer hardware did not just affect the nature of the programs we
had to write. They could also affect our working environment itself. This book has been
prepared on a word processor, that is an application program on a personal computer. Until
the late seventies, ordinary typescripts were not held on computer files but were prepared on
typewriters, usually by typists and secretaries. In 1978 the first word processors began to
arrive. These were purpose-designed computers, used for nothing else, a desk-top substitute
for a typewriter. There was a lot of resistance from typists and secretaries to using these. A
firm came to visit us and demonstrated a word processing product called Wordwright. Typists
and secretaries did not want to learn “how to use a computer”. Our organisation did not adopt
this new way of working just yet, but some others did, to advantage. We now take it for
granted that any document can be altered, paragraphs inserted and moved about, with
minimum effort. For a few more years we stayed with the less efficient typescript which

15See Dijkstra 1968.
16See Carl Petri 1973 and 1980.
17See Hoare 1978.
18See Milner 1980.

98

required retyping for major revisions or messy, literal “cut and paste” jobs with scissors and
glue.

DEC, the Digital Equipment Corporation, manufactured a successful minicomputer, the
PDP11. They gave us a presentation on a new extended version being developed at the time,
the VAX11/780. Minicomputers were much smaller than the big mainframes like the IBM
360 and 370, or the old English Electric KDF9 or CDC or Burroughs machines, which
occupied the whole of a large room. Minicomputers would take up a couple of racks, tall
bookcase sized metal frames holding layers of circuit boards. So they were bigger than
personal computers, which were based on microprocessors and were designed for individual
use. The VAX series was to become successful and to have a substantial product lifetime.
The VAX11/780 was to have quite a number of innovative ideas. It would have a virtual
memory, that is a two or more level store that the operating system would present as a single
large storage area, which I first encountered on Atlas and which is present in every present
day personal computer. It would have a cache memory holding the last or most likely used
128 memory contents, as do today’s computers. Its instruction set was to be oriented to high
level languages, having loop and case instructions (case statements are multiple conditional
branch instructions). But I noted that there was no direct support for things like parameter
passing or the more complex data types. I also had my doubts about whether a compiler could
make use of these special loop and case instructions in practice. Every high level language
has subtle differences that can easily be incompatible with the simple interpretation of such
facilities that a machine’s architecture might offer. The VAX11/780 operating system would
allow concurrent, multiprogramming, interactive and batch work. Its memory had error
correcting codes that would correct all single bit and detect all double bit errors. Altogether,
fairly impressive and full of good ideas for the time. I think it gave our microprocessor group
much food for thought.

Alongside all this assessment of new research into computer technology and trying to push it
forward, some of our day-to-day operational problems still persisted. They did not want to go
away. Jacques Newey kept producing document after document giving details of his proposal
for transporting the ITT 3200 software development platform from the 3200 to the IBM 370.
This would have been by far the better, more efficient way to develop systems software for
the 3200, something I had recognised soon after I started at STL some six years earlier. When
I look back on it, part of me wants to say “At last!”, and part of me marvels at Jacques’
persistence in the face of management inertia. He didn’t take “no” for an answer and after
being steadily bombarded with his ever more detailed documents and papers, describing
proposed conversion utilities, cross-assemblers and other features, management began to
believe that it was actually happening. The result was – it did. By September 1978 SDSS, the
name given to the new cross-development system, was beginning to be used, particularly by

99

the Spanish ITT company SESA and their research laboratory ITTLS. But simultaneously
DPSS, the replacement operational system for the BSCC and LCT software, continued to be
developed and was well in hand by 1978. The main user seemed to be BTMC in Belgium.
They were providing the most copious feedback to the development team and continued to
test and validate it throughout that year. I mused to myself that the original concern over
DPSS had been that instead of superseding its two previous rival development systems for
3200 software, the BSCC and LCT systems, DPSS might simply become a third. Now, with
SDSS, we had four contending systems! Professor John Buxton’s original recommendations
had been two-part. A recommendation of principle, that development should be incremental,
not big bang, and a pragmatic one, and secondly, that since we had started DPSS we should
finish it. While appearing to accept his advice, the company did not seem able to follow it, so
as a consultant he was quite safe. No-one disagreed with his advice, and no-one could hold
him to account since they did not do what he said!

However, the two pieces of development, DPSS and SDSS, had another beneficial effect.
Programmers and managers from various teams in Europe all took some part in them, and
previous rivals were often working together on technical policy committees to reach
agreement over the schedules, timescales, resources and technical details of these projects.
The old rivalries were sinking into the mists of the past. I thought there was a moral here:
don’t ever make too hostile an enemy, for you may find yourself working alongside them a
couple of years later.

STL, being a research laboratory, frequently filed patents. The lab had a patents department,
whose rôle was to draft patent applications and guide them through the filing process. Every
department was urged to file patents. Filing patents was seen as a measure of success. But the
question of whether one can patent computer software has always been uncertain. Only
“products” can be patented, but these can include processes, for example, like those found in
the chemical industry. A pure computer program is a document and an algorithm, a step by
step process for performing a calculation or driving a piece of apparatus. It might be possible
to copyright a program, treating it as a document. But that would not be particularly useful,
for a program can easily be radically changed in form while keeping its design intact. A
specific physical device containing a computer and some software could be patented, for that
would be a product. These days the attitude to patenting software has relaxed a bit, especially
for software that has a particularly recognisable user interface. As part of the drive within the
company to accumulate patents, we were urged to keep laboratory notebooks, dating all
entries so that evidence would be to hand in case of disputes over the origin of ideas. Most of
us followed this advice, although we never produced software patents. Since then I have
noticed that workers in many research and academic establishments keep their day to day
notes in day books, instead of on pieces of paper or in folders. It does add some weight in an
argument if you can say to someone, “On 30th July at 2.45 p.m. we agreed that…”. And

100

without my notebooks I would not have been able to recall the flavour and details of all this
work!

With the hardware technology changing under our feet all the time, ITT and STC continually
needed to train and retrain their staff. Not only did existing programmers need to learn about
the new languages and methods of design, but there was a general shift towards more use of
computers in telephony. Electromechanical and electronic apparatus were slowly being
replaced by computer-driven technology. This meant that fewer hardware engineers and more
software engineers were needed. So hardware engineers had to retrain as software engineers.
Not only do old dogs not learn new tricks, but even relatively young hardware and software
engineers were often reluctant to retrain. Engineers may have established a reputation for
themselves, having expertise built on several years experience in technique X. If they now
have to learn technique Y, they are on the same level as younger staff, paid less, who are a
few years behind them. The seasoned engineers would then feel insecure. We had to work
hard to allay these feelings.

Part of the rôle of the research groups was to watch the future, to keep an eye on the way
hardware and software were advancing so that the company could keep abreast or, preferably,
ahead of its rivals. To do that the development staff had to be prepared for new techniques
too, so the research groups were frequently making recommendations about training,
designing curricula and devising courses. We worked with several other institutions to
discuss and jointly create courses. Lancaster University were, like us, interested in producing
a course in the programming language Pascal. It had overtaken Algol60 in popularity and was
regarded as being more practical. We also worked with The University of Essex, who were
not far from us geographically. They laid on custom designed courses for us, which were
presented like fairly prestigious industrial events, with a formal dinner and various goodies
for the “delegates”, rather than “students”. The government had started to encourage and
require universities to work with industry, and so there was a certain eagerness in academia to
get together with us as soon as we said the word. Harold Wilson’s government coined the
phrase “UK plc”, and if universities worked with industry, they were justifying their
existences more strongly. We also had discussions about course construction with InfoTech, a
software training and consultancy company that is still thriving. However, we also had to
work quite hard to persuade our own management to let us go along this path. STL was a
research laboratory of the company and STL management had a slightly ivory tower view of
their own establishment. For STL’s researchers to get involved in training was, to them,
rather undignified, a waste of intellectual talent. One or two of our proposed training projects
were actually stopped by management intervention, at one time by the managing director,
who happened to see a set of course notes of mine in the photocopying room, ready for

101

duplication and distribution. He cancelled the duplication order (without letting me know).
Training is not STL’s rôle, he said.

Prophets are rarely recognised in their own country. A research group in a large company can
be greeted with cynicism and suspicion by management and other development groups.
Recognition outside the company can bring about greater internal respect for the research
group. It was to our advantage to make ourselves known to other bodies, and we made a few
approaches to enter contracts with other firms. Of course, they could not be direct rivals, but
software was used in a great variety of applications, many of them not pursued by STC or
ITT. We met Hawker Siddeley Dynamics in Stevenage, who were bidding for a contract with
the European Space Agency. The contract was to write the on-board control software for an
unmanned space vehicle.

Hawker Siddeley gave us a rundown on the potential contract. The ESA required very
restrictive Quality Assurance measures, which led to their tending to insist on methods and
procedures of development that were not up to date in their thinking. For example, they
required a development process of design, code, test and recode. We favoured performing
verification while implementing, which meant that the development preserved correctness
whilst it was in progress. The more old fashioned code–and–test process meant that one was
always trying to remove errors after they were made. It is well nigh impossible to catch them
all. We believed our approach was much more reliable, and therefore more suitable for
critical applications. Once a space craft has been launched, repairing the on board software is
very difficult, if not impossible. In 1978 the ESA also required a great deal of information
from its contractors: the CV of everyone engaged on the contract, corporate details and track
record of the company, corporate experience as subcontractors (of which we had little), the
organisational structure of the company. The development of the on board software was to be
hosted on a Modular One, a minicomputer manufactured by a British company, Modular
Technology Ltd. Hawker Siddeley told us how a proposal for a similar study ran to 50 pages
including 25 on the planning and scheduling of the work and 23 on the technical content.

The ESA were opposed to using high level languages for on board software because of
variations between compilers and of occasional faults, which were outside their and their
subcontractors’ control. There is a real dilemma here. If one uses a low level language, one is
effectively translating from the low level design to the code by hand, which is much more
error prone and subject to variations in design approach. But the ESA were correct in their
assessment, at the time, of variations and lack of reliability of commercially available
compilers.

The ESA also had a low limit on the labour rate they were willing to pay for software
development work. Hawker Siddeley Dynamics admitted they were hard pressed to meet

102

these labour rates and found it only worthwhile bidding for these contracts if they had staff
who would otherwise not be engaged on any fee earning work. This was not really the case
for us. After a lot of discussion within our division I proposed that, regretfully, we should
withdraw from the bid. I thought it was important that we should tell the ESA the reason. I
believed that they were not ensuring the best quality, which they surely needed for such
critical work, if they adopted this financially strapped policy. I telephoned their representative
in Amsterdam and made this point to him. His only reply was:- “Well, we usually get several
bids”. I believe that, since those days, the ESA have moved on a long way, and use software
technology that is state of the art.

To increase our exposure to the technical world outside, we tried to publish academic papers
and attended an increasing number of conferences. It all helped to make ourselves known
elsewhere and in turn improved the regard in which our own management held us. IFIP, the
International Federation of Information Processing had a number of specialist groups and a
prestigious periodic conference. The Computer Journal of the British Computer Society and
various publications of the ACM, the US Association of Computing machinery, were all
outlets for publications. These multiplied rapidly as the years went by until one day I realised
that the department was receiving thirty seven journals. No-one had time to read many of
them, and so we pruned the selection.

This account may suggest that my time was filled with excitement and innovation. In fact, I
have found that every job consists of boring activities for at least 50% and, with luck, 50% of
interest and engagement. Much of my time was taken up with necessary but pedestrian tasks
of administration and non-technical meetings, planning and negotiating office space, budgets,
furniture, purchase of equipment such as mains voltage stabilisers, and comparing their
sources of supply. The more senior of us spent much time discovering what other technically
respected organisations, including competitors like Bell Labs, were doing, the programming
languages and development policies they were pursuing. We needed to keep up with the best
in the field, but also to try and predict in what directions various aspects of technology were
likely to advance, so that we did not waste time and resources by going the wrong way.

A huge amount of my time was spent at this period on planning and estimating budgets for
possible projects and activities, most of which we knew would never happen, but were just
ideas up for discussion. For example, how much would it cost to develop a “computerised
document control system” and train everyone to use it? ITT was very proud of its quality
control system. They set up small groups of people called “product control centres” and gave
them responsibility for controlling the quality of a set of products. The BSCC was one of
these. An ITT standard prescribed how these centres should work, producing documents such
as a product register, a register of sites which produced the products, and change proposal
register, a change note register and so on, and so on. There were rules about what documents
could or should be written when, and the whole system cried out to be implemented on a

103

computer. We made an outline design of a computerised system and made estimates for the
cost of building it and bringing it into service, and did the same for several other proposals
which never came into being. At the same time I was still involved in the nitty-gritty issues of
the 3200 computer centre, configuring new peripherals to be shared between several
machines, the repair of sticky hammers on the line printer, maintenance contracts with
suppliers etc.

The seventies were coming to an end and the eighties approached. We continued to keep
track of the latest advances and at the same time to spread the principles that we had learned
to the development groups within our own company. Other research laboratories in other
companies, the GEC Hurst Laboratory and Plessey Laboratories, were doing likewise,
pursuing their own research agendas. But we all communicated, despite being ostensibly rival
organisations. There was an almost subversive agreement amongst us, that sharing our
knowledge would speed up progress in the industry and accelerate technological advance. So
I believe that our experiences were fairly typical of the computer and telecommunications
industry, and not just in the UK.

We held seminars where we presented some of the latest thinking, applying it to practical
telecommunications software design, and inviting occasional speakers from outside. We tried
to make these attractive to visiting names in academic computer science, both to promote our
own reputation among them and to attract interest in the seminars. We invited academics and
known researchers in other companies like ICL, BT, Plessey and GEC to the seminars. STL
and STC had rules about company confidentiality. One had to go through elaborate and time-
consuming procedures to obtain permission to publish papers and articles. The company had
a certain paranoia about giving away our “secrets” to rivals. But, probably through omission
rather than deliberate policy, there were no such strictures on seminars held on company
premises, even when outsiders were invited. When publishing papers I had, in any case, hit
upon the tactic of writing on the authorisation form “This paper is mathematical in nature and
hence has no commercial value”. I was surprised at how well this worked.

One seminar went down particularly well and several external invited visitors came along to
it. We decided to hold the event in a bigger, better accommodated lecture theatre in another
STC building in Harlow. There was a local canteen in the building, and also a visitors’ dining
room. My manager decided that it would be too expensive to provide a visitor’s lunch for
everyone attending, so he authorised only enough to accommodate the external visitors,
speakers and organisers, who were so to speak the hosts. On the day he decided to come to
the seminar himself, and come lunchtime, he realised that he had excluded himself from the
visitor’s lunch by his earlier ruling. He and I were talking together in the mêlée as it divided,
the guests, speakers and organisers to the left and hoi polloi to the right. He said rather
mournfully to me, “Oh well, I suppose I’ll have to try the canteen”. It was on the tip of my
tongue to say I was sure there was room for an extra one on the visitors’ dining room, but I

104

held back. I felt that to do so would have been sycophantic. But it was an embarrassing
moment.

While I had been much influenced by Dijkstra’s seminal Discipline of Programming19 and his
pre- and post-conditions approach, he had not shown how this could be applied to the
programming technique of decision tables. Decision tables use tables of conditions to
determine which of a choice of actions to take, and do not fall into the usual ambit of
programming structures prescribed by the structured programming methods advocated by
Dijkstra. Decision tables were used a lot in telecommunications programming because of the
many features and choice of actions that occur in telephony. Imagine the recorded
instructions you hear when listening to a recorded voice when dialling many numbers these
days. The system takes different actions depending on whether you press or say “1”, “2”, etc.
In one seminar I showed how Dikstra’s pre- and post-conditions could be extended to include
well-structured decision table techniques.

Mike Gifkins at STC IDEC proposed producing one-page sheets, called “Software
Technology Summaries” for internal consumption. We liked the idea of this and with Mike
produced several over the next couple of years. The first was on state machines and
grammars: The simplest kind of computing device consists of a machine that has a finite
number of states and moves from one to another depending on the input it receives. In the
1930’s, before any practical computers had been built, Alan Turing showed that any
calculation that a computer could perform could be performed by a finite state machine (his
was a very particular type using an indefinitely long tape, but other researchers showed that
this was equivalent to other kinds of state machine). In fact, many of the earlier telephony
designs were based on state machines, mainly because the early telephone exchanges were
electromechanical and could best be described in this way. Other computer scientists such as
John Backus had showed an equivalence between state machines and grammars, expressed in
the form defined by Chomsky in the 1950’s. It was traditional amongst telephony design
engineers to define the simple telephony protocols using state machines. A protocol is really
just a simple language. I was always puzzled by the fact that the telephony engineers used
state machines to define a language, when it would have been much more natural, to my
mind, to use an equivalent grammar. It was as if they were defining the shape of a key by
describing the lock that it would open. So one of the first Software Technology Summaries,
STS’s, was on state machines and grammars. We produced more on the Contractual
Methodology, the approach to system design mentioned earlier in this chapter, and other
topics.

19 See Dijkstra 1976

105

Chapter 8 The Search for Formality
One of the turning points in my whole career was in January 1979. Don Combelic urged
Bernie Cohen and me to attend a Winter School on Abstract Software Specifications,
organised by Professor Dines Bjørner of the Technical University of Denmark. Don had met
Dines Bjørner on the CCITT CHILL committee and had been impressed. This was a two
week event in the depth of a Danish winter in Copenhagen. I went prepared for the cold,
taking my walking boots which I wore to travel between my hotel and the university, a bus
ride and trek through snow every morning and evening. The river in the centre of
Copenhagen was frozen. Dines had gathered together most of the big academic names in
what became known as formal semantics, the mathematical modelling of the semantics or
meaning of programming languages. We had challenging and mentally exhilarating lectures
from Cliff Jones, Steve Zilles, Joe Stoy, David Park, Peter Lucas, Gordon Plotkin, Peter
Mosses, Ole-Jan Dahl, Barbara Liskov, Peter Lauer, Rod Burstall and Dines Bjørner himself.
The lectures showed how mathematics could be used not only to model the syntax of
computer languages, which the earlier work on grammars and automata had done. Set theory
and logic, normally regarded as part of pure mathematics, could be used to define the
semantics of a language. Mathematical theories could be put together to build specifications
of what a program was designed to do, using the same ideas from set theory and logic. If you
have the mathematical tools to define the meaning of a program, then you can write this
meaning down before you have written the program itself. That way you have a precise
statement of what you want the program to do. This is a functional specification, more
usually just called a specification, of the program. Mathematical logic can then be used to
show that the program satisfies the specification. Some advanced mathematics was needed to
model certain aspects of programming languages, topics such as domain theory and category
theory that I had not come across, even in my maths degree course. All this extended and
generalised the work of Dijkstra that had so engaged me to date.

Several of the lecturers, Dines Bjørner, Cliff Jones, Peter Lucas, had worked for the IBM
laboratories in Vienna and had produced a formal semantics definition of the PL/1
programming language, which IBM used extensively. To do this they produced a special
“meta-language” called VDL, the Vienna Definition Language. A variation and development
of this could be used to specify programs, that is to write their specifications. Cliff Jones and
Dines Bjørner together devised a way of developing programs in which one wrote the
specification, and produced the program proving that it satisfied the specification as one
wrote it, using mathematical logic. This approach was called the Vienna Development
Method, and the specification language, based on VDL, came in due course to be known as
VDM-SL1.

1 See ISO/IEC 13817-1, 1996

106

We had a free weekend in the middle of this course. On, I think, the Saturday, Bernie and I
sat in his hotel room discussing how we might spend the time. I had seen people skating on
an ice rink in the town and I had wondered about doing that. While we were deciding, Bernie
produced a bottle of duty free vodka he had bought on the way out. We finished the vodka
and didn’t go skating.

I think the Copenhagen Winter School stimulated both of us to go to more events and try to
learn more. In January 1980 I attended the annual POPL – Principles of Programming
Languages – conference in Las Vegas. This may seem an odd choice of venue for an
intellectual conference on computing, but I learned that it was off season in Las Vegas and
the hotels offered extremely advantageous rates for conferences. There were 130 papers
submitted to this conference and 25 were accepted. The criterion for selecting them was not
to be survey or tutorial material, but original work. The most interesting from my point of
view were papers by Leslie Lamport and Amir Pnueli. Lamport’s paper was on modal logic,
that is logic that takes time into account by using symbolised representations of ‘before’,
‘after’, ‘never’, ‘sometime’ and so on. This is useful for reasoning about concurrent programs
in which one is interested in continuous behaviour rather than what is true before and after
execution. Examples might be operating systems or control processes which may in principle
continue indefinitely. He also talked about modelling non-deterministic programs which
might depend on indeterminate external events or timings. Pnueli talked about another
temporal logic system using a different notation and presented an axiomatic rules of
reasoning about systems. I thought this might well be relevant for telecommunication systems
where there is a lot of parallel activities and unpredictable traffic properties.

Las Vegas was like nowhere else I have ever experienced. I stayed in the same hotel as the
conference venue and on entering I could not find the reception for some time. The whole of
the entrance foyer was a casino. One had to walk through it to find the hotel reception hidden
at the back. There were fruit machines everywhere, on the walls lining the baggage carousels
in the airport and even in the bus shelters at the side of the road. I determined to spend my
time in Las Vegas without gambling either on machines or tables.

This was my first ever visit to the USA. To get a bit more value for money out of the trip I
had arranged to visit the ITT location in Des Plaines, which is near Chicago, after the POPL
conference. In January in Las Vegas the temperature was a pleasant 70°F, 21°C. People were
walking around outside in their shirtsleeves. In Chicago, on the shore of Lake Michigan, it
was -4°F, -20°C, the coldest I have ever experienced. The change in temperature in the
course of a short flight was dramatic. I stayed with a colleague who I knew from the CHILL
committee who lived on the outskirts of Chicago and worked for Bell Laboratories. On an
afternoon off we both visited the Chicago museum of modern art, a veritable treasure house
and remarkably free of visitors for such a fine collection. There was not much to discuss with
my colleagues in ITT Des Plaines, although they were interested in our Software Technology

107

Summaries and asked to be on the mailing list. I was a little shocked by the physical state of
their premises. Their canteen had no crockery, only disposable plates and paper cups, which
littered the tables and the floor.

In March of 1980 we invited Jean-Raymond Abrial to give us a seminar on his abstract
language, Z2. Abrial was an independent French researcher who had developed an approach
to modelling computer programs that was in principle very similar to VDM. He had recently
joined the Programming Research Group at Oxford University, and this was to be the
beginning of an enjoyable collaboration between us and the PRG. Z and the VDM language
both used set theory and logic, topics in pure mathematics, to model the actions of a computer
program. The syntax and appearance of the two languages were different, but there were
more important differences in approach. Z used traditional mathematical functions to model
programming functions and procedures, whereas VDM used the functions of domain theory.
To be more accurate, VDM used a type of reflexive domain developed by the computer
scientist Dana Scott to model programming functions. VDM had evolved from the endeavour
to define the semantics of programming languages. That meant that it had to be able to model
any construct that one could write within a typical high level language, regardless of how
likely anyone was to do so. In sophisticated high level languages one may define a data type
recursively. In particular, a data type could include functions from that same data type to
another. However, in the late nineteenth century the mathematician Georg Cantor proved that
no mathematical set can include its own function space. So, in theory, it is impossible to
represent all possible computer data types as traditional mathematical sets.

VDM overcomes this problem by using reflexive domains, and in particular Scott domains3,
which are an elaboration of sets, to model data. Domains, unlike sets, can include their own
function space, because only computable functions are included. Computable functions, the
kind that can be programmed on a computer, are finitary; that is they can be defined with a
finite amount of information. If one restricts the function space to computable functions, then
a domain can indeed include its own function space. Dana Scott had worked on this problem
from the early seventies4 and spent important periods with the PRG at Oxford University.

Z uses traditional set theory to model data types. However, Z was devised to model programs,
rather than to define the semantics of programming languages, and so one could argue that it
does not need to use domains as its foundation. But, debatably, it might not be able to model
programs containing certain kinds of recursive data types.

Abrial’s seminar was the beginning of a collaboration between our software research group at
STL and the Oxford PRG. The PRG were keen to demonstrate Z by applying it to a real life
programming project and to transfer the technique to ITT. The U.K. government were urging

2 See ISO/IEC 13568, 2002.
3 See Scott 1980.
4 See Scott 1971.

108

academic departments to demonstrate the practical value of their research work by applying it
to industrial problems and working collaboratively with industry. So we looked for a project
to act as a test-bed for Z. We thought it would be most unlikely to find a commercial
telecommunications project willing to take part in an experiment of this kind, so we sought a
non-critical task that would nonetheless be useful for the firm and that could serve as a
demonstrator.

STL, one of the leading research laboratories of ITT, had some 3,000 visitors every year. If
one expected a visitor, one had to fill in a form, and send it to Gladys, the visitors’
administrator. Gladys would generate more forms to be sent to the security at reception,
another to the visitors’ dining room if one had ordered lunch, book hotel accommodation,
send forms to the canteen for coffee if required, initiate the production of a visitor’s lapel
badge, and several other things. This was quite an involved administrative process, all done
manually and on a fairly large scale. If the process was computerised it would be easier to
amend arrangements, to trace progress and to avoid the hiccups which sometimes inevitably
occurred. We invited Carrol Morgan and Bernard Sufrin from the PRG for a day and put
forward to them the idea that they could specify this system in Z and develop an
implementation on a desk-top computer. When a piece of software is developed, one starts
with a requirement, which can only be accurately determined by discussing it with the
customers, those who are going to use the software. From the requirement, which, if
everything is done properly, should be written as a document that forms part of the project
development history, the principal items of data and functions to be performed on them can
be determined, and then the specification can be written. The specification is taken back to
the customer and its details played back to them to see if it truly reflects their needs. In this
case the customer was Gladys, the visitors’ administrator. The statement of requirements and
the specification would typically go through several iterations before all parties were satisfied
with the results. Bernie Cohen and I were keen that the people from PRG should carry out all
this part of the process in order to reach the specification in Z. It represented the proper way
of doing things according to the latest thinking in good quality software engineering, and we
were particularly interested to see whether two academic researchers could successfully
replay the implications of a specification written in a language based on pure mathematics to
our user Gladys, who had no technical or scientific background. One misgiving many people
had about formal methods was that the technical documents would be unreadable by all
except a few specialists, and this would render them impractical. If the PRG could produce a
formal software development while working with someone with no technical background, it
would give the lie to this common pessimistic doubt. Carrol Morgan and Bernard Sufrin
enthusiastically took on the challenge and after a few weeks came back to tell us the result.
They had had several meetings with Gladys and walked through the resulting Z specification
with us. All seemed well and they proceeded to produce the program as described by the

109

specification. They chose Pascal, a popular high level programming language that was widely
available, to implement the specification, and all went according to plan. The project and
resulting system was called “CAVIAR”, an acronym for Computer Aided Visitor Information
And Retrieval.

From this exercise we and the PRG had a demonstration of the efficacy and utility of Z, a
formal specification language for software. This demonstrator was useful for both parties. It
gave us evidence to persuade our own management to go ahead with using formal methods in
further real projects and it gave the PRG evidence that their researches were of practical
industrial use.

In June the same year Tony Hoare, who was head of the Oxford University PRG, was seeking
to have Jean-Raymond Abrial’s fellowship from the Science Research Council renewed.
Abrial was French, and this was before there was the freedom to work anywhere in the
European Community. So Tony Hoare needed affirmation of the value of his being in the
U.K. We sent a letter with a director’s signature attesting to his useful work in technology
transfer to ITT, which Tony Hoare could show to the SRC. So this academic-industrial
collaboration was of mutual benefit.

Z and VDM could specify and model systems that are sequential, which means performing
one action after another and having a beginning and an end. To model a process that is
reactive and continuous, interacting with its environment or with a human user, and having
no particular endpoint to its computation, was more difficult. Even more difficult is
modelling parallel computation, in which two or more computers interact with each other.
Telecommunication systems were typically reactive and the new microprocessors, which
were coming on the scene, were bringing with them the possibility of many small computers
acting in parallel to combine together to make a more powerful computation engine. So we
were looking at other researches into ways of modelling reactive and parallel systems. There
were several contrasting pieces of academic work being done into this, all with their
enthusiastic protagonists. It was not easy to determine which approach would be best for our
purposes and for some time we kept track of most of them. Robin Milner from Edinburgh
University visited us and gave a presentation on CCS – Calculus of Communicating
Systems5. We were all impressed with this. It could model parallel computations, with shared
data, and communication of data between processes. It could also display the structure of a
system of parallel processes, allowing one to analyse a system and express the model at
different levels of detail, and to prove properties of a system such as absence of deadlock.
Today’s personal computers are reactive systems that can do some operations in parallel.
How often they seize up and have to be restarted! The system has reached a deadlock. A little
later Bernie Cohen and I attended a conference on the semantics of concurrent computation,
the first of many over the forthcoming years. Several of the approaches used temporal or
5 See Milner 1980

110

modal logic, in which one could make statements about the state of a system over time:
something is true now, or will be true sometime, or will be true henceforth, or a combination
of these. These systems have rules of deduction so that desired temporal properties can be
demonstrated. Another formalism for modelling concurrent systems was developed by Carl
Petri at the University of Bonn, which has become generally known as Petri Nets6.

Although we did not fix upon any one specification or modelling technique, we embarked on
a collaboration with Robin Milner and Edinburgh University. The idea was to apply the
theory to a number of practical applications provided by us at STL which were of relevance
to concurrency problems in telecommunications. It took nearly a year from the first inception
of the idea to get started. We had to find a project and, more critically, to make the case for
funding the collaboration. Robin had to find a suitable candidate for doing the work. In mid-
1980 he proposed Mike Shields for the post. At the time Mike was working in the computer
laboratory at the University of Newcastle.

I had encountered Mike the previous year at a conference on the semantics of concurrent
computation7 held in Evian, the small French town famous for its water. Mike had
particularly struck me when he gave his paper at the Evian conference, because he said right
at the beginning that what interested him was the mathematics of the problem. A gathering of
notable computer scientists were there, Tony Hoare, Leslie Lamport, Glynn Winskel and
others. Evian is on the shores of Lake Leman, the French name for Lake Geneva. A much
travelled colleague from ITT recommended to Bernie and me that we stay in a particular
small hotel in the town, which he declared was the best hotel he had encountered in all his
travels in Europe. I must say that this was a delightful place, every room different and
furnished with antique oak pieces. The hotel had a small open air swimming pool and one
sunny morning we both had breakfast by the side of it. There was no breakfast menu – you
just asked for whatever you wanted. In the bar all the way round the walls on a high shelf was
the largest collection of Scotch Whisky I have ever seen. The prices were quite modest.

So it was that Mike Shields spent the time at STL busily reading up on telecommunications
projects and principles. We sent him on an introductory course that most of us had been
through, to give him context: Telecommunication Switching Planning, run by a charismatic
septuagenarian British employee of ITT who had an apartment in both London and New
York. Mike returned from this course energised and enthusiastic about the forthcoming work.
We had thought of several possible applications for Mike to work on. There are concurrent
program facilities in both the languages CHILL and Ada. There were three software R&D
projects in ITT that were possible candidates. But beyond the confines of ITT, the CCITT
had defined a standard language for expressing the design of telecommunication systems,
based on finite state machines, SDL. We decided to ask Mike to work on the semantics of

6 See Petri 1973 and 1980.
7 See Khan 1979.

111

SDL – System Design Language. It was widely used throughout the industry, not just in ITT,
and was the subject of an international standard. Improving the definition of this language
would deliver an industry-wide quality upgrade, and benefit not just our own company.

I wrote the ITT case for funding Mike Shields over the next three years. It was accepted. It
was going to be far easier for us if this effort could be funded from a single year’s budget.
Otherwise we would have to re-justify the case every year though its lifetime. If partway
through, the case was declined, we would be in difficulties with our contract with Edinburgh
University. So, rather to their surprise, I asked the University if we could pay for the whole
three years of Mike’s costs in advance. They agreed without difficulty! So began a fruitful
and stimulating collaboration.

Mike worked on the semantics of SDL and of other protocols that commonly occurred in
telecommunications. In mid-1981 I proposed to STL that we made a case for ITT funding to
enable Mike’s work on the SDL semantics to be presented as a contribution to CCITT
Working Party XI-3-1. Since he was funded to do the work already, presenting it to CCITT
would incur very little extra cost: a trip to CCITT in Geneva to make the presentation and a
few days extra for preparation. It would reflect well on STL, I argued, and be a constructive
contribution to CCITT. Mike used several different theoretical approaches to explore the
SDL semantics: vector firing sequences and later, event structures that formed partially
ordered sets. Numbers are an example of a fully ordered set: for any two different numbers,
one is greater than the other. In a partially ordered set, one member may be greater than
another, or neither may be the greater. A family is an example, where one member may be an
ancestor of another. He developed this quite considerably, calling the subject “non-sequential
behaviour”, and it led to further ground-breaking work in years to come.

One of STC’s most important customers was British Telecom, or the British Post Office as it
was then. Post and telephone services were provided by the same public corporation. Not
until the next year, in 1981, did the two services split into the Post Office and BT. System X,
the first public digital telephone exchange system in the UK, was being developed and would
go live in the first public exchange in Woodbridge, Suffolk, in a year’s time. Charles Jackson
of the BPO/BT Research Laboratories in Ipswich called together a group of researchers from
the main suppliers to BT and founded the “Advanced Software Techniques Group”. Bernie
Cohen and I attended from STL, and others came from GEC Research Laboratories, Plessey
and elsewhere. Charles set the aims of the group and did a very good job of conducting
discussions by consensus while still subtly keeping to his own agenda and focus, which were
forward looking and yet practical. This group came to be a forum in which the software
researchers in rival companies got to know each other, gave each other informal presentations
and discussed their work and technological ideas without interference from their own

112

management. And, of course, the meetings almost always took place on the neutral ground of
our mutual customer, BT. The group became a collaboration almost by subversion.

At the inaugural meeting we set the aims of the group. These were to be wider than just the
software involved in System X, and should consider technologies in the longer term. We
were to think about telecommunications system design and how we believed software should
be developed in three to five years time. We should also think about development
environments, that is the sets of software tools needed to develop software using good
engineering practices. In other words we should consider what we are going to build, how we
are going to build it, and what environments we need to support those building methods.

I have a note from that inaugural meeting that shows how Charles Jackson was typically
willing to be creatively eccentric. Successful engineering design requires aestheticism and
complexity. Thus, he said, our designers need to be “good poets”.

A telecommunication system has complex requirements: it involves combinatorial
interactions of behavioural facilities. Multiple users share resources. There are asynchronous
demands on the system from its operating environment. It has to respond in real time. It
consists of concurrent components, which must therefore be free from deadlock and have
other necessary properties. The sequences of its actions are, to a considerable degree,
arbitrary. It must operate continuously: there must be no cessation of service. Enhancements
and updates to the system have to be made on-line, while it is in operation. Being able to
prove non-termination, i.e. that the system never stops, would help to ensure these properties.
There are requirements on performance. These come under the headings of security, privacy,
accuracy, integrity, availability and ability to be enhanced. The software would have to have
properties that support these requirements. It should be well documented, well structured,
accurately specified, with a low level of parallelism. Unavoidably, it would be large, with the
problems that that entails.

So this forum began to explore the details of these principles and ideas. Over the next few
years the ASTG came to endorse and encourage the use of formal methods, as well as
considering several different design methods. The software that operates telephony stays
embedded in the equipment for a very long time compared with many other computer
applications. One of the most important and costly parts of the development of this software
is the maintenance phase. This is the work done on the software after the original installation,
testing and putting into service. The maintenance does not just consist of correction of faults.
Over its lifetime the software will require numerous enhancements and extensions to take
account of all the extra features and enlargements that the exchanges and provided services
will require. Think of all the frequent BT updates that arrive on one’s doormat, offering new
options and possibilities. Each of these will involve alterations and additions to the operating
software. The detailed phases of the continued development of the software over its lifetime,

113

its evolution, is called the Software Life-Cycle. The detailed phases of activities in the life-
cycle came to be known as the Software Process. Professor M. M. Lehman of Imperial
College put great emphasis on the study of the software process, and coined the term
“Software Science” to denote it8. For example, even the simplest correction of an error in
software consists of changing its design from that which was originally delivered. This is
quite different from the equivalent correction of a hardware error. A piece of hardware will
wear out, and degrade from its original design. Correcting an error will consist of restoring it
back to its original design. By contrast, all software maintenance consists of some measure of
redesign, in principle a much more radical change. Lehman’s approach was to identify,
observe and measure different activities of the life-cycle almost as if they were natural
phenomena, and derive various laws relating to them.

The ASTG invited Professor Lehman to a meeting to talk about his ideas on software
evolution. We were trying to define the education and training needs for software engineers
for a report to the Post Office. For that we needed to know the skills that software engineers
use. Those skills depend on the roles played by the engineer in the life-cycle. Those roles
relate to the life-cycle activities, so we needed to have a clear idea of the nature of the life-
cycle and its processes: the nature of maintenance, programming and even management. This
led in time to the ASTG concentrating on software processes. Producing a computer program
is a series of transformations of models, from a model of the application domain (telephony,
engine control, railway signalling etc.) to an operational system. Testing a program to ensure
that it is correct mixes two different concerns. Verifying a program compares it with its
functional specification. Validating it compares its results with the real-world application
domain. A process support environment needs to provide facilities that enable and assist the
building of the various models that each stage of the life-cycle produces, the transformations
between them, the verification and validation activities, and finally the planning and control
of the process itself.

The ASTG continued until 1983, when BT was approaching privatisation. This resulted in
changes in the relationship between BT and its suppliers. They wanted to foster joint
enterprises rather than projects funded entirely by themselves. Environments, that is
coordinated collections of software support tools, which assisted the software process, began
to be the hot topic. With a standard environment, a large customer such as BT could become
less dependent on individual suppliers and more easily switch between them. The driving
influences on advancing technology were thus not just technical but also economic and
political.

8 See Lehman & Belady, 1985.

114

In the late 1970s the US Department of Defense became concerned about the large number of
high level programming languages that were being used in defence applications. They
numbered some thirty or so, and resulted in a large training overhead as well as hampering
the transporting of programs from one application area to another. So the DoD started a
process of commissioning a design for an advanced language that would supersede all the
others and become the standard for defence applications throughout the USA. This eventually
resulted in the Ada programming language in 1980. Meanwhile, however, the CCITT was
embarking on the same kind of exercise for telecommunications. This effort resulted in the
CCITT High Level Language, CHILL. In fact the effort to define CHILL predated Ada,
although the two pieces of work overlapped in time to some extent. There was, of course,
discussion within CCITT as to whether to abandon the CHILL work and adopt Ada as the
telecoms standard language, but they preferred to go their own way. With CHILL the
telecommunications industry would have control over its own language development.

By the beginning of 1979 a first definition of the CHILL language had already been written
and a number of firms and research institutions were beginning to write compilers. The
CCITT gathered the writers of these compilers together with other interested parties into a
Working Party to make sure the compilers were all compatible and interpreted the language
in the same way. The committee structure of the CCITT was large and complex. A collection
of subcommittees formed Group 9, of which WP3 was concerned with SPC, Stored Program
Control languages. SPC was the telecommunications industry’s term for software and
computers embedded in, and controlling exchanges. WP3 consisted in turn of several
committees, one to work on the semantics of SDL, a Software Design Language, another on
the CHILL Implementers Forum, and a few other committees. Each of these bottom level
committees appointed a rapporteur who reported up the hierarchy by submitting papers to a
plenary session. Don Combelic was on the CHILL IF mainly as an observer, although one of
the other ITT laboratories had started to implement a compiler and also participated in the
forum. Don asked me to join the CHILL IF alongside him. I think he wanted someone to
explain the more technical issues to him so that he could make a better judgement about any
strategic consequences of the decisions that were taken. I was one of not very many people in
ITT that he knew with substantial compiler experience. Don made representations to Frank
Simpson, my Division Manager, to authorise me to join. The first meeting I attended was in
London, which eased Frank’s agreement; Don mentioned that subsequent meetings were
hosted by participating organisations and that later in the year there would be a meeting in
Melbourne. Frank agreed, although he implied that he would have reservations about the cost
of a trip to Australia.

These meetings took place quite frequently, every three months. Before the London meeting
there were two preliminary meetings. One was amongst the interested ITT parties, in
preparation for the next two CHILL IF. Several ITT companies in Europe and the USA were

115

involved in various CCITT committees and this first pre-meeting took place in ITTLS in
Madrid. I was concerned about to what extent I was representing ITT, or STL, or neither. I
wanted to know what my liabilities were, what were the expectations upon me. The answer
was specific but quite subtle. One participates on these committees in one’s own right, and as
a representative of one’s own company, in my case STL. However, one’s participation should
be compatible with ITT interests. This ITT committee, which I was attending there and then
in Madrid (for the first time), organised channels of communication from the ITT companies
to the CCITT committees. The leadership of this ITT committee used to be with the UK.
Nowadays it was shared between the companies of ITT Europe. There was a nomination
procedure for formal ITT representatives. All this had been thought about at length. The
procedures were laid down in a booklet written in 1974, some five years earlier.

CHILL was not the only issue that this ITT committee was considering prior to the next few
CCITT meetings. It also discussed SDL. One criticism was that SDL had little structure and
could not hide details or produce an abstract view of a design at higher levels. There were
shades of Dijkstra’s separation of concerns here. Don proposed that the semantics of SDL
should be defined so that any designs expressed in the language had a clear meaning. This
was in time to lead to Mike Shields’ work at STL, already mentioned, which would later feed
into the CCITT definition of SDL.

A second pre-meeting was called by the BPO for the British participants. The Post Office
wanted the UK to present an agreed view of any difficulties or questions. GEC Hirst
Laboratories hosted this meeting. The discussions were right down at the technical details of
language syntax and facilities. Some features, we considered, were not worked out enough,
others should be amalgamated or dropped.

The CHILL Implementers’ Forum then met in February and May, in London and Florence.
There were about ten implementations of the language in various states of progress and in
various countries: Italy, Germany, the Netherlands, the U.K., Denmark, Norway (a pan-
Scandinavian cooperation), the U.S.A., Japan, France. In some cases a telecoms company
was implementing a compiler, in other cases an administration, that is a national telecoms
and/or post office service provider, or an administration was subcontracting to a software
house or forming a collaboration amongst its national suppliers. The British Post Office was
planning to subcontract an implementation to a software house.

Every compiler potentially has a host and a target computer. Most people who use a computer
language are accustomed to these being the same. One translates a Basic or Java program
using a compiler on a PC and then runs the translated program on the same machine. But they
need not be the same, especially when one is producing software for an embedded machine,
that is a computer that is part of a larger engineering device like a manufacturing plant or a
telephone exchange. The software will typically be prepared on a general purpose machine

116

and the translated code will run on an embedded microprocessor. The different
implementations had various different host and target machines. A popular target
microprocessor at the time was the Intel 8086, but there were others.

The choice of a computer language, indeed any computer technology, easily ossifies. In the
case of CHILL, administrations were to some degree forced to accept the technology that
their suppliers had to offer. The suppliers, on the other hand, to keep competitive needed to
anticipate the technology they thought the administrations, their prime customers, would
require. This kind of positive feedback effect had a disadvantage of being potentially in
disregard of the absolute technical merits of a particular technology, but also had an
advantage of tending to establish widely accepted standardisation.

The Implementers’ Forum observed the progress of the several compiler implementations and
sorted through many language ambiguities and difficulties that were revealed by the task of
trying to implement it. The members of the forum would bring to the meeting proposals for
changes to the language and if accepted (most were after discussion), these would be
incorporated into the “Blue Document”, the on-going language definition. The Blue
Document was to be recast by the end of the study period into a new Brown Document.

Unusually for a computer language, CHILL had two alternative concrete syntaxes. The
concrete syntax is the surface form of the language; underlying both concrete syntaxes was
the same abstract syntax, which embodied the structure of the language. The first stage of any
traditional compiler is throw away the concrete syntax of a program in order to reveal its
abstract syntax. With CHILL, one concrete syntax resembled PL/1 and the other resembled
Pascal, both established programming languages but without the concurrency and many other
features of CHILL. We agreed that any one compiler should accept programs written in just
one syntax, not in a mixture of the two. In fact it was mainly NTT, the Japanese member,
who required the PL/1-like syntax. All the others were going for the Pascal-like option.

The Technical University of Denmark, a member of the forum, was producing a formal
definition of the semantics of the language. To date, formal definitions, that is mathematical
models of the meaning of languages, had been constructed only after a language had been
implemented and in use for some time, as, so to speak, an afterthought. This was, I believe,
the first time that a formal definition was produced as the language itself was being defined.
This work would help to contribute to a total language definition, syntax and semantics, that
would form part of the standard. At the time I felt that this activity was innovative and would
assume considerable importance over the next few years. I am not sure that this has been
recognised, but since then an increasing number of formal language definitions have become
parts of ISO and BSI standards for computer languages.

CHILL was quite a sophisticated language. I’ll briefly describe some of its features. Move
rapidly on a few paragraphs if you want to skip these more technical details. There were

117

powerful facilities for defining data types. The discrete types that could be defined were
integer, character, Boolean, enumerated sets and ranges of these. Powersets, that is sets of
elements of a discrete type, could be defined as a type. Composite types could be defined as
arrays, strings or structures (like Pascal records or records in databases) of other types. There
were also reference types for handling references to variables. Finally there were types
related to the concurrency facilities. Events and buffers could be used to synchronise
processes. Instances of processes, or tasks, were types. Processes could proceed concurrently
and would be identified by a variable of process instance type. Types could be read-only and
types could have scoped access in a recursive context. The types in CHILL were called
“modes”.

There were the usual conditional, loop and procedure call statements, and a range of
exception conditions such as array bound overflow. There were also Assert statements, as in
Ada, that could give rise to related exceptions.

There were several facilities for programming concurrent processes. A process instance could
be created on obeying a START instruction and executed concurrently with other processes.
Two further synchronisation modes or types were available, events and buffers. A process
could wait for an event by means of a DELAY statement, or resume execution with a
CONTINUE Statement. Buffers and Signals could be used for communicating information
between processes. Finally, Critical Regions could be defined for providing mutual exclusion
on access to common resources. When a critical procedure is called, it cannot be interrupted
or suspended. All other critical procedures are locked out from execution until the called
critical procedure exits. Language restrictions help to ensure these rules are followed, for
example critical procedures cannot call each other.

These concurrency features of CHILL were partly based on the customary practices in
telecoms software at the time, and partly on well respected computer science work. This
summary is brief and a simplification of the actual features, many of which will have changed
over the years.

Although CHILL is not a widely known language amongst general software engineers these
days, it still has a substantial user base in telecoms. There are today large teams numbering
hundreds each, who are continuing to write large scale software in CHILL for
telecommunications applications.

The final CHILL IF in 1979 was held in September in Melbourne. My Division Manager,
Frank Simpson, was reluctant to authorise the expense of my attending. I explained this to
Don Combelic, who telephoned Frank there and then. Don was a powerful personality. When
Frank called me back to his office after the phone call, he positively instructed me to go to
the meeting. The BPO held another meeting of the UK representatives in preparation for the
Melbourne meeting. Their main recommendation was for a language control committee to be

118

set up afterwards in order to ensure the continuing compatibility of the various
implementations and to review its competitiveness with Ada. There should also be a
mechanism for certifying compilers.

So I went to the Melbourne meeting of the CHILL Implementers’ Forum. An aunt and a
cousin of mine lived in Sydney, and I combined the trip with a visit to STC Sydney, who
were one of the ITT customers of the 3200 BSCC, and stayed with my aunt. I had never
visited my Australian relations on their home ground before, so this was an added benefit for
me.

The CHILL IF meeting in Melbourne was spent mainly in completing final details. All the
implementations were in various degrees of progress, several of them advanced. Indeed, the
ITT implementation was complete, as was the Japanese compiler, produced by NTT, which
had been in use for some months. The Danish implementation had been suspended while they
carried on with the formal semantic definition. A team, headed by Dines Bjørner, was writing
this in the VDM language, the development of the VDL, Vienna Definition Language, that
Dines and his colleagues had used to define PL/1 at the IBM Vienna Laboratories a few years
earlier. The formal semantics exercise had already uncovered nineteen inconsistencies and
errors in the language description, so it was worth the effort for that reason alone. The
meeting organised the production of a useful introductory manual.

The meeting in Melbourne was, essentially, the end of the main effort of the Implementers’
Forum and the end of my involvement in CHILL. ITT decided to conduct a trial of the
language by reprogramming part of an existing system in CHILL. They would then obtain
feedback to assess the advantages of using the language in a typical telecoms application.
They wanted particularly to find out about how readable the code was and how easy it was to
maintain. They were also interested in whether using the language improved productivity,
and how accurate the implementation was. ITT also planned to study the efficacy of available
tools for processing the CHILL language and to establish requirements for new ones. CHILL
used more sophisticated data types than existing languages such as Post Office CORAL, and
it was important not just to translate existing software into CHILL; the design had to be re-
expressed in terms of abstract discrete structures, which could then be expressed as CHILL
data types. So a measure of deconstructing back to high level design, i.e. reverse engineering,
and reconstructing in the light of more advanced data structures was necessary in order to
make an effective comparison.

About a year after the final Implementers’ Forum in Melbourne, in October 1980 a further ad
hoc meeting took place at DataTechnik in Denmark. Implementers from seven of the
participating countries took part and described the state of development of their various
compilers and the experiences they had had in using the language. The Technical University
of Denmark gave a comprehensive account of their work on the formal definition. They had

119

had to make their own extensions to the VDM language to be able to model the concurrency
features. The formal modelling of concurrency was to become a compelling issue in program
language semantics over the next few years. The CCITT continued to coordinate work on
CHILL compilers and other support tools for the next few years. A user manual was
produced in 1982.

Meanwhile, at STL we continued to be aware that the US Department of Defense was
sponsoring work on the Ada Language. In the nineteenth century Charles Babbage had built
his mechanical computing engines, parts of which are to be seen in the Science Museum in
London. His assistant was a mathematician called Ada Augusta Lovelace, and she is
commonly regarded as the world’s first programmer. The Ada language is named after her.
The DoD wanted to fix on one language for defence applications in order to reduce redundant
effort. They decided that this language should have all the advantages of those currently in
use, and be technically in advance of them. This meant inventing a new language. So Ada
had an ancestry of previous languages: Coral66, Simula67, PL/1, Pascal, Jovial, RTL/2 and
others. In 1975 the DoD set up a working party to define, not the language itself, but a set of
requirements which the language definition should meet. This set of requirements was to be
open to public scientific scrutiny and criticism, and so it was called the Strawman document,
a straw man set up to be knocked down as in a traditional country fair. This document went
through many iterations, each with a new name to indicate its increasing rigidity and stability.
Woodenman and Tinman were defined in 1976 and then the DoD invited proposals to define
the language. Seventeen proposals were submitted, of which four were short-listed. These
four were named Green (submitted by CII Honeywell Bull), Blue (by Softech), Red (by
Intermetrics) and Yellow (by SRI International). In 1978 the shortlist was reduced to Red and
Green. Intermetrics and CII Honeywell Bull were given one year to refine their designs and
resubmit. Green was chosen in 1979, and so Green became Ada, by fiat so to speak. The
requirements were meanwhile refined again to become the Steelman document and Ada was
finally revised again in 1980, after which it became defined as an ANSI standard, ANSI
being the American National Standards Institute. A reference manual was produced in 1983.

With all this activity on producing a standard programming language across the Atlantic, the
British DTI (which was then the DoI, Department of Industry) felt that the UK had better not
be left behind. They believed there was a strong chance that Ada would become widely used
in many applications, not just military ones, and so UK industry had better get up to speed in
this new language. To use the language for projects one needs not just a compiler but also
other language support tools, loaders to load the compiled code into a target computer, linkers
to link together separately compiled programs, debugging tools and many other software
tools to assist the programmer. The collection of all these came to be known as an
environment; it was the technical support environment in which the programmer was working
and producing a program. So the DoI planned to sponsor the building of a UK support

120

environment for Ada, APSE as it was called – Ada Program Support Environment. They
would issue invitations to tender for this work.

During 1979 several of us learned about Ada and held invited in house seminars on the
language. In April 1980 we had a meeting with Ferranti with a view to collaborating. Ferranti
had already applied to the DTI to be invited to tender. In May we had a visit from ICL. Their
interest was increasing and they saw Ada as a possible systems programming language, that
is a language in which they might write operating systems software for their own ranges of
computers. ICL had a product called CADES – Computer Aided Design and Evaluation of
Software, which had many similarities in objectives to the proposed APSE. The APSE was to
be oriented to databases, organised large volumes of data, and ICL had a lot of database
experience. There was a strong competitor for the DoI tender: Logica had formed a
consortium with several other companies, which they had strategically called the “Ada
Consortium”. In mid-1980 we met with CAP, Ferranti and Scicon, who were apart of BP, and
initiated our own consortium. To vie with the competition we called ourselves the “Augusta
Consortium”, Augusta being Ada Lovelace’s second given name. In July we were agreeing
about what questions we needed to ask at the bidders’ conference, which the DoI was shortly
to hold at RSRE. RSRE, the Royal Signals Research Establishment, later became DERA and
subsequently the more independent Qinetic. RSRE was at that time part of the Ministry of
Defence. We spent much time working out a work-plan for the tender and a strategy to follow
at the bidders’ conference. By then SWURCC, the Southwest Universities Regional
Computer Centre had joined Augusta. There was a lot of work to be done in establishing a
working consortium. Memos of understanding were drafted, and we needed to choose a
prime contractor. There was some competition for this prestigious rôle, but soon CAP was
chosen. Should we allow subcontracts to further parties to provide specialist expertise if
necessary? We decided to keep flexible. The APSE bidders’ conference was held in late July
1980. The MoD and the DoI were to share the funding of the work. RSRE were acting as the
MoD customer. Formal invitations would be issued in two to three weeks. The winning bid
would be chosen on value for money rather than just least cost. They would take particular
account of the technical strength of the bidding team, targets and the work plan. Our
consortium expanded again in September to include Imperial College.

The weeks went past and we had not been invited to tender. On enquiring we discovered that
the contract had already been let to our rivals, the Ada Consortium. We held another meeting
and sent a strongly worded complaint to the DoI, pointing out that letting the contract to one
consortium without considering other contenders was non-competitive, and the government
could be open to a charge of favouritism. The DoI became quite agitated at this – it was clear
that they had made a serious mistake in protocol – and by way of compensation they offered
us a subsidiary study into the software development methods that could be used with Ada
programming. This was a substantially smaller piece of work than the main APSE, but we

121

accepted it. So, in November 1980, as part of the Augusta Consortium, Mel Jackson and I
from STL embarked on the Ada Methodology Study.

The other members of Augusta were CAP, Ferranti, Imperial College, Scicon and SWURCC,
the South West Universities Regional Computing Centre. CAP were the prime contractors,
but that didn’t mean they were necessarily the project team leader. Our various managers
were present at the first meeting to initiate the project. We decided to split the leadership rôle
into two parts: administrative and technical. CAP would take on the administrative rôle and I
would be the team leader. One of the CAP members felt that the technical leader rôle would
be diminished by not also having responsibility for administrative matters like time recording
and expense claims, but I declared that I was quite happy with the arrangement. “It means
that I get to do all the interesting work and CAP take care of all the boring bits”, I said. Peter
Weston, the manager from CAP, seemed to be amused by this characterisation of mine and
thereafter referred to “the boring bits”. I began to regret my spontaneous coinage. However,
the arrangement remained and it went very well as far as I was concerned. The customer, the
DoI, in consultation with us set up a steering committee to act as intermediary and general
policy aides. This group of eleven came from industry and scientific civil service: British
Steel, ICI, INMOS, British Telecom, British Aerospace, the Central Electricity Generating
Board (CEGB), which has now been privatised and replaced by many different energy supply
companies, Easams, the Atomic Energy Research Establishment (AERE), the National
Physical Laboratory (NPL), and RSRE. Mike Pickett, the manager from CAP, acted as
liaison between the project team and the steering committee. He would report on our progress
and represent our position to them and come back with messages from them from time to
time. Mike’s skilful handling ensured that our relationship with the customer had a smooth
ride to the end of the project.

Ada was and still is a sophisticated and complex language. There was a danger that if pressed
into use prematurely, its strengths and weaknesses would not be properly understood. In
order to capitalise on the language, our study tried to relate the language features to the
development process and identify the methods of working which would produce the most
benefits. We carried out a literature review of twenty-one development methods. These
addressed various stages of the development life cycle: requirements analysis, specification
and design. We did not look at any methods that catered for the maintenance phase, for no
better reason than in those days, maintenance was not seen as so crucial. There was a clear
understanding then, in 1981, that computer systems inevitably evolve and maintenance was
important, but methods to support evolution were not much to the fore.

No single method is equally applicable to all applications, situations and stages of the life
cycle. While the literature study revealed a lot of information, printed matter necessarily does
not tell the whole story, so we visited potential users and developers of Ada-implemented
systems, twenty-four organisations in total. These visits gave us more insights into the use of

122

methods and notified us of a further fifteen, on which we reported in outline in the study.
Then we selected six of the methods and applied them to a couple of example problems,
developing Ada designs and partial implementations in each case. We found that the more
sophisticated featrures of Ada, such as packages, generics and overloading, could be used to
beneficial effect. On the other hand, they could also be misused or simply ignored through
lack of understanding their purpose. Amongst our fairly wide-ranging conclusions, we
strongly recommended that a first imperative before using any technical method was to
establish a defined procedure for recording and communicating the outputs of the life-cycle
which helps to follow a disciplined approach. This presaged the future industrial standards for
quality processes, BS5750 and ISO 9000, and the influential work on the Capability Maturity
Model initiated by the Software Engineering Institute at Carnegie Mellon University.

We published the findings in September 1981 and presented them to an invited audience at
the National Physical laboratory in December that year.

It is rare in industry that one is working on just one task at a time. During 1979 and 1980 I
was also engaged in several other avenues of enquiry, besides CHILL and Ada. In some of
these, other projects merely asked me for advice and involved me in meetings, using me as a
kind of internal consultant. In others I was more heavily involved. Two of the more intense
efforts were our adoption of VDM as a software development method, which we were to
propagate through the company, and a more temporary flirtation with a software design
system called Gamma, the brainchild of Dr. Mike Falla from Software Sciences Ltd.

Bernie Cohen and I had been impressed by the descriptions of VDM which Cliff Jones and
Dines Bjørner had given at the Winter School in Abstract Software Specifications in
Copenhagen in January 1979. Cliff had given courses in VDM when he was at IBM and had
written a book, Software Development, A Rigorous Approach, based on these courses. We
ordered ten copies of his book and distributed them amongst some senior technical software
staff at STL. In June 1980 we and two of the STL Division Managers visited Cliff, who was
now at the Oxford University Programming Research Group, headed by Professor Tony
Hoare, to discuss his giving us courses in-house. He could offer a two-day seminar for
managers and a longer in-depth course based on his original three-week courses at IBM. For
starters we took up his offer of the two day managers’ course and he duly presented this to us
in July of that year. Cliff’s industrial background was at IBM, where there was a “dry”
tradition. No alcoholic drinks were allowed on IBM premises or could be consumed on
company expenses. This was far from the case at STL, part of ITTE whose nickname was
“International Travelling, Talking and Eating”. Cliff was, I think, a bit taken aback when
during his course we broke for lunch and a canteen staff member pushed open the lecture

123

room door and wheeled in a trolley of clanking drinks! This was to be the beginning of a long
association with Cliff and VDM.

After several meetings and in-house courses with Cliff we began to deploy formal methods in
STC. One of the difficulties in getting VDM and other formal methods accepted was that they
all used certain aspects of pure mathematics, namely set theory and symbolic logic. Graduate
engineers have mostly been taught applied mathematics. Differential and integral calculus are
the topics that underpin the traditional engineering topics like electronics and mechanics.
Although the kind of pure mathematics that lie at the heart of formal methods is mostly very
elementary, such as a first year maths undergraduate would be taught, it is just that little bit
more abstract and the symbols used that little bit more unfamiliar. Most practising engineers
shied away from this unfamiliar ground at first. I decided to try to overcome this by putting
together a course in set theory and logic, “discrete mathematics” as it is called, and give it to
volunteers. STL had recently introduced flexible working hours, so that two hours were
reserved for lunch between midday and 2 pm. In general meetings would not be held during
this time and staff could take as long or short a lunch break as they wished, and accumulate
the hours worked. This enabled people to work longer at times and less time at other times,
even taking a whole or a half day off if they had accumulated the hours. Quite a few
organisations were beginning to institute this innovative scheme, which is now quite
commonplace. So I gave the discrete maths course during lunch breaks once a week. A
number of people attended, including my manager Frank Simpson. By 1982 I had shared the
course material with two other colleagues, Chris George and Paul Taylor and the three of us
were regularly delivering it to project teams within STC.

We set up a series of in-house one-day conferences on formal design methods, to which we
invited external industrial people and academics, where we discussed more general formal
methods and techniques. Each conference had a theme such as “Trends in Design
Techniques” or “Emerging Formalisms”. We thought that it was important to get the
managers of software projects on our wavelength, so we held a symposium specially for
software managers. After a lot of consultation with Cliff Jones, Mel Jackson, Roger Shaw
and I started to give courses on VDM ourselves to projects and teams in STC. Several times
we held these outside office premises, in small conference locations in the south-east of
England. Some of these had other attractions: a large ex-manor house in Ware had beautiful
Edwardian plumbing fittings in the bedrooms, and a more modern facility in High Wickham
had its own swimming pool, squash court and snooker table. One STC telecoms project,
code-named Midwinter for the mundane reason that it was initiated on December 21st, agreed
to use VDM for specifying at least parts of its software. This was a substantial exercise in
technology transfer, with tailor-made courses and internal consultancy. Midwinter had a
whole lot of technical features that would certainly be changed and extended over its lifetime.
We had to consider how to devise a central design philosophy to facilitate the attachment of

124

these features after installation and delivery. We were fortunate to have a champion in the
STL personnel department, Charles Harding, who had some responsibility for training within
the laboratories. He decided to record one of the courses on videotape, and set up a CCTV
camera at the end of the lecture theatre. It was early days in 1981 for this kind of thing, and
the lighting had to be turned high over the stage and low over the auditorium. It was the first
time I had been “televised” and I found it unnerving not to be able to see my audience and
their reaction to what I was saying. STL retained Cliff Jones as a consultant for some time in
order to assist with technology transfer to projects such as Midwinter.

Over the next few years, 1981 to 1984, we transferred VDM to two more STC telecoms
projects, Fridge and Telspec. But we also gave presentations on VDM to a few companies
outside the group, notably GEC and BP. The main protagonists of VDM were Cliff Jones,
then at the University of Manchester, and Dines Bjørner at the Technical University of
Denmark, who had started up a campus company, the Danish Datamatics Centre. Inevitably,
slightly different usages and conventions with the language of VDM began to emerge, and
we all agreed that we should try to coordinate the evolution of the method, to try to keep
variations to a minimum. So a VDM coordination committee was set up in 1983, with
representatives from several companies and academic institutions. Throughout this time,
minor changes and improvements were discussed and made to the VDM language. Together
with Cliff we worked on more techniques for proving the consistency of a specification in
VDM and for proving that a program fulfilled a specification. We tried VDM out on several
case studies within the Fridge and Telspec projects to see how readable a specification would
be, how easy it was to make it complete and consistent, how easy to check if it was correct, to
develop a manual of “style”, and in general to test the “usefulness”of the technique. All of
this required not just the technical work but also producing the accompanying literature,
internal brochures, posters and course notes, and writing proposals for funding the
collaboration between us as a group in the research laboratories and the teams who were
doing the “real” work of writing software for the telecoms project.

If a software development team learned to use VDM, it was important to get the team
manager on the same wavelength. Because it was a novel technique, even if the managers
were more experienced than their team members, they would not be familiar with VDM. So
we developed a version of Cliff’s two day managers course for them. This covered the aims
of formal methods, their impact on the management process, the rôle of formal specifications,
and an exercise in reading them. To my surprise I found that many managers were keen to
come on these courses. I had expected resistance – old dogs not wanting to learn new tricks.
But in fact many of them welcomed the opportunity to escape from their administrative duties
and recall some of their technical expertise, which had in some cases been in suspension for
some years.

125

My colleagues and I were filled with enthusiasm to propagate formal methods, and VDM in
particular, as widely as we could. We were keen to market these courses, which we had
developed, further afield, outside the company. Doing so would also validate the credentials
of what we were doing: if other firms were willing to pay for it, it must be good! However,
this met with some resistance amongst our upper management. They saw it as giving away
our technical advantage to our business rivals. At one point, STL’s managing director saw the
originals of the VDM brochure in the print room, asked what is was about and stopped the
print job. Neither he nor the print room told me, and I only discovered this had happened
when I chased the progress of the work. This irked me considerably at the time. We at length
settled half way: it was agreed we could give the courses to STC customers, but not in
general to other external companies.

Gamma was a software design technique developed by Mike Falla at Software Sciences Ltd.
in Macclesfield. Barclays Bank, who had a large team of some 80 programmers designing
and programming the software for the bank’s up-coming automatic cash-point system, was
partially funding the development of Gamma. In return Barclays received the Gamma system
and tuition on how to use it. Barclays’ technical personnel policy at the time was quantity
rather than quality. Only the leader of this 80-strong team had a university degree. SSL were
keen to find other customers to fund Gamma, at a rate of about £25k each. We prepared a
case for submitting to ITT headquarters for our funding of Gamma.

Gamma was essentially a tool that could support the use of a software development method.
It had been used with JSD, the Jackson System Development method which was based on
JSP, but SSL were keen to pilot its use with other methods. We were impressed by the good
management of the Gamma project, their working papers, sound scheduling techniques and
work analysis. However, we had the problem that all ITT research funding had to be re-
justified every year, and we felt that we would be unlikely to obtain the necessary
authorisation for a subsequent year. It fell to me to drop this bombshell to SSL at a quarterly
Gamma meeting in August 1979. The Barclays representative was particularly irked by my
warning that we would likely pull out in the new year. He talked about the damage to
goodwill and wondered aloud whether they could exert any influence through the DoI or
discover anyone with joint directorships in STC, the British Oxygen Company (who owned
SSL) or Barclays Bank. We held numerous subsequent internal meetings in which we went
over our own motives for our interest in Gamma and tried to decide future policy. We were
more concerned to gain input to our studies in methodology rather than to acquire the Gamma
technique itself. Our support stumbled on; we attended the next two quarterly reviews but by
July 1980 we decided definitely to pull out. I composed a letter to SSL, consulting with
George Power, our contracts manager, who was the nearest person to a lawyer that we had at
STL. He added a paragraph and the letter was despatched.

126

For some time STL had recognised that the next generation of computerised telephone
exchanges would embody, not minicomputers like the 3200 (a more well known mini was the
PDP11), but microprocessors. A microprocessor research department had been running for
some while, under the leadership of David Wright. Microprocessors are distinguished from
minicomputers by having the electronics of their central processors held entirely on a single
chip. Raw microprocessors were available from a few manufacturers such as Intel. To build a
computer based on a microprocessor and capable of being embedded in a telephone exchange
required a substantial amount of digital electronic design. A research project within David
Wright’s group was designing the architecture of the Next Generation Machine System,
based on a microprocessor, namely a member of the Intel 8080 series. We had numerous
discussions on this NGMS architecture, of how it could be made to support high level
languages easily, of the means of avoiding the glitch between two or more communicating
processors, by, for example, synchronising their clocks. The glitch, by the way, was
originally a very specific event in digital electronics, when two signals occur absolutely
simultaneously, resulting in two mutually exclusive paths being partially taken. The
probability of this happening is astronomically small, but when the processes are performed
millions of times per second over months and years, that astronomically unlikely event
eventually happens, perhaps quite often. I believe that this may be a consequence of a
quantum physics phenomenon, possibly resulting from Heisenberg’s uncertainty principle.
The word “glitch” has now through popular usage lost its original highly specific technical
meaning, and has come to mean almost any computer related malfunction.

The microprocessor research group began to design an operating system for the Intel 8080
series. But eventually this work was overtaken by the Microsoft product, MS-DOS. I can
imagine that many parallel pieces of work like this were going on in different establishments,
most of them in time abandoned. When I had worked at ICL my department manager once
remarked that the majority of the software developed would be thrown away. But he asked
me not to tell too many of the other staff.

Chapter 9 The Search for Grants
The UK had been a member of the European Union since 1973. The EU then numbered nine
countries, and Greece joined in January 1981 bringing the number to ten. With ten member
states, the EU was beginning to encourage innovative projects, to improve the union’s
prospects of prosperity and advancement, and not just to apply assistance to deprived areas,
although it was doing that as well. Within a year the European Strategic Programme for
Research into Information Technology, ESPRIT, would be set up, but in 1981 this had not

127

yet happened. Preliminary to ESPRIT, research projects were funded on an ad hoc basis. I
had for some time had an idea that I would love to see explored. A dream of software
engineers is that of a reusable library of useful programs. So much effort was and is spent on
programming, repeated, wasted effort. If only one had a means of finding that program one
needed to write already in a library somewhere. I had my own dream that one would discover
that the same programming problem occurred in a variety of very different areas, say
commercial databases and compilers and civil engineering for example. A piece of software
is blind to the application in which it is put to use; the same computational problem may be
being solved over again in dramatically different contexts. If only one had an application-
independent way of describing and indexing theses pieces of programming, one could maybe
then build a library and look it up to see if the required program had already been written.

One clear candidate for an application-independent description of a program is a formal
specification of it. A formal specification defines what a program does, not how it does it nor
in what context it is used. Even so, with specifications written in the then two most popular
formal languages, Z and VDM-SL, there is a great deal of freedom to express the same
specification in different ways: there is a considerable freedom of expression. These two
languages are examples of model-based specifications. One composes a model of the
function of the program, using set theory. There are even more abstract methods, based on
universal algebra1, for expressing specifications. These come under the heading of Abstract
Data Types, ADTs. The Ada programming language was a step towards programming with
ADTs, and the more recent Object Oriented techniques and Java programming language are a
step further along that path. The functions in ADTs need to be defined, and the most abstract
means, and therefore the easiest to process automatically, consist of axioms expressed as
equations. So we decided to use ADTs with equational axioms as specifications and would
explore how to search and index them.

Looking into this problem required some fertile brains. We had a few at STL, but could use
more for a project that required such deep appreciation of underlying theory. Further, the
European Commission, who were the body that let EU research funding, favoured “pan-
European” collaboration and indeed required projects to be a cooperation between
organisations in more than one EU country. I had met several people on the Chill committee.
Working on technical committees gives one an excellent opportunity to tell how capable
other members are and whether one could work with them. I contacted Rudi Meijer, who had
been on the Chill IF and who worked for the research labs of the Dutch PTT, Dr. Neher
Laboratories, DNL. He demurred but suggested a colleague of his, Kees Middelburg. I knew
Kees too and was quite happy to contact him and propose this collaboration. There followed
several meetings with Kees and DNL, with our own contracts people at STL, and with the
administrative officer from the EC. There was a limit to the funding that the EC would

1 See Cohn, 1981.

128

provide for research projects like this. The limit was 100,000 ECU – European Currency
Unit. The Euro, the European currency, did not exist then; it came into existence as coins and
notes at the start of 2002, although the hard currency had been distributed as starter kits, not
legally usable, from September 2001. But the European Monetary System, EMS, established
a currency unit, the ECU, at the end of 1978. This was the official European Union
accounting unit until the end of 1998. On the 1st January 1999, the Euro came into being,
replacing the ECU and having exactly the same value. So although there were no coins or
notes, transactions and bank accounts could be set up in ECU and later in Euro. Indeed, I had
a ECU bank account myself in 1998 and it magically transformed into a Euro account on 1st

January 1999.

So, with Dr. Neher Laboratories in the Netherlands, we submitted a project proposal to the
European Commission. After scrutinisation by a review committee, and some consequent
revisions, our proposal was accepted. Many organisational details had to be sorted out. STL
would be the prime contractor, so we had to subcontract to DNL. We could choose in which
country’s system of law to make the contract: the EC suggested Belgian law, but I think we
agreed on the laws of England and Wales, which were close to those of the Netherlands. Our
proposal had to declare our methods of interworking between the two participants, to provide
track records, organisation trees, and lists of personnel and their CVs. This was to be the
norm for project proposals submitted to both the EC and the British DTI.

Whenever the EC or the DTI funded a project, they would allocate a project officer from their
own staff to it. The project officer would often champion the project from the beginning,
making the case for its funding amongst his or her own colleagues within, in this case, the
EC. Our project officer turned out to be Rudi Meijer. Unbeknown to me, he had been
seconded from DNL to the European Commission. His secondment must have been in
progress when I first approached him to collaborate on our project. Now I understood his
initial reluctance; he would soon be our “customer” and could scarcely be a collaborator in
the work. It was clear that Meijer was sympathetic to our project. “It was the only proposal
we have received that is scientifically respectable!” he said to me, with inverted hyperbole.

Unfortunately, we never came up with a good name for the project. Future projects in the
forthcoming ESPRIT would have acronyms like RAISE or IPSSI. Ours remained the verbose
“Methods of Defining, Cataloguing and Retrieving Specifications of Abstract Data Types”.
Not very snappy. The team consisted of Will Harwood, Paul Taylor and myself from STL
and Kees Middelburg and Jos Feinig from DNL.

We started off by defining “scenarios” of how someone might use a library of ADTs that we
envisaged. There was a lot of reading to do: researches were apace in the USA, particularly
by a number of computer scientists known as the ADJ group, and at the University of
Edinburgh. Several experimental axiomatic specification languages were published: AXES,

129

INA JO, AFFIRM, OBJ, CLEAR. We studied these and several others which we later put on
one side as they were less relevant to our purposes.

An abstract data type comprises a signature, which is the set of data types, and the operations
upon them. It also includes the axioms, which we had decided would be expressed as a set of
equations. If a user of the library wants to look up a data type, he/she would present it with
the signature and axioms of the desired ADT. The first thing that the system should do is to
try to match the signature of the presented ADT with the signatures of those in the library. If
a match is found, then the axioms have to be compared.

Two sets of axioms are equivalent if each can be deduced from the other. Each set will
comprise theorems provable from the other set of axioms. So automated theorem proving
techniques would be necessary. Plenty of research work was being done in the field of
automated theorem proving. Automated theorem provers used a technique of term rewriting:
transformations of logical terms which preserved their truth values. PROLOG was one of the
first logic languages but others were around too.

Matching two ADTs turned out to be difficult. We considered going for an interactive
approach, where the user interacts with the system and guides it, rather than a completely
automatic one. The user might be able to interrogate the axioms to see whether some
theorems are deducible from them, and to do experiments with formulating hypotheses. We
experimented with various usage models for the proposed system. To give ourselves focus,
we chose a case study: a database for an employment agency. The research of Rod Burstall
and Joseph Goguen from the universities of Edinburgh and California at Los Angeles was
particularly relevant to us. We had included a budget for some consultation with experts in
the project plan, so we arranged a visit from him at STL. Rod Burstall and his colleague Don
Sanella spent a day with us in January 1983. We had meanwhile also tried out as an
additional case study part of the aircraft monitoring system, which had been figured in the
Augusta study. Our meeting with Rod Burstall and Don Sanella gave us some more insight
into deriving one ADT from another. Burstall was beginning work on a topic for which he
coined the term “Institutions”. These were abstract algebras with a more flexible underlying
logic than equations and term rewriting. All this was very relevant to our project.

We carried out experiments on the two case studies, but after a lot of intense work and
discussions, by June 1983 we were forced to the conclusion that automatic matching of
specifications as we had conceived them was not possible. We were fairly sure of this
conclusion but thought that the EC may wish to seek further investigations to verify it. We
nonetheless felt that there was a place for such a library of ADTs to assist software
development on scientific principles. The study was nearing its scheduled end and we had a
final report to produce. We had produced some half dozen technical papers delivered to the
EC during the course of the study, but also nearly a hundred working papers restricted to

130

circulation within the project, and over sixty administrative papers and minutes (written by
myself). We sent the first draft of the final report to the EC in August 1983.

Rudi Meijer, the EC project officer, wanted to hold a review of the project by a panel of
experts. He telephoned me and gave me a long list of some of the most respected computer
scientists in Europe and asked me to invite them to a project review. I felt as if I had been
asked to invite a firing squad of marksmen to my own execution. I duly telephoned the list
and rather to my alarm well nigh all of them, thirteen in number, agreed to attend. We all
went to the review meeting at the European Commission in Brussels in December 1983. Will
and I gave the majority of the presentation. We described the rationale for the study, the two
teams from STL and DNL, and the preliminary literature survey of methods and formalisms
for defining ADTs. Then we went over our choice of a formalism, the library structure and
access, matching of signatures and equations, and on through the course of the project and its
problems that we had encountered, our conclusions and possible further work.

The comments from the reviewers were extensive and detailed. Frankly, they were very
critical. Towards the end of the meeting, one member asked how long the study had been.
The answer: 390 person-days. The reviewers’ criticism turned to some astonishment: they all
felt that for a study of this scope, far longer should have been scheduled. Their criticism
turned on to the EC for having let the project on such a limited scale of time and effort. It was
the chairman’s turn to defend the project. It was a feasibility study and as such a negative
conclusion of “this cannot be done” was a legitimate and useful result. If it revealed research
problems, that was a result they could live with. The Council of the European Communities
intended to launch a pre-competitive work plan for ESPRIT. The study has given them some
hints about research in the area. More rewriting of the final report was desirable than could be
done at the end of the project, but something useful would result if the first part is reworked.

So we rewrote parts of the final report and delivered a final draft in April 1984. If the
technical results of the project were disappointing, this was probably because we had been
too ambitious. At least, unlike the majority of software-related projects, it was delivered on
time and to budget: we had spent 99,405 out of our allowed 100,000 ECU.

ITT had by now completely shed STC as an owned company. STL was a part of STC. Some
of us wondered if ITT top management had fully realised that in divesting themselves of
STC, they were losing one of their most prestigious research laboratories. We no longer made
annual cases for funding to ITT headquarters. Instead we had to make cases for STC funding,
and we were free to seek funds and grants from external bodies, provided they were not direct
business competitors of STC; and even then, provided we were not giving away company
“secrets”, there was some leeway. We had already successfully bid for EC funding with the
ADT project. Other possible sources of funds were the UK DTI, RSRE and BT. The

131

successful completion of the Augusta project gave us and the other members of the
consortium the momentum of enthusiasm to continue with related investigative work. We
made a proposal for a software development method, aimed at Ada programming. This would
be based on abstract data types, because the language constructs in Ada called packages were
strongly inspired by the ADT concepts. Tools supporting this method would form part of an
APSE, an Ada Programming Support Environment. We had parallel conversations with the
EC to develop a wider range of Ada support tools to populate an APSE, with the knowledge
of all parties. We held numerous meetings, exchanged letters of intent, discussed staffing
levels, the team leader, and pricing arrangements. We drew up project plans, partitioned the
project into tasks and allocated them amongst the proposed participants. After six months, by
July 1982 we had switched attention to the CEC, Commission of the European Communities,
for seeking funds; the DTI and RSRE, although willing in spirit, did not seem easily to find
the mechanisms to channel a grant our way. To get CEC funding under the ESPRIT initiative,
we needed a partner from another European country, since an aim of ESPRIT was to foster
pan-European technological cooperation. So we approached the Danish Datamatics Centre,
DDC, the campus spin-off company that was the brain-child of Dines Bjørner. Dines was one
of the originators of VDM. Rudi Meijer in the Commission wrote a letter of encouragement
to Dines and STL’s commercial man, Alec Bell, worked with Leif Rystrøm, the managing
director of the DDC. Soren Prehn would be the technical participant from the DDC. We
drafted a new project plan with contributions, budgets and task allocations involving the
DDC. By now it was November 1982: we had been running with this proposal for eleven
months.

Again nothing transpired. By April 1983, however, the DTI had undergone some
reorganisation. There was now a route for applying to them for funds for research into IT. A
committee headed by John Alvey established a five year programme of “pre-competitive
collaborative research in the enabling technologies of information technology”. It was
sponsored by the DTI, the MOD, the Science and Engineering Research Council, SERC, and
industry. The government agencies would provide at least half of the £350 million budget
over at least five years. This programme became known as the Alvey programme and the part
of the DTI who managed it, the Alvey Directorate. Our proposal needed redrafting. For
example we had to put some emphasis on marketing prospects. Again, no funded project
resulted. But the Alvey programme was to become an important influence on UK research
and development into IT.

During the CEC-funded ADT study, one problem that hampered us was that Abstract Data
Types are often composite, especially those of any appreciable size. It is natural to compose a
complex ADT out of smaller ones. But there can be several different ways of combining
different component ADTs to produce the same composite one. Out of this problem arose our

132

interest in Category Theory. Category Theory gave us a language for defining the general
relationships between components and composites (“injection”) and for deriving composites
from their components (“pushouts”).

Category Theory is a branch of mathematics initiated in the 1940s by Samuel Eilenberg and
Saunders Mac Lane. It is an advanced branch of mathematics: despite having a degree in the
subject, I had not heard of it before and did not recall there being any course in Category
Theory offered even in the post-graduate Part III of the Cambridge Mathematical Tripos, in
the early 1960s. Since the days of Georg Cantor in the nineteenth century and David Hilbert
in the 1900s, set theory had been perceived as the foundation for mathematics. Everything
could be related to and re-expressed as sets. For the next half century set theory was regarded
as the most fundamental concept of mathematics. In the 1930s a group of French
mathematicians working under the nom de plume of Nicolas Bourbaki attempted to produce a
fully axiomatised presentation of the whole of mathematics. This massive task extended over
forty years, producing many volumes, but Volume 1 was devoted to sets and is still
influential today. The modern formal specification language B2 is based on set theory and
shows, I believe, a marked inheritance from Bourbaki.

The emergence of Category Theory changed the perspective of set theory being the
foundation of mathematics. Already that foundation had been rocked by Gödel in 1931
showing that no system based on finitary methods could produce a complete axiomatisation
of the arithmetic of the familiar whole numbers3. Category Theory enabled one to consider
the collection of all sets and all functions between sets and other “large” collections without
falling foul of Russell’s paradox. While avoiding Russell’s paradox in itself is not of obvious
interest to computer science, the more general approach to functions has particular
advantages. In set theory, a function f can be characterised by its graph, which is the set of
pairs of values <x, y> where y = f(x). In tax tables the effect of applying a formula to a sum of
money is illustrated by listing results of the formula application next to the input value. This
is a tabular form of the graph of the function. But in the context of computing it would
usually be very cumbersome to represent a function using a table. The distinction between the
tabular or pair-wise representation and the actual notion of an operation is prominent:
Category Theory returns to the sense of a function being an operation that is applied to an
argument, the input value, a member of the domain of the function.

Category Theory gives us another benefit when used to model programming languages. It
would be possible to define and write a compiler for a language that allowed so-called
generic data-types and functions. Most programming languages allow conditional expressions
for all permitted data-types:

if p then exp1 else exp2
2 See Abrial 1996.
3 See Nagel and Newman 1959.

133

With the current methods of defining program language semantics, the meaning of this
construct has to be defined for each principal data-type, whereas in fact its sense is type
independent. Category Theory could give a way of providing a generic semantic definition, to
match the generic nature of the construct. In a language that allowed generic types and
functions, the above expression could occur in the defining body of a function, where the
arguments exp1 and exp2, perhaps provided as input parameters of the function, were of any
type. It would be difficult to define the semantics of such a function using a formalism that
did not pay at least implicit reference to Category Theory.

In the ADT study we tried to use the ideas of Category Theory to give us a handle on the
process of defining larger data-types as combinations of smaller ones and manipulating them.
I think that categories could also come in useful for treating the whole idea of modularity,
where one compiles different modules of a system separately and combines them after
compilation. The usual present-day theories of semantics do not adequately cover this issue.

So Will Harwood, Paul Taylor and I learned about Category Theory and tried to apply it to
the ADT study problem. I was very much the neophyte; Will and Paul were my tutors. One
regular conference covering the more theoretical aspects of computing was the Mathematical
Foundations of Computer Science. The tenth symposium was to take place in Štrbské Pleso
in Czechoslovakia at the beginning of September. I decided to go to it. Štrbské Pleso, now in
Slovakia, was at the foot of the High Tatra mountains near the border with Poland. In 1981
Czechoslovakia was still an eastern bloc, soviet allied country and its economic prosperity
was frugal. Hotel accommodation was scarce and we had to double up in twin-bedded rooms.
I shared with a polite young American mathematician. At least we had a common language.
There was only one other British delegate, Leslie Valiant from the University of Edinburgh,
who was giving a paper. In fact, almost all the delegates were presenting papers, and the
presentations took place on a rigid time-scale in multiple parallel sessions. A few people I
knew were there, including Dines Bjørner who was one of the very few others not presenting.
The mountains were spectacular and one afternoon was given over to a conference “social
event” in which a local mountain guide led a few of us over a snow covered pass. Chains
were embedded into the rocks in places to help ascent and descent. The papers presented at
the conference were arcane and I got the impression that the main motive for the event was to
enable more publications, a metric of academic success. At the conference dinner, some other
delegates sharing my table joked about a colleague of theirs. He had apparently published 60
papers in the past year. That is more than one per week, a well nigh impossible task unless
one is repeating reports of the same work or riding on the backs of junior colleagues. The
academic imperative of “publish or perish” continues today, if anything even more strongly.
On my way to the airport at the end of the conference I had a meal in a restaurant. There was
limited wine on the menu, and I was the only diner drinking any. I remember that a litre
bottle of vodka from a food store cost the equivalent of about 40 pence. At the airport in

134

Prague there were no luggage carousels. Instead lines of men in blue overalls laboriously
passed travellers’ cases from hand to hand. A plane landed or took off about once every
twenty minutes. I flew to Prague again nine years later in 1990. By then the airport had
changed dramatically and had all the usual modern features.

I have mentioned several times how the theoretical analysis of concurrency in software
systems was a compelling issue. Several formalisms could model concurrency, each
enthusiastically championed by its proponents, but there was no clear way of comparing them
or determining which was the best to use in a given application. The Software Research
group at STL decided to host a workshop and invite the champions of the different
approaches. We devised ten sample problems in concurrency and sent them in advance to
academic researchers, inviting them to try out their techniques on them. We received 27
solutions in advance and another six were produced during the workshop itself. After all the
solutions were presented, we had a debriefing session during which we hoped to make some
useful comparisons between the different techniques. We held the workshop in Cambridge in
September 1983; this was during the university vacation and all of us stayed in rooms in
Clare College. We were able to obtain funding for the academics’ travel from the SERC.
After the event Will Harwood, Mel Jackson, Mike Wray and I put together a volume of
proceedings which were published by Springer Verlag in the LNCS – Lecture Notes in
Computer Science – series4. Bernie Cohen and Paul Taylor were also on the organising
committee. In addition to the academics, we invited eight participants from some of the
bigger industrial players, British Telecom, Central Electricity Generating Board, GEC, ICL,
MJSL, Software Sciences, and Systems Designers. Organising this workshop took a
considerable amount of effort. We appointed rapporteurs for the sessions to report back on
the solutions and plenary discussions, wrote guidelines for them, organised projection
equipment, notice boards and stationery, wrote a justification to apply for the SERC funding,
and as well as the final proceedings, wrote following reports for the SERC and for our own
management. I had to analyse and approve the bill for accommodation from Clare College –
it was detailed down to the last teabag.

The whole task of planning the workshop, holding it and drawing it to a conclusion took
some 14 months, which is pretty normal for an event of this kind. Producing the proceedings
from contributions written by multiple authors was a considerable task. In those days there
was such a variety of word processing and other text preparation tools that it was impossible
to impose a standard format on all the authors. Nowadays every journal or book series has its
own down-loadable text style that intending authors use to create a uniform compatible
format. Then we had to rely on camera-ready copy. Authors’ texts had to be proof-read,
corrected, page numbers played with and so on. We wrote an introduction and conclusions,
4 See Denvir et al, 1985.

135

no mean task. I felt that we should circulate these amongst the academic contributors for
comment in advance. Only one had criticisms of my conclusions, and I think my
modifications met his objections. Was the workshop useful? I definitely think so. While we
found no philosopher’s stone, we made progress. I could compare it to the conference on
concurrency held in Evian in 19795. There most of the presenters simply stood up and
explained their theories. In our workshop there was much more interaction; providing a
common set of problems for the participants to solve seemed a good framework for
encouraging discussions. Afterwards we felt more confident about choosing a formalism for
modelling concurrency and as a basis for a development method. We had a good idea of the
strengths and weaknesses of each individual method in terms of abstraction, manipulability,
ability to make provable deductions of properties, and ability to hide, decompose, structure
and refine to a more reified design.

The managing director of STL, Bernie Mills, stepped down on 1st July 1983. He had ruffled
some feathers during his term of office. The previous MD had frosted glass doors to his
office suite. When Mills moved in he had the doors replaced with heavy solid wooden ones.
He lowered the “delegation of authority”, this was the amount of money one could authorise
to be spent on purchase orders and the like, of a whole range of middle managers at a stroke.
His only stated reason was that they did not need it. He communicated this by instructing a
junior clerk in the accounts department to send a memo. Many of the managers did not realise
what had happened: the memo was scrappy and not clearly expressed. They discovered only
when clerks in the purchasing department began bouncing their purchase orders. Shortly
before he left, Bernie Mills walked down the corridor past my office. I always kept my door
open unless I was having a meeting. He saw me, doubled back and dropped in. After some
small-talk, I said, “I expect, like all the rest of us, you are looking forward to your
retirement.” If he noticed my deliberate ambiguity, he did not show it. With the departure of
Bernie Mills, there came substantial reorganisations in the upper reaches of the company. We
began to notice still more changes of the kind that began under his regime. The authority of
middle managers slowly diminished. When we belonged to ITT, rules could be bent
occasionally; if one showed initiative in pursuing the benefit of the company, one was
rewarded. Now, rules and bureaucracy were paramount. STL slowly became a less pleasant
place to work.

VDM courses continued to be a significant part of our technology transfer effort. We had
produced and delivered a one-day course for managers and a one-week course for software
engineers. Next, we developed an advanced workshop. There we covered the more intricate

5 See Khan 1979.

136

features of the VDM language, and some of the more advanced aspects of the theory
underlying it. VDM is based on set theory and logic. This mathematical basis enables one to
prove properties of the specification, and of programs which fulfil the requirements that it
specifies. But any proof written by a human can contain errors. A lot of work had been done
on so called mechanical theorem provers; these are computer programs which can generate a
mathematical proof of an assertion written in symbolic logic, or which can check a proof that
is provided to it. These mechanically generated or checked proofs have to be in far more
intricate detail than the proofs that are in the usual mathematical tradition. Only in the
discipline of mathematical logic does one find the same level of rigour. For such rigorous
proofs, the theory in which the propositions are stated have to have a consistent set of axioms,
sufficient to enable proofs of useful theorems. There are several alternative systems of
axioms for set theory. The two most usual ones are NBG and ZF. In the mid-1920s John von
Neumann6 proposed a system of axioms. Later Paul Bernays and Kurt Gödel further
developed von Neumann’s system and the result became known as NBG. In 1901 Ernst
Zemelo provided a slightly different axiom system. Again, in 1922 this was extended by
Abraham Fraenkel, and the resulting system is known as ZF. NBG and ZF are very similar,
and in certain circumstances can be shown to be equivalent. In general terms the logic of
VDM is based on ZF. So in the advanced VDM course, we included an explanation of ZF set
theory7.

One of the purposes of having a VDM specification is to prove that a program is correct. One
also should prove that the specification itself is consistent. A newcomer to the topic could be
unsure about what propositions exactly one needs to prove in order to demonstrate
consistency and correctness. These propositions we called “proof obligations”: one is obliged
to prove them in order to demonstrate consistency and correctness. Our advanced course
covered these proof obligations, as well as various other topics such as more detail on data
types and desirable “style” of writing specifications. We wrote a manual for course lecturers,
and after a lot of discussion, an outline of qualifications that lecturers needed.

In VDM and, indeed, in computing in general, functions are often partial. That means that
they only produce a defined result when applied to some of the values of the type of their
domain. Most functions in mathematics are total, producing a result for every value. Some
are partial, however; one cannot divide a number by zero, for example, or obtain a real result
by taking the square root of a negative number. With VDM specifications, there can be many
logical expressions in which a partial function is applied to an argument. To produce logical
proofs of correctness and consistency, the logic has to be able to cater for partial functions.
Cliff Jones had been doing research into this subject, abbreviated LPF, and with his
cooperation we included LPF in the advanced course. In simple terms, in classical and other
6John Von Neumann proposed a machine architecture that was the blueprint for all subsequent computers: see
Von Neumann et al 1947.
7 See Devlin 1994.

137

conventional logic a proposition can only be true or false. In LPF, a proposition can be true,
false or undefined.

Our VDM courses had now been given to quite a variety of organisations, who were
beginning to use the method. IDEC started to specify part of the new TX4 telephone
exchange software in VDM. The government’s DTI sponsored a project to develop support
tools for VDM under the Alvey programme. We held a VDM users’ conference in which we
displayed the latest developments and activities and shared case studies. We tried to pull
together the several variations in the VDM language that different developers and researchers
were using and produce a standard, to be submitted to ISO, the International Standards
Organisation. The EC funded project, RAISE, was beginning, which was to develop a
considerable extension of VDM. These were topics to be aired at the users’ conference. A
coordination committee with members from several companies and academic institutions
discussed the curriculum of the courses. We approached the NCC, National Computing
Centre, with a view to giving courses to the “public”, where anyone could reserve a place,
rather than their being invariably in-house.

The desire to prove programs correct was not the only reason why programmers were
interested in symbolic logic. Artificial intelligence is the attempt to duplicate various human
cognitive processes with a computer. An important one of these enterprises is the
understanding of human language. There are many aspects to this. Sentences in the language,
with all their inherent ambiguity, have to be parsed. One needs a means of representing the
knowledge denoted by the language script. To fully explore the meaning of a script requires a
logical deductive system. Another topic within AI is expert systems. Here the workings of
human experts are recorded over many trials and recorded in a database. The expert system
analyses all the data and creates an automated “expert”. This technique has applications in
medical diagnosis and many other human skills that take a long time to learn and which
cannot be completely defined.

At STL Nigel Steele, a member of the software research group, had for some time been
pursuing his own research programme in AI. He had reserved himself a place at the 1984
International Symposium on Logic Programming, to be held in Atlantic City. Some time later
he decided to move on, and although he was still working out a period of three months’
notice, STL would not allow him to attend the symposium; they were unwilling to fund the
travel and fee for someone who was not going to be an employee for much longer. I thought
this was a touch short-sighted and churlish, for he was the one who would benefit most from
attending, owing to his specialist expertise. However, the company was not to be moved and,
since the booking was already made, I was sent instead.

138

There were a large number of attendees at this symposium: 350. The organisers had expected
about 100. Most of the papers were related to Prolog, a programming language using logical
expressions rather than the usual imperative commands. The Prolog interpreter is able to
draw deductions from the logical expressions and prove a desired goal. The logical
expressions have to be of a restricted form, called Horn clauses. These are named after the
logician Alfred Horn who pointed out their significance in 1951. A characteristic of Prolog
programs is that the interpreter rapidly devours large quantities of computer processing time
and memory space. The interpreter uses a technique called “unification” to draw inferences
from the logical expressions in a program. Prolog had been invented by Alain Colmeraur
twelve years earlier in 1972. The last leg of my journey to Atlantic City was in a small
aircraft of about eight seats. He was one of the other passengers and all the remainder were
attending the symposium. The other delegates in the plane showed him a respect verging on
awe. I learned that there were many organisations at the symposium advertising for staff with
expertise in logic programming, AI and expert systems, and some specialist firms were
concerned exclusively with the area.

Many of the papers in the symposium were devoted to techniques of reducing the amount of
time and space, known as the complexity, required by programs. Some extended the language
until it was scarcely recognisable; others attempted to overcome the inherent computational
complexity of logic programs by taking advantage of massively parallel architectures that
were only on the drawing board at the time. I noted that the state of hardware architecture
design still seemed to be in the same primitive condition as software used to be in the
nineteen-fifties,oriented to the machine rather than the function and lacking in abstraction. I
felt that quite a few of the papers in the symposium would be of interest to our EST and AI
projects.

There was a notable interest from Japan in the symposium. Some 25% of the papers were
from Japanese institutions including a recently established Institute for New Generation
Computer Technology. For this reason I was highly irritated when a president of IBM flew in
to give an after dinner talk at the conference dinner. His theme was “The Japanese Threat”.
He was referring to commercial competition, but I thought he could have registered the
international nature of the event before choosing his topic. The Japanese delegates applauded
politely at the end of his speech.

Artificial Intelligence is the research topic that attempts to replicate human thought processes
by computer. One notable cerebral capability of human beings is the ability to reason, to
construct a logical argument and reach a conclusion. Every process in a computer program
has to be expressed in abstract symbols. So one topic, among many others, of great interest to
researchers in AI is automated proving. The same topic is also of great interest to software

139

engineers pursuing formal methods, for proving that a program is a correct realisation of its
specification would go a long way to reduce errors and faulty behaviour in software. A small
but vigorous research team in STL had been pursuing its own efforts in this direction. EST
was a project, led by Will Harwood, which was investigating the construction of a proof
system based on the logical rules of program proof, starting from the rules of equational
reasoning, but moving on to other logics. The ITT laboratories in Madrid were interested in
obtaining a copy of EST to conduct their own researches. EST, however, was a prototype;
Will’s vision was to construct a generic engine which could be parametrised with the codified
rules of a logic, and could thence be instantiated as a proof suite for that logic. This was
rather like the step from building a compiler for an individual language to building a parser-
generator, which can be parametrised with the syntax rules of any language. This aim, to
build a logic-based proof system generator, was the objective of NIMBUS, a successor
project to EST.

Tony Hoare, who headed the Oxford University Programming Research Group and devised
CSP, the formalism for modelling communicating sequential processes, had been made a
Fellow of the Royal Society. I think it is true to say that he was the first person to be so
honoured for contributions to theoretical aspects of software, although Maurice Wilkes, the
director of the Cambridge Computer Laboratory was a FRS before him. Maurice Wilkes’s
principal achievements were in computer hardware. He designed and oversaw the
construction of one of the first stored program computers, the EDSAC, which was completed
and operated successfully from May 1949. After its successor EDSAC 2, the next computer
in his laboratory was the Titan, designed and installed in conjunction with Ferranti and a
“sister” machine to the London Atlas. He is also credited with several developments which
paved the way for high level languages.

So software research now had a representative in the Royal Society. In February 1984 the RS
held a “meeting for discussion” on Mathematical Logic and Programming Languages. Tony
Hoare was one of three organisers, the others being Michael Atiyah and J. C. Shepherdson.
Sir Michael Atiyah, also an FRS, later became the president of the Royal Society. He had,
incidentally, lectured on linear algebra in the Cambridge mathematics tripos during my
undergraduate years. The two-day meeting at the Royal Society was very stimulating. The
speakers comprised some of the most well known names in computer science. I had
encountered several of these, Tony Hoare himself, Robin Milner who developed CCS and
LCF, the logic of computable functions, Bob Kowalski from Imperial College London, who
was an authority on logic programming, and others. But I heard two other speakers for the
first time, who had been remarkably influential in theoretical computer science. Dana Scott
had developed the kind of domain theory that provides the foundation for recursive data

140

types8. Edsger Dijkstra had devised the notion of guarded commands9 and published A
Discipline of Programming10 which had so inspired me in the mid seventies. As would be
expected, logic applied to programming languages was the main theme of the meeting.
Proving programs correct can be computationally time-consuming and difficult. There is a
trade-off between expressiveness of the logic language and the efficiency of its “execution”,
that is the process of using theorem provers to deduce consequences from premises. One has
a choice between developing proof theories and algorithms, and developing programming
languages that are not imperative but are more conducive to constructing proofs. Some of the
talks focussed on the former and others on the latter. Robin Milner’s talk described LCF, the
Logic of Computable Functions11, in which strategies and tactics for proofs can be described.
Kowalski described proof techniques for Horn clause12 logic. D I Good described a
verification environment called GYPSY for developing programs. It included a verification
condition generator. Verification conditions are much the same as proof obligations already
mentioned. GYPSY also had a proof checker that checked the validity of proofs. Most of the
other talks sought ways of expressing programs so that proofs fall out on the way, so to
speak. Functional programming languages are close to specification languages like Z and
VDM, but are executable. The proof of correctness follows the construction of the program. I
came across one of the speakers for the first time, Per Martin-Löf. His approach is that the
intuitionistic theory of types and constructive mathematics can be viewed as a programming
language. The inference rules of the type theory are themselves the rules of correct synthesis
of programs. So the correctness of a program written in the theory of types is proved formally
at the same time as the program is synthesised. This was to me a very novel way of looking at
programming. Martin-Löf showed how the axioms of set theory are analogous, indeed are the
same apart from differences in syntax, as those of intuitionistic logic.

From the sublime to the, if not ridiculous, severely practical, in April the same year (1984)
the first spell checker came our way. It made a half hearted attempt to distinguish between
British and American spelling, but was incomplete in many ways. It did not recognise many
words, some of them technical, others prosaic. It recognised the electronic busses but not the
vehicular buses; homological but not heterological; it did not recognise instantiate, powerset,
coproduct, codomain, morphism, bijection or more everyday words like lorry, puce,
watertight, scruffy. But it was the first spell checker I had come across and it was almost
usable.

8 See Scott 1976.
9 See Dijkstra 1975.
10 See Dijkstra 1976.
11 See Gordon et al, 1979.
12 See Horn 1951.

141

FACS, Formal Aspects of Computing Science, a special interest group of the British
Computer Society, was founded in 1978. I had been attending their meetings for five years,
since 1979, and in 1984 Dan Simpson, its chairman, asked me to join their committee. FACS
had established working relationships with the London Mathematical Society, the
Association of Mathematics and its Applications, and the European Association for
Theoretical Computer Science. I was gratified to be invited to join their committee, which
organised meetings and generally ran the group. In my first committee meeting with them,
because of my previous experience with the DTI and the Augusta study, my name was put
forward to be the FACS representative in a BCS task force liaising with the Alvey
Directorate. We discussed several future meetings on topics such as Mathematics for
Computing, Petri Nets, OBJ – an algebraic specification language, ML – a functional
programming language, Knuth Bendix and Unification algorithms, and HOPE – another
functional programming language that was a predecessor to the later languages Miranda and
Haskell. This was the first of many FACS committee meetings that I would attend over the
next nineteen years. FACS was something of a ginger group that tried to stimulate new ideas
in applying computer science theory to practical software development.

In 1983 the British firm INMOS designed and built a computing microprocessor with a
concurrent architecture called the “transputer”. Having a concurrent architecture meant that it
could carry out several computations in parallel, that is, using several CPUs working together
simultaneously. The transputer was designed to work with a parallel programming language
called OCCAM, designed by David May of INMOS in association with the Oxford PRG.
OCCAM was in turn based on Tony Hoare’s CSP formal language and shared many of its
features. Indeed it could be said to be an executable version of CSP.W

Bill Roscoe of the PRG developed a semantic definition of OCCAM. Although in the long
run neither the transputer nor OCCAM could be said to be grand commercial successes, they
were both in their way very influential over later computer architectures and principles of
concurrent program language semantics.

Shortly before ITT shed STC from its conglomerate family, we had to contribute to one last
review in the USA. I was asked to give a talk on 10th April 1984. The next day my children,
young teenagers then, were performing with their school orchestra in the Albert Hall in
London, a prestigious occasion. I decided I could just fit it all in. I flew out, gave my talk on
VDM, Ada and how they could work together, had a short nap on my hotel bed for an hour
and flew back. That was the only time I took a day trip to the USA.

142

In 1984 Dines Bjørner, Professor at the Technical University of Denmark and founder of the
Danish Datamatics Centre, suggested that we should get together with several other
institutions to submit a proposal to the European Commission’s ESPRIT initiative to develop
a new practical formal method for software engineering that incorporated all the advantages
of various existing languages and methods. We had numerous meetings and discussions. The
result was the RAISE project---Rigorous Approach to Industrial Software Engineering.
Manchester University’s computer science department under Professor Cliff Jones were also
involved at the early stages of getting the proposal together. The central components of
project was the RAISE Specification Language, RSL, and its support tools, together with a
“method” for using these in software development. The language would incorporate all the
features of VDM plus facilities for concurrency, so that systems with concurrently executing
components could be specified. The method would include guidelines for discerning the
requirements of the system and managing the project, as well as the usual methodology of
using a formal specification and refining it to an executable implementation.

Incorporating concurrent features into the specification language required us to combine
features from different formal specification languages: theories had to be combined. For large
systems of software, managing size needed a way of bringing specification modules together.
To reach these objectives, the project needed to start with a theory study. The DDC held a
preliminary workshop on combining specification methods. Many academic experts
contributed to this: Michel Sintzoff, Dana Scott, Gordon Plotkin, Laurence Paulson, Ugo
Montanari, Jim Thatcher, Willem P. de Roever, Albert Meyer, Hans Langmaack, Andrzej
Blikle, Jeannette Wing, Hartmut Ehrig, Eric Hehner, O-J Dahl, Allessandro Fantechi,
Matthew Hennessey, Manfred Broy, Mads Tofte, Peter Mosses, Otthein Herzog. Rod Burstall
agreed to be a consultant to the project. Dines had an astonishing list of contacts and a deal of
influence.

If we were to convince other organisations, especially industrial ones, that RAISE was worth
using, some demonstrator projects would be useful. The proposal needed to lay out
motivation for the project, its objectives, and a strategy and work-plan for carrying it out.
Then there were the more administrative issues to be sorted out like a partnership agreement
and the sharing of intellectual property rights. Each partner should be free to market the
results but also to use them for free within their organisations. We aimed to start the project at
the beginning of January 1985. Within STL we had to convince our management and peers
that the project harmonised with company research strategy. There was potential conflict with
current internal projects. If we committed to RAISE, there was a danger that STL’s NIMBUS
project, a successor to EST, could collapse with staff being diverted to RAISE; it is
organisationally imprudent to have two projects with many similar aims. The company had
invested considerably in EST and NIMBUS. On the other hand, the DDC had produced an

143

ADA compiler with EEC funding and were offering a licence to IDEC, an STC company
close to STL, at 50% discount.

The biggest investment which a company like STC makes is in teams of people who can
work together coherently. This occurs when a team can identify with a project’s objectives. I
privately reckoned that if the NIMBUS team were reassigned to RAISE, several of its
members would leave. I could see four possible solutions: abandon participation in RAISE;
abandon NIMBUS and collaborate wholeheartedly in RAISE; divide STC contribution to
RAISE into two: STL and IDEC, with IDEC providing the lion’s share so that we could
pursue both projects; acquire more staff so that again we could do both.

I felt that we could not abandon RAISE; too many of our company objectives would not be
met. I thought we should go for solution 3, and see if the DDC would accept sacrificing some
commitment from STL but using consultative style contributions from us and commitment
from IDEC. I knew that Cliff was not in favour of this solution, but I thought it should be put
to the DDC and their reaction tested. Failing that, we could explore solution 4. But that was
probably not feasible: STC had made 390 staff redundant in the last year, having
overstretched their financial resources by recently acquiring ICL, so the company climate
was hardly conducive to recruitment.

If a choice had to be made between abandoning RAISE or NIMBUS, STC would have to
decide whether it wanted to invest in RAISE, a substantial enhancement of VDM, over the
next five years, or continue investing in NIMBUS, which was more long term and might be
in a prototype stage in three years’ time. I believed that abandoning NIMBUS was not a real
solution. While one could assign the NIMBUS staff to RAISE, one could not be sure of
“assigning” their commitment to it. I felt that one of the “compromise” solutions should be
pursued as vigorously as possible. The worst thing that could happen was to be indecisive and
follow the course of least resistance, i.e. to assign staff to RAISE without their proper
commitment and to pretend that the NIMBUS project can continue unaffected. If that was
allowed, all objectives would be missed. I sent a memo to director level management listing
the possible solutions, my concerns and my recommendations.

By 1985 ICL had joined the RAISE consortium. We held workshops on the theoretical
problems of combining specifications and on aspects of VDM. By the end of February the
European Commission had approved the proposal and the project was under way. As I feared,
no firm decision was made about the dilemma between pursuing RAISE or NIMBUS. Will
Harwood who led the EST and NIMBUS projects left STL and set up his own small
organisation under the wing of Imperial Software Technology, a campus company sprung
from Imperial College’s Department of Computing. There was a severe danger of other
members of his team following him and leaving STL with a drastic reduction of staff with
experience in formal methods. The scenario I had foreseen as worst case had happened:

144

inaction over RAISE-NIMBUS. Again I alerted management up to director level of the
situation.

There were other changes in STL, most likely resulting from ructions following STC’s
acquisition of ICL and subsequent redundancies. STC sold off its prestigious headquarters
building at 190 The Strand: not a good indicator. Reorganisations in STL produced a vacancy
for our own senior division manager position. It was advertised nationally, and locally on a
company notice board. I decided to apply for it myself. Since the management had made, in
my view, serious policy mistakes over RAISE-NIMBUS affecting all of us, I thought that if I
was higher up the management chain, I might at least limit the damage and prevent further
similar errors. I also thought that the move might help the morale of the staff around me to
recover. I obtained a copy of the job description and found that I exceeded all the qualifying
requirements by considerable margins. I applied and had a one-to-one interview with our
technical director. I heard nothing until one of our research staff greeted me with the words,
“Have you heard the good news?” Valerie Downes from Imperial College, whom we all
knew quite well and whose abilities we respected, had got the job. This was the first and only
notification I ever received that my own application had been unsuccessful.

More RAISE workshops took place over the next nine months, in which we carried out
intense technical work, as well as in between times. In May I was appointed joint system
architect alongside Dines Bjørner. I felt honoured and gratified. A technical board and a
management board were set up. The technical board sorted out more strategic technical
matters like how we should use external consultants, schedules for workshops and more
specific technical decisions. The management board dealt mainly with the project’s relations
with the European Commission, the issue of reports to them and deliverables, costings and
other such items.

RAISE attempted to define the actual process of developing software by a formal model,
expressed in mathematical terms. Each step in the development produced a new product, a
specification or other document, that, to be valid, had to bear a definitive relationship to its
antecedents. The set of documents in a project together with the relationships between them
formed a Project Graph, and the process of developing it was termed a Meta-program. We
attempted to incorporate non-functional requirements into the whole concept too, typically
performance requirements such as timing constraints and ability to handle capacities of data.
A project in its final form could be seen as a rationally reconstructed history. RAISE would
include a raft of software tools to support the method and concepts underlying it.

The earliest part of a software development is the elicitation and analysis of the requirements
for the project. This has always been an elusive part of the development cycle, because it
necessarily involves human intuition. The vast majority of software disasters have resulted
from the delivered software not meeting the actual requirements of its working environment;

145

disasters rarely result from the software being technically wrong, although a few have. See,
for example, Robert L Glass’s book, Software Runaways. Formal modelling could be used to
help understand and analyse requirements through an interplay between the examination of
conjectures expressed as formal models, intuitive creative work, constructing lists of
questions, experiments, abstraction, generalisation, and recognising common and orthogonal
features.

The RAISE project continued to a successful conclusion after I eventually left STL. Its
products and support tools were developed and continue to be available, used and marketed.
Other institutions became involved in RAISE after the end of the EEC funded development
phase, notably Terma A/S and the United Nations University in Macau. The Danish
Datamatics Centre transformed into the independent Danish company IFAD, and the
involvement in RAISE moved from them to Terma. Dines Bjørner for several years
transferred to UNU and established a thriving computer science department there. His recent
work on domain engineering is, in my own perspective, a natural evolution from the work on
meta-programs that we did in the RAISE project.

In parallel with the RAISE project, there were, as always, a host of other smaller activities
engaging my attention. The Alvey Directorate used to work with the other government
funding agency, the SERC, to foster industrial and academic cooperation. These could take
the form of joint projects with Alvey part-funding the industrial contribution and SERC
funding the academic part. But academic research projects were also encouraged to engage
some industrial involvement by appointing an “Uncle” from industry. The idea was for the
industrial partner to take an advisory rôle, attending meetings with the project every three or
six months and providing some industrial perspective to help keep in sight some prospect of
eventual exploitation. Calling the rôle an “Uncle” was rather quaint, to my mind, having
evocations of being, well, avuncular, rich and kindly perhaps. I received a phone call from
Robin Milner at Edinburgh University asking me if STL could fill this rôle. The project was
to produce a BS standard version of ML, a functional programming language developed by
Edinburgh and Cambridge University. Apparently they had asked ICL first, but ICL had been
more possessive over exploitation rights and so forth than Edinburgh had been willing to
agree. Now they were looking for someone who was not a computer manufacturer, to avoid
the same problem. I was pleased to show willing.

The one ITT research laboratory in the USA, the Advanced Technology Center, were keen to
gain as much information from STL before the final date beyond which STC was no longer
an ITT company. ITT had mostly done most of its research in European laboratories, STL,
LCT in Versailles and ITTLS in Madrid, for the pragmatic reason that, at the time, British

146

and European labour rates were cheaper than US ones and research was labour intensive. We
agreed to a visit from ATC staff in August of 1984. ITT had recently enlarged the ATC with
some fifty new staff, all PhDs and involved in computer software in some way. ITT’s hope
was that they could put all these fine brains together and stand back to watch the resulting
intellectual fireworks. This did not work out quite as anticipated. Certainly, the staff at the
ATC included a lot of talent, but many were somewhat charismatic and idiosyncratic
individuals. There was apparently not much in the way of structures set up for them to work
together cooperatively.

In September 1984 a research group in STL developed one of the first LCD flat screens. It
used “semectic” LCDs. The screen required 150 volts to keep it charged but otherwise used
very little power, about two to three watts. Its response was slow, too slow for television and
slowish for word processing. This first prototype produced monochromatic images only. The
size was 720 by 400 dots, giving bit mapped images and 24 rows of 80 characters, using a
character matrix of 9 by 16 dots. It had a capacitive overlay for touch entry and control. The
active matrix controlling the LCD screen was a silicon slice 10 to 15 cm wide.

The telecommunications industry was perhaps the major recruiter of computer science
graduates in the U.K. Industry had a considerable interest in the skills and knowledge with
which graduates emerged from their degree courses, and hence in the content of the courses.
The universities on the other hand had an interest in providing courses that equipped
graduates well in their search for post-graduate employment. This mutual interest resulted in
the formation of the Joint Curriculum Development team. The industrial members were STL,
GEC and Plessey. We met at intervals to discuss details of undergraduate and graduate
courses and tried to interest the Alvey Directorate.

Dan Simpson, who had worked at Elliott’s in Borehamwood, moved first to academia,
Sheffield Polytechnic, which later became Sheffield Hallam University, and then to the Alvey
Directorate. He was a founding member of BCS FACS and as its chairman had asked me a
little earlier in 1984 if I would participate in the FACS committee. He had a strong interest in
formal methods and later in the same year helped to stimulate a project exploring the
application of formal methods to protocols. In telecommunications a protocol is the rules and
meaning of a specialised language for introducing the context of an electronic message. For
example, today when one receives a telephone call one’s equipment can display the number
of the caller. That number is encoded together with the notification of the incoming call. So
that this information is universally understood by all equipment, there have to be agreed rules
about the format of the information and its interpretation. These rules form national and

147

international standards, of which the CCITT is the international standardisation authority.
With the onset of digital telephony, protocols were becoming more numerous and of
burgeoning importance. They are called protocols because they are like the rules of etiquette,
of saying “how do you do?” that two pieces of computational equipment exchange before
getting on to the real exchange of information.

So the seeds of an Alvey funded project, Formal Methods Applied to Protocols, FORMAP,
were sown. In October 1984 Dan, together with Howard Nichols of the Alvey Directorate,
held a meeting with British Telecom, ICL, GEC and STL to see if we could put a proposal
forward. There were already Alvey projects working on Z, VDM and ML, but none on CCS
or CSP, two of the principal specification languages for modelling concurrent processes.
Protocols almost invariably denoted some measure of concurrent behaviour. All of us, David
Freestone from BT, Ken Turner from ICL, Peter Scharbach from GEC and I, were
enthusiastic about the idea. Our first steps were to draw up a collaboration agreement
between our companies, send it to the Alvey Directorate and expect a letter of intent from
them in reply. After that would follow a work-plan and cost estimates. We expected to get
started in the new year.

E-mail was just beginning. It originated in the US as the US Department of Defense
Advanced Research Projects Agency Network in the 1960s. ARPANET grew gradually
through the 1970s until by the early 1980s the number of hosts had reached over 200.
Following this lead, the UK SERC pioneered a research network based on the X.25 protocol.
It was originally built for communication between academic institutions, and all further and
higher education institutions and government research organisations were in time connected
to it, schools eventually following. Because of the close links between SERC and the Alvey
Directorate, Alvey were able to set up a mailbox supporting email between partners on an
Alvey funded project. So it was that our first experience, corporate and individual, of email
was on the FORMAP project, rather appropriately since the project focussed on protocols, on
which email and its supporting network relied. Compared to today, this email was decidedly
clunky and took a great deal of effort and time to set up for the project, but it was there and
usable.

The administrative processes for initiating the project were immensely protracted. Alvey's
letter of intent was contingent upon their receiving a report from referees. These were
delayed. Because protocols were so bound up with standards, we involved the British
Standards Institution and the National Physical Laboratory, who work hand in glove with the
BSI. Even in April 1985 there was still uncertainty whether Alvey needed separate contracts
with each partner or just one with a prime contractor who would subcontract to the others. At
least the project work had started and Alvey assured us that time and resources spent could
charged in arrears once the proposal had been approved. This kind of contractual delay to a
project start was to be entirely typical of both Alvey and CEC funded projects. We eventually

148

received the letter of intent on 25th March, backdated to the 4th. Meanwhile we had our own
managerial arrangements to do: setting up a management and a technical committee, drafting
template subcontracts to consultants and agreeing on our own “protocols” for project
communications: email for short documents, numbering and a classification scheme for
project reports and documents.

In mid-March Robert Milne, working for STC, joined the project. I felt that this was
something of a coup. Robert had achieved some academic fame by writing one of the first
books on formal semantics of programming languages with Christopher Strachey in 197713.
He was working on an internal project that had some overlap with FORMAP and wanted to
know what the relationship between the two should be. He was expert on higher order logic,
algebraic data types and modal logic, all of which were highly relevant to the theoretical
foundations of FORMAP.

We began by jointly carrying out a reading of all current papers and research that had a
passing relevance to the project and providing short commentaries of them. Between us we
trawled through back copies of thirteen different journals and sent for other research reports
from the US Government Printing Office and the Science Reference Library in London. To
make comparisons easier we all wrote our commentaries in an agreed review format. With a
classification scheme and preliminary findings the results formed our first project deliverable
in mid-1985. Alvey themselves held an annual conference and they wanted a poster on the
project from us for the next one during 25-27th June. At the same time our contractual terms
with Alvey were just about to be signed, with separate contracts with each partner and a
collaboration agreement, which Alvey wanted to approve too. Of course, since we all worked
for large organisations, all these had to be approved by everyone’s legal departments, who all
had their own agenda of demonstrating to their companies that they were protecting their
employers’ commercial interests and thereby were justifying their own existences. I have
observed then and several times since that this leads company legal departments into long
negotiations about clauses protecting against contingencies that could never in reality occur.
In the words of the Flanders and Swann song, “it all makes work for the working man (sic)
today”. In all Alvey contracts the government funded 50% of the industrial costs, and the
company funded the other 50%. The government through the SERC funded all of the
academic costs. The idea was that the industrial partners invested some of their own money,
which would focus their minds on only submitting projects that had a plausible future. STC's
central funding constraints meant that we were limited to supplying one person-year per year
to the project. We had to work within that limit and allocated half a person year to STL and
the same to IDEC. My own involvement would be limited to a few days from time to time,
but I would keep abreast of the work. The literature survey would continue throughout the
time of the project, updating the first report as new information and perceptions emerged.

13 See Milne and Strachey, 1977.

149

Protocols had until then been defined in a very procedural, mechanistic way; there was
precious little high level specification in the standards. In my own view, protocol definitions
did not describe the key, they described the lock it would open. We found that there was
little abstract specification, data structures etc., and that terminology was often loosely
defined. Structured, top-down ideas were little in evidence and there was not much indication
of deriving design from requirements, at least in the documents available from the protocol
design work. So there was an interplay between the techniques available and the approach
used by protocol designers, or rather between the lack of techniques and the limitations in
approach.

While Alvey agreed to contracts with the separate individual partners, an arrangement desired
by some of the companies, they still required a coordinating partner to be responsible for
deliverables. The coordinator also had to approve invoices from the other partners, so in
effect this became like a single contract with a lead partner in all but name. Again this
presaged a subsequent preference of the funding agencies: they far preferred to deal with a
single point of contact in the consortium. Alvey nominated an independent Monitoring
Officer who attended project management meetings and could attend technical meetings if he
or she wished. The MO oversaw the running of the project on behalf of Alvey and would try
to keep the objectives of the project related to those of the Alvey software engineering
initiative.

In parallel with examining some thirteen standard protocols and their existing definitions we
brought each other up to date on a range of formal techniques. We gave each other mutual
tutorials on CCS, ACT1, LOTOS, Temporal Logic, CCS, and Petri Nets.

By the end of November 1985 the collaboration agreement was being circulated for signature
and Alvey had sent a grant letter to all parties, nine months after the project had started and
over a year after the ball had begun to roll.

Sheffield Polytechnic, now Sheffield Hallam University, got in touch with me about another
Alvey-funded project. I was well advanced with turning the course I had given in STC on
discrete mathematics for software engineering into a book. Sheffield were working with the
Open University and the BBC to construct a course on mathematics for computing, delivered
in modules in the high standard OU format with videos, manuals, tutorials etc., a project very
much in sympathy with the aims of my book. As usual, the initial discussions were once
again all about legal matters, intellectual property rights of the end product, marketing,
equity, who could run public courses. I suggested that equity should be in proportion to each
partner's contribution to the development. The OU could market through the National
Computing Centre. The industrial partners would be ICL and STC, STC working through
STL and IDEC. The other academic partner was Hatfield Polytechnic. I dubbed the project

150

“Polymaths”, but this name never stuck. It came to be called the BEAVER project. In the end
STC’s rôle consisted simply of me taking part in the steering committee.

The course resulted in eight modules, Introduction, Sets and Logic, Functions, Recursion,
Relations, Logic and Proof, and two Case Studies. The Introduction would be the usual “How
to study the course”, motivation for it, and course contents. This project sped along quickly.
By October 1985 Hatfield and Sheffield had nearly completed the case studies, modules
seven and eight. There remained to complete the final bells and whistles, a tutor's guide, a
written rationale for the course, bibliography, glossary of terms, modes of studying it, a
profile of expected attendees, expectations of what attendees could do on completion,
solutions to exercises, and a script on how vital were the exercises. ICL offered their own
tutor guides as a template. My last task was to send comments on the two case studies. The
project was complete.

In October 1984 Neil Davis of Systems Designers Limited telephoned me to propose another
Alvey project. At that stage in the game formal methods mostly consisted just in notations for
writing specifications, semantic definitions of languages and models of computations.
Deriving programs from specifications, proving correctness of implementations and proving
consistency were all mostly done by hand, although there were programs available to verify
proofs and even to generate them. But there were no automated tools specifically tailored to
any of the formal specification languages. To make a technique like VDM really useful, some
support tools were needed. A project to develop a suite of support tools for VDM would be
very useful for the software industry. Manchester University were working on a tool for
assisting rigorous software development called MULE, a closely allied objective. It made
sense to collaborate with them under the Alvey initiative.

In developing a substantial software project, one will be working on a large collection of
connected programs. If using VDM, for each of these programs there will be a VDM
specification, hence within the project there will be a library of specifications. At that time, to
write and edit a specification on a computer, one would use an all-purpose text editor. Much
more useful would be a structured editor, one which knew the syntax of VDM and which
would prevent one from writing syntactically incorrect VDM. Another useful tool would be a
pretty-printer, which would print out a specification formatted and indented so as to reveal
the structure of the script. The library would contain the scripts of specifications, programs
and statements of requirements. A configuration control tool to relate different versions of
specifications and programs to each other and to track requirements to parts of specifications
which fulfilled them would be ideal. Finally, an aid to animating the specifications, replaying
the effect of their implementations to the customer, would be most desirable. We had only a
general idea of what this last tool would do and how it would work, but these were our first

151

thoughts on the scope of the project. A structured editor would in particular would release the
writer from concerns about lexical conventions and could select between any alternative
formats before printing or storing the final text.

We thought that introducing concurrency into VDM would also be of great benefit. Over the
next few months we spent some time considering different concurrency techniques, temporal
logic, CCS and so on, and how well they might combine with VDM: whether any
experiments had been done to date, experience so far, whether the technique handled
parallelism, degree of abstraction and so on. We also considered making use of the results of
the NIMBUS project to construct VDM proof tools. The VDM Tools project continued to
November 1985 and beyond, after I had left STL.

At the end of 1984 STL complimented Mel Jackson and me by giving us an award for our
contributions to bringing VDM technology into use in STC. The company hosted a reception
in the evening, took photos and presented us with cheques for £500. This was a very pleasant,
relaxed occasion and good for both our CVs.

For some years now we, along with many researchers in other places, had been concentrating
on the process of producing software that was correct, that is, that fulfilled its specification.
The languages that we had devised for writing specifications were rather technical, so that
most customers were not able to produce them themselves. The model of development that
emerged was that the specifier would talk to the customers and discover their requirements,
and then frame them as a specification. This would then be played back to the customer,
“animated” we used to say, to confirm whether the understanding was right.

It was becoming clear to many people that this process of sorting out the requirements in
order to write a specification was the weakest link in the whole software development
process. In succinct terms, we had been concentrating on “producing the software right”,
whereas the biggest problem was “producing the right software”. This whole area has grown
into a topic called variously “Requirements Engineering”, “Requirements Analysis”, or
“Requirements Elicitation”. The customer’s requirements usually start off as a number of
goals: for example, to automate an existing manual system, to coordinate a disparate set of
existing systems, or to assist a process with automated support in some way. From these often
vague objectives, the specifier has at the end of the day to produce a specification from which
the software will be developed. So part of requirements analysis is the building of a
specification that reflects those requirements. What exactly is this process of specification
building? What sort of systems were we going to specify? We tried to characterise them.
Systems could display modularity, that is, be built of connected parts; they could be state-
based, that is having a memory or state that persisted from one activation to the next; their

152

modules may need to communicate with each other or with their environment, possibly
concurrently; they could be time-dependent, non-deterministic or probabilistic.

It was becoming clear to us that, while technology was fairly well defined, the areas of
application were usually not so. When devising a specification one is, in effect, defining the
technological properties of the required system. The process of devising the specification will
in turn reflect back on the understanding of the requirements. One major difficulty in all this
is that the presence of a major piece of software will alter the environment in which it is
intended to operate. If we were going to have criteria for the success of the various phases of
the specification process, they have to be testable. The CORE method, with which we
experimented in the Augusta project, analyses requirements by recording different viewpoints
of the desired system, and attempts to resolve any clashes.

Specification, then, is a process consisting of cycles of clarifying one’s understanding of
requirements, building models, formalising them, and testing them. Many of us followed the
ideas of Karl Popper, the philosopher of science14. For us testing meant the search for a
refutation of claims of consistency and fulfilment of requirements. Having built a
specification, one needs to understand all its implications, what its behaviour will be when
implemented. One can do this by constructing models of it. Often the model will be the
implementation. A specification lies at the interface between deriving it and understanding it,
in this sense. We needed tools to support both activities. Building models could be a way of
crystallising what one is talking about when describing requirements. In this way we should
reach a specification that more closely reflects the real requirements. For example, a
requirement might be “the system should have a user-friendly interface”. Building models
may be useful for exploring such requirements where in fact those requiring them are
uncertain of what exactly they want.

The search for a good method of analysing requirements continued, and does so to this day.
One subsequent project which I was to encounter later was the FOREST project, which took
the approach of building formal models of requirements in order to reflect and analyse them.
One lesson I have learned is that a large software project should be developed incrementally,
with small steps being delivered and piloted in a cumulative fashion. All big bang projects
fail!

During my last year at STL my colleagues and I attended plenty of stimulating seminars and
other events. We gave a good measure of talks ourselves, too. I gave presentations to
Coventry Polytechnic, the Open University and to ICL in Bracknell, where I had worked
myself twelve years earlier. My topics were a syllabus for discrete mathematics foundations
needed for learning formal methods, approaches to teaching, how to choose a formal method

14 See Popper 1972.

153

and concurrency in particular. Mel Jackson, Roger Shaw and I gave a paper15 at the 1985
TAPSOFT conference detailing our experiences with bringing VDM to STC: our reasons for
choosing VDM, our evaluation process, how a formal specification language could be a
cognitive tool, the training programme, and further developments. This was a very rewarding
conference with papers by many well known names, including Professor Andrei Ershov, a
pioneer of computer science from the USSR Academy of Sciences in Novosibirsk, Siberia. A
symposium on Program Transformation at Reading University was a little more rarefied.
Several aspects of formal methods were the subjects in a BCS FACS meeting. Dr. Hartmut
Ehrig talked about algebraic specifications and data types, a topic based on universal algebra,
which was pioneered by the mathematician Paul Cohn in the 1960s, although the subject
started in its present form in the 1930s. Hartmut Ehrig developed his ideas into a book on
Algebraic Specification which I found immensely useful a few years later16.

John Cooke from Loughborough University of Technology and chairman of BCS FACS had
interests in the mathematics of computing much in accord with my own, having published a
book “Computer Mathematics” the previous year and other books subsequently17. He
suggested that he and I got together to give a double act at a FACS meeting on mathematical
concepts in computing. John had developed a curriculum for the maths needed for their
degree course in computing at Loughborough. He had given a lot of thought to the need and
rationale for the mathematics that needed to be taught. A computer program takes
information in and gives information out. A program is therefore a function between input
information and output. His course started from that premise, and began by showing how to
specify and define functions. Programs can represent partial functions, where not all inputs
lead to a specified output. Although there are partial mathematical functions, such as sin−1

and  , they are rarer and mathematical tradition does not dwell much on partiality. The
partiality of programs as functions leads one on to domain theory, where a flat domain is a set
such as the set of real numbers, together with an undefined element, written ⊥ . Dividing
by zero or taking sin−12 for example, produces ⊥ . An assignment statement like

x= x2 in a programming language is a function from the state of the program to another
state. From there one is led on to sets, logic, relations, lambda calculus, which is a notation
for defining functions, and fixed-point theory, which gives a way of defining recursive
functions and data-types.

John Cooke’s work and my discrete maths course and book-in-progress were very much in
sympathy with each other. He was exploring what mathematics was needed for a degree in
computing, and I was exploring what maths was needed for software engineering. I was
determined that one should take a scientific approach to the engineering of software. One
needed to take notice of the mathematics underlying the science of computing in order to
15 See Jackson et al, 1985.
16 See Ehrig and Mahr, 1985.
17 See Cooke and Bez, 1984 and Cooke 1988.

154

accurately engineer computer programs. Several of us had been greatly struck by the work of
certain philosophers of science, notably Karl Popper18 and Imre Lakatos19. Part of their thesis
is that a scientific theory can never be proved correct. However, the theory must, to be
scientific, be amenable to experiments that can have alternative outcomes, some of which
would refute the theory. This can, incidentally, quite cleanly distinguish scientific and
theological theories. This emphasis on refutation seemed to provide a fruitful approach to the
software development life-cycle. Testing a program could be regarded as a search for a
refutation of the claim that the program fulfilled its specification. A specification of a
program has a dual rôle. It is a prescription for an acceptable implementation, and it is a
theory of the problem to be solved. Mathematics is “the language of science” and discrete
mathematics is a good way of expressing many of the problems we try to solve by
constructing computer programs. Discrete mathematics is also a good tool for formulating the
theory of the phenomena which are at the root of the application area of many programs, the
“phenomenological theory”. A formal specification thus is an interface between the
application domain and the implementation, the program.

John and I gave our talks to a reasonably well attended FACS meeting held at Manchester
Polytechnic, now Manchester Metropolitan University. A month later in July 1985 FACS
held another meeting on automated theorem provers. The first theorem prover was probably
produced by Robert S. Boyer and J. Strother Moore20, who had been working on the problem
of automated theorem proving since the 1970s. They explained the working of their theorem
prover at the FACS meeting, going into details of the strategy used. There were several
processes, generalisation, destructor elimination, elimination of irrelevancies, induction and
heuristic use of equalities among others, which all interacted with a pool of formulae. This
was a very exhilarating meeting. A final FACS event in 1985 was their annual one, the
Christmas meeting. There was some emphasis on algebraic specification techniques: OBJ
was a programming language that had many of the attributes of the later object oriented
languages, with abstract types, generic modules and types with multiple inheritance. Another
topic was modular specifications, something many of us were to skate around for some time
to come.

The computer science department at the University of Surrey in Guildford held a four day
tutorial and workshop on category theory. The list of speakers read like a collection of the
most talented computer scientists from across the world. The first intensive day dwelt mostly
on the mathematical nature of categories. We were introduced to both the basic and the more
elaborate categorial concepts: objects and arrows, universal properties, duality, products and
coproducts, functors, natural transformations, forgetful functors and more. In the workshop
over the subsequent three days the speakers moved on to less well known and developed
18 See Popper 1972.
19 See Lakatos 1976.
20 See Boyer and Moore 1979.

155

ideas. We saw how categories could be applied to algebraic semantics, Dijkstra’s weakest
preconditions which he used to give meaning to statements in imperative programming
languages, typed lambda calculus, and the logic of formal specifications. Most of the ideas
current in the formal specification area were looked at from a categorial perspective. This
experience set me back to thinking about what theoretical computer science was really about.
Perhaps it is a search for an answer to the question, “What are we talking about when we
program a computer?”, just as the philosophy of science is the search for an answer to the
question, “What are we talking about when we do science?” This leads on to the questions,
“What are we doing?” and “What ought we to be doing?” when we do programming.

The Institute of Mathematics and its Applications was found in 1964 and aims to advance the
knowledge and culture of Mathematics in the UK and elsewhere. Some of my colleagues,
notably Dan Simpson, had dual membership of FACS and the IMA and so were able foster
links between the two organisations. So it came about that the IMA invited me to give them
an informal talk on the rôles of mathematics in software engineering. This I did with
pleasure, as usual eager to propagate the message that proper scientific development required
a mathematical approach. I was impressed and humbled by the mathematical expertise of
many of the IMA members. Later, in 1988, the IMA held a one-day conference on
Mathematical Structures for Software Engineering, in which I gave a revised version of my
talk21.

The notion of an APSE, Ada Programming Support Environment, aroused a lot of interest. Its
context became wider. A support environment that was independent of the programming
language used would be much more useful. So was born the idea of an IPSE, Integrated
Programming Support Environment. At the same time, there was some uncertainty about
whether the “P” stood for Programming or Project, and trended towards Project. Various
levels of IPSE were defined, 1, 2, 3, and the Alvey Directorate approved a project to develop
an IPSE 2.5 with attributes partway between 2 and 3. The environment would contain tools
for supporting not just program and specification development, testing, verification and so
forth but also configuration management, version and compatibility control, resource
planning and expenditure; hence a Project rather than a Programming Support Environment.

STL took some part in the IPSE 2.5 project from its conception, but always with some
corporate uncertainty. We were not sure about whether it was in the company’s interest to be
involved. IPSE 2.5 would support different rôles in the development process including
management, requirements analysis and the tasks involved in rigorous development. All this
was quite closely allied to the work on NIMBUS and RAISE; indeed, the concern within STL

21 See Denvir 1991.

156

was that if we got involved in IPSE 2.5, effort would be diverted from those other projects.
At first IPSE 2.5 was to be a support environment for general software development, not
specifically for formal development. So involving our department did not at first seem
especially relevant. But as the IPSE 2.5 concept evolved towards greater rigour, STL became
more inclined to participate. ICL and Manchester University were progressing with the
project. Both Manchester’s MULE and STL’s NIMBUS project could benefit from mutual
collaboration on IPSE 2.5. NIMBUS could quite easily add to the IPSE 2.5 proposal for
packets of work which they already needed to do and which would fit into the overall scheme
of an integrated support for software development. IPSE 2.5 was therefore a possible funding
opportunity for NIMBUS. Much the same applied to Manchester’s MULE. So there were
arguments that IPSE 2.5 would both benefit and detract from the work on NIMBUS.

Other groups in STL were interested in IPSE 2.5, however. Robert Milne was working with
others on hardware development methods. Hardware support systems could be another
“instance” of a development hosted on an IPSE. We had a meeting with Alvey and discussed
the progress of the proposal. Alvey wanted more detail about the database that is central to an
IPSE, the database that holds the versions of all the products and documents produced during
the course of a development: how tightly would it depend on specific equipment and
platforms, and would knowledge-based techniques be used, for example. They were
particularly keen on the management support features. Alvey would pay for the user trials,
but not the basic development; however, they would be generous in the interpretation of that
distinction. They were concerned that the end result would not be locked into VME, ICL’s
proprietary operating system.

We were in January 1985. The tentative timetable for IPSE 2.5 was to produce the proposal
revision by 11th February, obtain company approvals by 18th February, funding approval from
Alvey by 18th March and start the project on 1st April.

Will Harwood left STL at the beginning of March. He was an inspiration to the NIMBUS
group and I felt that there was a danger the others might also depart; we should exert
ourselves to keep them. People with experience in formal methods were in short supply and
STL should maintain its lead in that arena; we would also need such skills for IPSE 2.5. For
reasons of budget, morale and investment in skills, we should strive to make a working
environment that encouraged people with formal methods experience to stay with us. I made
these points urgently to our technical director. It was to no avail. Most of Will’s team left and
joined him in setting up a largely independent team to continue the NIMBUS work under the
umbrella of Imperial Software Technology. IST was a “campus company” sprung out of the
computer science department of Imperial College, London.

157

Over the previous three years I had expanded the lecture notes for my course on discrete
mathematics into a draft text for a book. I had offered it to Addison-Wesley, and they sought
the advice of a reviewer, an academic from the Netherlands. He was at best lukewarm at the
outset, apparently not being in sympathy with my aims of presenting aspects of set theory and
logic to an audience of software engineers. After I had sent the whole text to A-W, he became
vociferous in his objections. My main thesis was that set theory can be used as a language for
expressing the abstractions of typical software engineering problems. I aimed to
communicate this to typical software engineers, for whom discrete mathematics is generally
unfamiliar. In my experience, the biggest hurdle was that of associating the entities of the
problem domain with “sets”. I tried to establish a cognitive connection in the mind of the
reader between abstract set-theoretic concepts and the phenomena of software engineering.
Indeed, many competent mathematicians introduced to software engineering are slow to
perceive this connection. I attempted to do this by gradual introduction of the concepts and
copious examples at each stage, almost to the point of tedium. The reviewer, an experienced
mathematician, wanted to strike out passages of discursive text, to reduce the number of
examples dramatically, and to separate out the exercises from the rest of the development. It
seemed clear to me that he found my approach unnecessary and possibly irritating. I could
sympathise, but did not agree. I felt that it would be an uphill task for me to continue with
A-W.

I spoke to Cliff Jones about my difficulties with A-W. He arranged a meeting for me with his
department head at Manchester, Professor F. H. Sumner. They were both enthusiastic for me
to cut my ties with A-W and offer my book to Macmillan. Professor Sumner was the
consulting editor for their Computer Science Series. Much encouraged, I agreed to go along
that path. In fact, despite our differences, there was much in the A-W reviewer’s criticisms
with which, on reflection, I agreed. In particular I needed to improve my presentations of
proofs. At Cliff Jones’ suggestion, I enlisted the help of Paul Taylor, my colleague at STL.

Paul was immensely helpful, the Macmillan editor, Malcolm Stuart was friendly and
courteous, and after another few revisions I eventually delivered the final manuscript in mid-
1985. Macmillan were still using old-fashioned typesetting, a method coined by publishers
then as “hot metal”. So a copy-editor took my script and copied it all out, querying minor
issues along the way and laying out the whole text, including especially the mathematical
sequences, of which there were many. The result was a galley proof, which I had to check
over, and finally page proofs, which again I had to check. The opportunities for errors in all
this lengthy process were great, especially since I was becoming mesmerised by the script
after reading it all in intense, character by character detail for about the fourth time. The
book22 came out in print early in 1986; some of those errors embarrassingly persisted and
required a small errata sheet. Today’s approach in which the author prepares a text close to

22 See Denvir 1986.

158

the final layout in electronic form and the publisher merely massages it into the final copy
may be a little more labour intensive for the author, but is far less error-prone.

As part of the impetus to make academic courses and research industrially relevant,
universities were setting up liaisons with firms to add some kind of industrial credentials to
their curricula. Loughborough University of Technology invited me to contribute to a
steering committee whose brief was to set the direction of their undergraduate courses. Their
computing science courses included an interlude in industry. At the first meeting of the
committee the department head presented statistics of those attending a conversion course:
applicants (250), failures (1), resits (2), and outlines of industrial projects. Loughborough
preferred the flavour of these industrial interludes to be non-critical. Pilot studies, extra
pieces of work the firm would like to do but which were not essential, and tasks which were
not part of a long-term project or on a critical path were ideal. These industrial interludes
gave the students considerable motivation, increased their perception of the relevance of the
course and engaged them hands on in a “real” project. Loughborough wanted to supplement
these arrangements with external lecturers from industry and visits to IT companies who
could display activities in computing, communications and human factors. There was also a
continuous need for collaborative projects in which MSc students could engage.

At this time we had given VDM courses mostly to other STC or ITT organisations. The
company were too wary of not losing commercial advantage to let us disseminate these good
practices to the world at large, much as we would have liked to have done so. However,
sometimes a customer of an STC company was invited on one of our courses. Laurie Robbins
worked for the Central Computer and Telecommunications Agency, who were buying some
consultancy from IDEC. As the audience were settling in their seats, he greeted me by name.
“Good morning”, I replied, puzzled, for he looked familiar, but I could not recall from where.
After I had started the introduction to the course it came to me. I broke off and looked
straight at him. “I remember”, I said. “We were on a mountaineering course together!” We
had both recently been on a course on mountain craft run by the Enfield Council. The change
of context had thrown me. I did not even know he worked in computers. “That’s right!” he
beamed, pleased that I had recognised him. Some time after the course CCTA approached
IDEC for advice on using VDM-style rigour in their program development. The CCTA had a
large number of people working as computer programmers. They had for some time
traditionally used SSADM, a graphical methodology supporting structured programming.
Indeed, since 1983 they had mandated using SSADM for all new information system
developments. They did not want to throw away the investment they had made in SSADM

159

and staff training, but were persuaded about the advantages of VDM. Could the rigorous
techniques of VDM be grafted on to SSADM?

Laurie Robbins had attended my course on VDM and well understood its principles. His
thought was that SSADM, Structured Systems Analysis and Design Method, was effective at
the early stages of the development life cycle, but the ideas in VDM could provide a semantic
model with abstract syntax for SSADM. This could increase the deep level understanding of
SSADM by “experts” and extend the checks on validity that could be made through a support
environment. He hoped in addition to identify possible future scenarios for using more
advanced and formal techniques. He had a time window of twelve months.

We put together a project outline and proposed a finger in the air estimate: 150 person days,
£75k. The project began to roll. At this stage STL and IDEC were working together
increasingly in certain areas, in particular in software, and in a short time STL was to
incorporate substantial parts of IDEC, becoming a multi-site research laboratory. Patrick
Goldsack joined IDEC and came on the project team. He had excellent background in formal
methods and was to be the principal researcher on the project, which, as often occurred,
accumulated a heavy steering team. He started by going on a three-day SSADM course. The
course lecturers were accustomed to an audience of data-processing people. I think they were
rather stunned by Patrick’s searching questions: he was trying to track down what should be a
formal semantic model of SSADM. Two of the central concepts in SSADM were Data Flow
Diagrams and Logical Data Structures. Both of these were well amenable to formal semantic
modelling.

The formal semantic definition of DFDs made possible support tools with dialogue design.
This could give an SSADM-style front end to VDM. By September 1985 the feasibility study
was nearly complete we started to put together the final report.

We had last heard from the European Space Agency seven years earlier. They had shown an
inflexible approach to their systems development that originated from an entirely necessary
desire for high product and process quality. This time it was clear that their attitudes had
changed. They were using high level languages, no longer fearful of the unknown quality and
accuracy of commercial compilers, and were contemplating using formal methods and Ada.

ESA had a language for testing software called ETOL. It was interpreted by a suite of
Coral66 programs. They were considering reimplementing this suite in Ada. They proposed
to redesign the whole system using formal methods with an implementation in Ada in mind.
Then they would recast one module in Ada and compare this implementation with its
predecessor. They also wanted to consider the possibilities and feasibility of having mixed
implementation languages. Using the results of these exercises they would determine whether

160

to go ahead and reimplement the whole suite. Prior to comparing the Ada module with its
predecessor, they needed to determine a set of criteria for making the comparison.

It was heartening to find that the approaches of the ESA had advanced so far from their
previous rigid state. However, I don’t think the discussions resulted in a project for STL.

Various contracting firms, GEC, Ferranti, Marconi Data Systems, CEGB and STC had got
together and formed an Ada UK special interest group with a subgroup focussing on formal
methods. At first this SIG simply had self-instruction meetings where members demonstrated
aspects of FMs to each other. A popular exercise problem was that of a set of lifts in a
building. Up and down buttons were positioned on each floor, together with lamps, and call
buttons for each floor in each lift, and the floors had doors to the lifts which could be open or
shut. This was an excellent, familiar problem in interaction. The lifts, buttons, lamps and
doors could be controlled by binary logic circuits or by software. At the first meeting we
considered three techniques applied to the “lift problem”: OBJ, Mascot 3, and JSD.

Mascot 3 was scarcely a formal method. It defined interfaces between functions and the
configuration of software, which are equivalent to the arities and invocations of functions,
without defining the effects of functions in any way. Data types too were glossed over. JSD
approached requirements analysis by modelling, which resulted in formal models used early
in the life cycle. The Ada UK formal methods group continued to meet periodically.

The US President, Ronald Reagan, was much exercised by the perceived threat of nuclear
attack by the Soviet Union during the Cold War. In March 1983 he proposed the “Strategic
Defence Initiative”. This consisted of a system of laser weapons based both on the ground
and in space, which would destroy any incoming nuclear ballistic missiles. SDI would form a
protective virtual umbrella over the United States. The detection and laser defence systems
would be connected by computer networks in order to work in close coordination. Crucially,
to achieve a rapid response to immediate situations, the system would be autonomous;
decisions and actions would be taken using Artificial Intelligence techniques without human
intervention. The media dubbed SDI “Star Wars” after the 1977 film directed by George
Lucas, itself highly innovative in that it made pioneering use of computer generated graphics.
A massive amount of R&D would be needed to make these intercommunicating systems
feasible. The White House originally requested $5.3B, reduced by Congress to $3.8B.

This proposal caused much debate in the computer science community. Although computers
and software had been used for military purposes before, this would be an unprecedented
concentration of effort on a military objective. There was also a serious question of the
feasibility of the whole enterprise; the complexity and area of deployment of the system was

161

far in excess of anything that had been done before. David Parnas, a renowned computer
scientist23, had publicly expressed reservations about the whole enterprise, and resigned from
the SDI Panel on Computing in Support of Battle Management, a government advisory
committee, when his criticisms were unheeded. Yet SDI also promised an unprecedented
volume of funding for addressing many problems in computing, especially in the area of
concurrent computation. Some academics and industrial researchers took the attitude: so it
won’t work, but meanwhile we’ll get lots of funding for doing research into very interesting
and useful problems.

The BCS had established rules of professional conduct and ethics for its members. The Star
Wars question was raised in a meeting of the Software Engineering Task Force, a Special
Interest Group of the BCS. Was it ethically acceptable to take SDI funding when there was a
widely held professional opinion that the desired system would never work with the available
technology of the time?

There was a more general anxiety amongst those working in British software engineering that
the military was taking over computing research. Much of the work done under the Alvey
initiative was of interest to the MoD. There was a natural relationship between Alvey and the
MoD, since the latter were a major software developer. A story in the popular trade
newspaper Computing warned of an impending MoD hijacking of Alvey. Ada, the US DoD
sponsored language, might be “just another language”, but it had special technical properties
and was a field ripe for R&D. The Alvey Directorate themselves asserted that they had
avoided excessive intrusion of Ada and the MoD on their policies. There was, they said, no
diversion from the public stance expressed at the outset: specific concentration on Ada and
defence applications would be handled outside the programme.

At a meeting of the BCS SE Task Force we decided to have a special meeting to explore the
SDI question, and we would invite special extra guests who might have an input on ethical
matters. We had in mind Bernard Williams, a British philosopher who had written
extensively on ethics. Meanwhile we had considerable debate and came to some preliminary
conclusions. Infeasibility was nothing new: the Great Wall of China, TNT and many other
inventions and constructions were originally believed infeasible. David Parnas need not have
resigned, one argued. He was an advisor, his advice was genuine, he offered it, so it was not
his fault if it was not taken. The BCS took the position that they did not advise on moral
issues nor even on technical ones which were not generally agreed across the technical
community. But, given that they had a policy on professionalism, they could advise on where
it could be applied. Whether the BCS could proclaim on national issues was less certain at the
time (since then they have done so periodically). We formulated the question for discussion:
what considerations arise from principles of professionalism in computing which should
determine whether one should work on projects whose feasibility one may question? Other
23 See e.g. Parnas 2001.

162

strategic notions besides feasibility may affect these considerations such as the social
outcome of a project.

The meeting with Bernard Williams took place on 13th December, 1985, two and a half weeks
before I left STL. Also present were Richard Ennals, who was coordinator of Logic
Programming and of the Flagship parallel computing project in the Alvey Directorate and
who wrote extensively on artificial intelligence, Professor M. M. Lehman from Imperial
College, London, acknowledged expert on the software development process, and Dr. Henry
Thompson of Edinburgh University, who co-founded American Computing Professionals for
Social Responsibility and British Computing and Social Responsibility.

SDI was “an automatic knowledge-based weapons system operating in real time without
human control”24. This was an alarming prospect. Alarming because:

1. Current techniques were inadequate to build such a system.

2. Software engineering did not have the reliability necessary for a system of such
criticality.

3. The current nature of research in Artificial Intelligence would not assist in building a
reliable system of this kind.

These were among the arguments put forward by Professor David Parnas when he resigned
from the SDI Office Panel on Computing in Support of Battle Management. He also
considered that the SDI Office was an inappropriate vehicle for funding research25 [Ennals
1986, p.52; Parnas 1985]. Ennals graphically likened SDI to a game of celestial snooker. It
might be possible to program a robot to play snooker, but it would be a long term research
project. SDI proposed to pot numerous incoming nuclear ballistic missiles using nuclear
powered cues of X-ray lasers, without fail and without practice, while the balls were moving
at speed in three dimensions.

At the BCS meeting on December 13th, 1986, Bernard Williams was at first bemused at being
asked for an “ethical opinion”. But he thought that perhaps philosophers should come out and
declare their ethical views on current issues more than they had done to date. He said he
would confine himself to ethical considerations of the question of whether people should
work on SDI. He said he could not give ethical prescriptions, but could help to sort out
ethical issues. He summarised the arguments he had heard in the meeting so far.

The system could “fail”. This could mean:

a) it does not get off the ground;

b) the system gets constructed but doesn’t work. This would be extremely dangerous
especially if, for speed, human intervention was cut out;

24 See Ennals 1986, page 90.
25 See Ennals 1986, page 52 and Parnas 1985.

163

c) the system works but not as a complete strategic defence system.

He considered the position of those who were opposed to defence related research in general.
One might think that they would therefore be opposed to SDI. On the other hand, they might
argue: SDI won’t work, so it is all right to work on it! That would not hold water, because in
that case SDI would exacerbate the danger. Those opposed to nuclear research might feel
able to support SDI because at base, SDI did not involve nuclear weapons.

SDI would exacerbate tensions, encouraging pre-emptive strikes, and therefore could lead to
catastrophic results whether it failed or succeeded. “Working from within”, a policy
supported by some, is a suspect argument, possibly leading to sabotage!

Some people were concerned that it would be dishonest to work on something one knows
will fail. Bernard Williams thought this was not so, provided one declared one’s opinion
throughout.

If one thought that SDI would lead to catastrophe, then that would be an individual reason not
to work on it. If one thought that it is unwise, for example unwise for British computing,
British science, the British economy etc., then that would be a professional judgement. Hence
it would be within the ambit of a professional body like the BCS.

At the end of the discussion Bernard Williams remarked that he had the impression of a
society (the BCS) that had just lost its innocence. This loss of innocence is reflected in an
article published a year earlier by Dr. Henry Thompson, also at the 13th December BCS
meeting, in New Scientist:

As computer scientists, we know what computer systems are like, what computers can
and cannot do. Not one of us, or I am confident any other responsible computer
scientist, could ever literally or figuratively turn the switch which placed the means
for starting a nuclear war under fully automatic unsupervised control. From that it
follows that it would be profoundly and morally dishonest to connive at the creation
of any programme with that as its stated goal.26

Meanwhile there was increasing national concern over the fact that the UK government had,
along with Western Germany, agreed the secret US Memorandum of Understanding, without
debate or more general consensus. This Memorandum of Understanding was classified as
secret in perpetuity under the Official Secrets Act, but was leaked and printed in Aviation
Weekly in January 1986. Causing even greater concern was the ever widening proscription
on research results, classified as of military significance under the US COCOM rules. It
seemed that Britain could either cooperate in SDI or continue with the Alvey Programme and
other initiatives, but not both.

26 See Thompson 1985.

164

Of course, SDI and the fierce controversies that it stimulated are now history and mostly
forgotten. The Memoranda of Understanding have all been filed in official waste paper
baskets.

Dana Scott developed his theory of domains from the late 1960’s into the 1970s. Scott’s
domains enabled the mathematical modelling of computable functions and the full range of
recursive data types that computable functions permit27. The logic with which one can reason
about computable functions and data types following Scott’s theory became known as LCF,
the Logic of Computable Functions28. At the same time, through the seventies and into the
eighties and beyond, the ability to prove desirable properties of programs became something
of a great quest. At the time of writing, one of the Grand Challenges initiated by the UK
Computing Research Committee in 2004 focuses on Dependable Systems Evolution. The
goal of GC6 is to produce a Verifying Compiler and a repository of verified software.
Proving properties of computable functions remains a quest and challenge. This UK Grand
Challenge GC6 is related to the EU ISTAG Grand Challenges in the Evolution of the
Information Society, challenge number 429.

The meanings or semantics of programs are elements of Scott domains and Scott’s LCF is a
notation for writing those meanings. It was a form of λ-calculus, typed with two base types,
natural numbers and Boolean values. Robin Milner further developed Scott’s LCF with a
more elaborate type system, allowing recursively defined types. Theorem provers for
theorems written in Milner’s LCF30 were then developed from the late seventies into the
eighties. To develop a theorem prover, one needs a language in which to program it. Robin
Milner designed ML31, an abbreviation for Meta-Language, expressly to facilitate theorem
proving in LCF. ML is a functional programming language, but with a powerful polymorphic
type inference system. ML has a type checking mechanism based on a Unification technique.
Unification was used in Prolog and, although as an algorithm it is quite simple, it is effective
in deducing logical terms from their predecessors in a proof or argument.

The essentially beautiful idea in ML is that a type can be defined as a set of logical terms,
with the axioms and the type inference rules as the rules of deduction allowed by the logic.
By defining LCF as a data type in ML in this way, proofs as it were come for free along with
the type inference system. The polymorphism in ML, an ability to allow types themselves to
stand as data in a function definition, enable proof strategies, which Milner called “Tactics”,
to be expressed as functions. Operations that combine tactics could be expressed as higher
order functions delivering more elaborate strategies, called “Tacticals”.
27 See Scott 1982.
28 See Scott 1971.
29 See ISTAG 2004.
30 See Milner 1979.
31 See Milner et al, 1990.

165

LCF and ML are together an example of a remarkable collaboration amongst academic
institutions. Milner’s original LCF was developed while he was at Stanford University in
Connecticut. Further developments resulting in increasingly useful and powerful versions of
LCF took place in Edinburgh, Cambridge and elsewhere up to 1987, resulting in Edinburgh
and Cambridge LCF. At the same time ML was developed further and “Standard ML” was
later defined and published in 1990, revised in 199732. Implementations of SML have been
produced by many institutions, some of them extended in radical ways and today, almost all
of them available as open source. LCF has in turn been extended into other useful and
effective proof systems and languages, notably HOL (Higher Order Logic), ProofPower (by
ICL), and proof assistants for NuPRL and Martin Löf type theory. Probably unknown to most
practising software engineers, the work on LCF and ML, carried out over some 25 years, has
underpinned the foundations of future reliable software engineering.

Several countries were beginning to recognise the impact that software would have over their
national economies. Nationally funded software research programmes began to flourish. In
Britain an advisory committee chaired by John Alvey made a list of recommendations to the
Department of Trade and Industry. The government accepted most of these and the Alvey
programme began in 1973. This was a wide programme involving three government
ministries, the DTI, the Ministry of Defence and the Science and Engineering Research
Council in the Department of Education and Science. Industrial and academic research
groups were to take part in the programme. The Alvey programme covered four enabling
technologies:

● Very Large Scale Integration (VLSI);

● Software Engineering;

● Man-Machine Interfaces (MMI);

● Intelligent Knowledge Based Systems (IKBS), more generally called Artificial
Intelligence (AI).

One of the aims of the Alvey programme was to encourage more coordination between these
different areas. Workers in the four areas had not communicated enough with each other, it
seemed. Another aim was to foster industrial and academic collaboration. Industry would
give commercially useful focus to academic research and academia would bring the best of
theoretical understanding and knowledge to future industrial products. That was the theory. In
collaborative projects, the industrial partners were generally funded up to 50% and the
academic partners 100%. Other, longer term research projects could have academic-only
partners.

32 See Milner et al, 1990 and 1997.

166

Around the same time the European Union approved the ESPRIT programme, the European
Strategic Programme for Research into Information Technology. The motivation for this
initiative was very much an economic one. The research activities of European companies
were considered much smaller than their overseas rivals. Cooperation was seen as the way to
international competitiveness for the EU. The European Commission ran ESPRIT, but each
phase of the programme would be approved by the EU Council of Ministers. Each phase,
called a Framework, would be initiated by a call for proposals. Successful proposals
generally received 50% funding. Each Framework, of which there have been some seven
now, would have a number of technical areas. The initial areas of the ESPRIT programme
were:

● Advanced Micro-electronics;

● Software Technology;

● Advanced Information Processing;

● Office Systems;

● Computer-integrated Manufacture.

Each Framework would embody a five-year programme, but the Frameworks overlapped in
time substantially. Work under at least two Frameworks could be progressing at the same
time.

Slightly earlier, in 1981, Japan announced its intention to start a brave new generation of
computers, called the “Fifth Generation”. One could fairly argue that the need to keep
competitive with Japan stimulated the initiation of both ESPRIT and the Alvey programme.
The Japanese initiative placed great emphasis on AI. Their plan was to implement
“mechanisms for inference, association and learning” in hardware. Then artificial intelligence
software would be developed to make full use of these hardware functions. These proposals
were put forward by the Japanese Institute for New Generation Computer Technology
(ICOT). This was a radical strategy, with heavy focus on AI and PROLOG, the logic
programming language. The programme would require highly parallel computer architectures
and very large scale integrated circuits in order to enable the massive computer processing
which implementing such far-reaching AI would require. (The human brain is slow and
lumbering compared to a computer, which is why we cannot calculate as fast as one. But a
brain has a massively parallel “architecture”, which is why even the relatively minute brain of
a bird can recognise visual patterns far more quickly than any computer). The long term aims
of the Japanese programme have today not yet been realised, but their research programme
has put Japan into the forefront of AI research. Several popular products have emerged from
this effort, such as the Sony “dog” that can learn and be trained. The ICOT programme set
some challenging targets for the rest of the computing world.

167

Other national programmes of research began following ICOT’s publication of their
initiative. The most notable was from the USA, where funding came from the military. The
Defence Advanced Research Projects Agency (DARPA) launched a Strategic Computing
Programme with a substantial budget over five years.

Meanwhile all practising computer scientists and software engineers have to work for some
institution or other. I was still with STL. Software had become more significant in the
company. At the top of the organisation’s hierarchy, just below the managing director, there
were three technical directors. One of these now had specific responsibility for IT and
information systems. With this newly enlarged significance of IT and software, we were
frequently reviewing our strategy. What were we here for, in corporate terms? Because there
was no long-standing company tradition in software, upper management were mostly
experienced in other engineering specialities. This meant that we, at somewhat lower levels
of the hierarchy, had more control over our own technical destiny than we otherwise would
have done. Software technology was rapidly becoming ubiquitous, like transistors and
semiconductors. To plan for our own future we needed to be technologically aware.
Attending conferences, keeping abreast of scientific literature, taking part in collaborative
research, and interacting with our peers in other institutions all worked to improve our
awareness. We had a rôle in assisting other companies within STC who were developing
software-intensive products. We helped them to exploit new methods and development tools
in the short term, up to three years ahead. In other words, we had a technology transfer rôle.
We also had a rôle in longer term R&D, more than six years ahead, say, in order to ensure the
company’s competitiveness for the more distant future. We therefore had to decide
proportions of investment and emphasis for each. To date our acquisition of projects had been
opportunistic rather than according to a policy. We involved the technical people who were
“on the job” in these policy discussions, because we ourselves had technical backgrounds.
We devised a meta-plan for selecting and steering projects. Policy provides a direction, a
programme which evolves but has a theme, formal methods for example, and an objective
like “efficient software systems”. Criteria can evolve and change; for example cost and
correctness may be traded off. Sometimes one might focus on a product or service, but these
are merely milestones in a more general route, even if they take many person-years to build.
We had already started to engage in collaborative projects, something we had not done all
that much before: We were negotiating actual and prospective collaborations with ICL:
FORMAP, IPSE2.5, RAISE and LOTOS. Given the knowledge and experience that our
software research group had acquired over the previous few years, we could, if we wanted,
develop and sell engineering products. Should we do so? This had not previously been part of
STC’s business. We gave several talks to own management in order to “sell” our ideas on
software strategy.

168

All this local soul-searching and policy formation was part of a larger company-wide
reshaping. A new company within the group, STC Technology, was formed. In October 1985
STC Technology divided into two, STC Technology Labs and STC Technology Enterprises.
The Software Engineering Technology Centre was part of the SW directorate within STL.
The latter was formed from units previously within STL and IDEC. So STL itself became
multi-site. We were used to the Harlow site being part of our identity, so this change affected
individuals quite strongly.

STC had taken over ICL and then found itself financially strapped. To save money they sold
off their prestigious headquarters building, 190 The Strand in central London. This was an
ominous move. What had been ICL was sold on to Fujitsu. Large numbers of people were
being given early retirement or redundancy notices. The NIMBUS team had already departed
earlier in the year. One of my closest colleagues, Bernie Cohen, had been offered a Chair at
the University of Surrey in Guildford, and had accepted with the STL management’s
blessing. The software research group was seriously disintegrating. I and two other close
colleagues, Mel Jackson and Roger Shaw, looked for pastures new and we all left at the end
of 1985. I made a list of my responsibilities in order to hand them over tidily. I was involved
in five main projects and about eight minor ones. I was a member of the Technical Board and
joint Project Architect with Dines Bjørner in the RAISE project. In the FORMAP project I
was the local site coordinator attending project management committee meetings and
communicating their decisions down the line. Springer Verlag were publishing the
proceedings of the workshop we had held on the Analysis of Concurrent Systems two years
earlier; I was the liaison with Springer and the participants, who should receive copies when
they were produced. The VDM Toolset project was about to start but had not yet imposed
any great commitment. A consultancy contract with the CCTA, for which I was the
coordinator, was to all purposes complete. Other consulting rôles and membership of
committees I could hand over to other individuals or simply continue as a personal
commitment. I felt obliged to ensure that my leaving STL did not harm any of these
endeavours.

Chapter 10 Theory in Practice

Roger Shaw, Mel Jackson and I had all felt that we would like to push the exploitation of
formal methods further and more energetically than ITT or STC had been willing to do. Our
employers were not in the business of software development as an end in itself; they were
interested in software only as a component of telecommunications products. We thought long
and hard about setting up a company of our own, but hesitated, because without any contracts

169

in sight, this would have been a massive risk. We all had families and mortgages to support.
Then one day I noticed that Praxis, a software house in the city of Bath, was beginning to
make a name for itself, branding itself as a company dedicated to high quality software and
keen to use formal methods. Bath was in the west of England, 130 miles from London. Praxis
was formed from the South-West Universities Computer Centre, when that organisation was
disbanded by the south-west universities. The time had come for nearly all universities to
have computer centres of their own. SWURCC was helped by several organisations to
transform itself into a commercial software house, making its way by writing bespoke
software for customers. SWURCC had taken part with us in the Augusta project. I felt that
the manager of SWURCC, Martyn Thomas, and I were on the same wavelength. He had said
complimentary things to me after my presentation on the Augusta project at its completion
conference at the National Physical Laboratory, so I thought he had some belief in my
abilities. Martyn was now chairman of Praxis. I suggested to Mel and Roger that we approach
Praxis and proposed that the time was ripe for them to set up a London office, and we three
would spearhead it. I composed a letter to this effect and sent it to Martyn Thomas. He
telephoned me a few days later and said that my letter was waiting for him when he returned
from holiday.

Over the next few weeks Roger, Mel and I had several meetings with Praxis directors. We
worked over a business plan for forming a London office in some painstaking detail. For the
first time in fifteen years I came face to face again with the financial rigours of operating a
small company that depended entirely on sales for its income, unsupported by grants from a
larger organisation or group. In the end we were all forced reluctantly to the same conclusion:
a London office was not a viable proposition for Praxis at this time. Then the Praxis directors
suggested that the three of us join Praxis in Bath as senior but otherwise regular employees.
By that time the three of us had got to know and like the company and found this prospect
tempting. David Bean, the managing director, had a one to one chat with each of us and we
each received job offers that day. Mel and I both accepted, but Roger decided to stay at STL
for the time being. He indicated that he might join us later. So on January 1st, 1986, I changed
jobs and employers. I had already booked a holiday in the Lake District with my family, and
slightly to my surprise, Praxis were willing for me to start my new employment with a
week’s leave. Furthermore, since I was eligible for a company car with Praxis, as I had been
with STL, Praxis permitted me to take delivery of my car in advance to use on holiday. I was
impressed!

I still lived in London, my wife Hazel was doing research into mathematics education at
Chelsea College, London University, and both my children were established at an excellent
school in North London on course to take their GCSE and A-level public exams. I did not
plan to move to Bath, so Praxis and I came to a deal: I would commute in the reverse
direction to normal from London to Bath, staying overnight if necessary, and take on any

170

London based business and contracts that I could. Sure enough, within days I became
involved in a contract with Oracle, the database company. I had never worked in databases
before, knew only the bare principles of what they were about and protested to that effect. My
protestations were waved aside. We all have to be technically flexible, they said. You’ll pick
it up quickly.

Oracle’s product was a relational database hosted on the UNIX operating system on IBM
personal computers. IBM designed and manufactured the first personal computers. Only later
were they required to publish sufficient details of the design so that other companies could
sell PCs in competition. Relational databases were based on the mathematical theory of
relational algebras, pioneered by E. F. Codd1. Oracle had sold one of their database systems
to BT, who wanted to have a custom user interface developed. This user interface was to
consist of a syntax driven text analyser. Oracle estimated two to four person weeks for
developing this user interface, but wanted help with the design. Their own staff would then
implement it, so that they would keep knowledge of whole system within their company and
be able to update it further as it and its environment evolved. I was to learn that over the next
few years more and more customers wanted this kind of arrangement with Praxis and, I
assume, other software houses. The software house would carry out part of the early stages of
the development life-cycle and the customer would then do the rest, including the
implementation. This way the client keeps control of the design and is able to continue
maintenance without being dependent on the supplier.

Databases were the mainstay of commercial data processing, an area I had been away from
since my days at ULACS. A database typically contains large amounts of data in a structured
form. The user of a database is able to query it and obtain information about how many
records exist with certain properties, and other such information. The user queries the
database in a purpose-designed language. The first databases were developed in the mid-
1970s, but the more sophisticated Structured Query Language, SQL, was developed a little
later. The first commercial versions were released by Oracle and IBM in 1979. By 1986 the
American National Standards Institute adopted SQL as a standard. ISO followed suit a year
later.

Oracle saw this contract with BT as an opportunity to upgrade their own product and improve
their competitiveness. They were already using a specialist database consultant, John
Ashford, but they required more expertise with drafting the syntax of the SQL extensions in
BNF. I was surprised that any firm needed extra help to write some BNF, for it had been
around for nearly thirty years and formed the foundation of any language definition. But
apparently familiarity with BNF was less widespread than I thought. The implementation
would be programmed in the C language. We were not to count on any particular operating
system architecture. At a meeting with John Ashford, he pointed me towards several journals
1 See Codd 1970.

171

specialising in database technology and related topics: the Journal of Information Science, the
Journal of Documentation, Intelligent Information Retrieval, and some books and papers. In
the contract negotiations we agreed that Oracle would subcontract fifteen person days to
Praxis, ten of which would be allocated to me.

Praxis’ emphasis on quality meant that they had written procedures for every activity, both
technical and administrative. I was used to company standards from working in ITT, who had
extensive quality standards and procedures, recorded in multiple written volumes. Before I
could start on the work proper, a Project Authorisation had to be signed. We needed a
statement of the technical requirements from BT.

The text-oriented extensions to SQL that BT and Oracle required included extended Boolean
conditions, in particular where data contains a defined text expression. I imagine this would
be used for on-line directory enquiries. The diagnostics needed to be consistent with those
already available with the SQL facilities, so that users accustomed to the existing systems
would not have to relearn anything. We had to design the architecture to enable the
diagnostics to be orthogonal: an error in using part of the extended syntax should produce its
own diagnostic rather than an irrelevant one from the central analyser.

I spent ten days on this project. It took me six days to understand and sort out the actual
requirements, and four days to write the syntax extensions. These amounted to four pages of
BNF with some introductory and explanatory text. I was bemused by anyone paying some
thousands of pounds for four pages of BNF, but everyone seemed to regard it as good value. I
then learned Praxis’ involved procedure for closing a project. I had to write an internal
Debrief Report, have it reviewed and signed off at a review meeting, write a Closure Report
for the client, write a Project Charges Summary and authorise Accounts to send the invoice.
The Debrief Report and its review meeting took me another two and a half hours.

Oracle requested a meeting to discuss the invoicing. It turned out that BT had decided not to
proceed with the extensions after all, so Oracle had lost their contract with them. Oracle
therefore proposed not to pay Praxis because the work, which we had already completed, was
no longer required. Naturally, Praxis objected; we had a contract with Oracle and Oracle had
to fulfil their part under the terms. Praxis received payment after sending a solicitor’s letter. I
felt a bit sad that the first job I had done for Praxis led to a legal conflict, but it was not of my
doing.

Personal computers were the outcome of microcomputers, small computers constructed
around the microprocessors that were developed in the mid-seventies. As the name suggests,
personal computers were designed to be used by one person at a time, interactively. At first
there was a proliferation of designs of microcomputers; in the UK the BBC micro and the
Sinclair ZX80, ZX81 and Spectrum were among the most popular during the early 1980s.
IBM joined the personal computer market in 1980 in response to the competition from half a

172

dozen other firms. The IBM PC became dominant, but competition again was rife with many
firms manufacturing PC clones. However, when I joined Praxis in 1986, the dominance of the
IBM PC was by no means yet clear. Other personal computers presented serious competition.
Furthermore, for use in offices and scientific and engineering institutions, multi-access
machines where users had a “dumb” terminal on their desk linked to a central mini-computer
were still for some time the norm, rather than a lot of personal computers served by a file
server enabling co-operative use and shared data. A dumb terminal would consist of a
keyboard and monitor with little or no processing power of its own. More powerful personal
computers designed for engineering applications, with greater processing power and graphics,
were known as Workstations.

In fact Praxis had no in-house computer system when I joined them. They were soon to do so,
however, and a central Vax minicomputer was installed with dumb terminals on individual
desks. The contract with Oracle was to extend software that would run on a personal
computer, an IBM PC. The usual operating system for an IBM PC was PC-DOS, developed
by Microsoft on contract to IBM. Microsoft developed variations and upgrades which they
sold themselves as MS-DOS. At the same time AT&T Bell Labs developed an operating
system called UNIX, an evolution from previous systems, which was hosted on a number of
workstations and minicomputers. A version was developed for PCs, and the platform for the
database in the Oracle contract was PCs running UNIX.

Operating systems were normally written in an assembly language, because an operating
system needs to drive the machine hardware such as peripheral devices, printers and hard
discs, directly. UNIX broke new ground by being probably the first OS to be written in a high
level language. The language C was designed by Bell Labs for writing UNIX. C was a block
structured, imperative programming language with fairly normal high level features, but also
with low level facilities for driving the hardware. Nonetheless it encouraged machine-
independent programming and transportability across machines. Although being designed for
systems programming, it was and is used for programming applications too. The extensions
to Oracle’s database system were to be implemented in C.

The contract with Oracle had some momentum, in that John Ashford, the independent
consultant we worked with, was quite keen to continue the experience, as it were. He had a
prospect of a contract with the Foreign and Commonwealth Office, having recently done
work for the Scottish Office, another government department. I accompanied him to the FCO
several times to bid for the task. They were in the process of upgrading their internal library
system, which covered five sites. They were also about to move amongst these sites, so the
system needed to be flexible to cater for these moves. Any purchase of hardware, software or
consultancy had to conform with EEC regulations.

173

The work, being more intensively in databases, would not involve me personally, but being
based in London it was easier for me to take part in these initial negotiations than other Praxis
staff. There were about a dozen possible Praxis people who could do the actual work, in
addition to John Ashford. John wrote the first draft of the proposal, and then I and others
discussed it and tossed many modifications back and forth. Review meetings in which
documents, including bids and proposals, were scrutinised and modified through several
versions, were a prominent part of the Praxis Quality System. But these kinds of quality
procedures were by no means unique to Praxis; the recent U.K. Standard, BS57502, defined a
‘model for quality assurance in design, development, production, installation and servicing’
in industry, and an increasing number of firms were attempting to be certified by BSI to
BS5750 conformance. The international standards organisation, ISO, later adopted BS5750
so that it became ISO9001 and ISO9002, parts of a series, ISO 9000. But in this case no
contract resulted from our bid.

When I joined STL I stipulated that I did not want to work on military projects. Since my first
post was managing the 3200 BSCC, there was no problem with this because we had no
connection with the military, only with civil telecommunication systems. Towards the end of
my time there, the scope of work had changed considerably and I was at one time asked to
discuss a possible contract with GCHQ, the Government Communication Headquarters, an
intelligence and security organisation. GCHQ is a Civil Service Department, which works
closely with MI5 and MI6. I objected, explaining my position on military projects. My
managers were unaware of this. Many changes in organisation and in the reporting hierarchy
had taken place over the years. I had a number of awkward interviews with some senior
administrators. I had another reservation about GCHQ. They had recently been required by
the government not to allow their staff to belong to trades unions. I did not want to support an
organisation that denied its employees’ rights in this way. But that was a more difficult
objection to raise.

Praxis had a company policy not to work on weapons. This was a welcome contrast and the
policy attracted employees with packages of particular ethical outlooks. For example, about
40% of the staff were vegetarian. The company did not shy away from contracts with defence
organisations, however, so long as these did not involve work on weapons. But the policy
was not written down and was open to much debate. Should we seek a balance of clients?
How much should we respect employees’ individual ethical views? We debated whether a
vegetarian employee might refuse to work on a database for a meat distributor. More general
discussions on marketing policy followed. Do we seek business from large or small
companies? From customers with any particular kind of end product or from any particular
sectors? For example, large scale consumer products, automotive, TV, radio, airlines,
2 See BS 1991.

174

aerospace? From public service, utility or fuel companies, BT, CEGB, British Gas, BP,
Shell? From suppliers to other industries, telecommunications, software houses (such as
Oracle, the client in the recent contract), data processing companies, computer
manufacturers? To what extent, if any, should we sell products as opposed to services? To
date Praxis had sold services only, not products such as a software package of some general
use that might be sold to several, or even many, customers. The whole finance of projects to
develop products was radically different from that of projects to develop bespoke software. In
the latter case the development costs have to be covered by that single sale, whereas with
products the development costs can be recovered after a projected number of sales. How
should we decide such questions? The strengths of the company, its reputation and growth,
the need for security (e.g. not to have too many eggs in one basket) were some of the factors.
All these questions revealed the youth of the company.

In fact, Praxis had one single product which a team maintained and marketed. Ella was a
language for simulating digital electronic hardware. With Ella one could construct a
computer model of a circuit consisting of nodes connected by wires. The nodes themselves
are multiple functions, which could be defined to perform as typical electronic gates and so
on. The signals flowing through the wires consisted of data of some type; types could be
defined much as in any normal high level programming language like Pascal.

There were other languages for defining and simulating digital hardware. STL, my previous
employer, had defined a language called LTS. Robert Milne, whom I knew well, was
instrumental in the work, which was well grounded in process algebra theory. One of my
early tasks at Praxis was to examine Ella and LTS in depth and write a report comparing the
two. STL planned extension to LTS and were seeking Alvey funding to develop a simulator
for the extended language. Praxis was a possible partner in the project, but the considerable
preliminary work, which spanned a couple of moths, did not result in any contract.

Praxis began life three years earlier in 1983 and had been profitable from the start. It had
grown progressively and had some seventy staff when I joined; I was employee number 69.
Its ambitious objective was to become a foremost UK developer of high quality software.
One of the selling points was the “Praxis quality culture”. They achieved certification to
BS5750 in the year that I joined. Slightly to my surprise, there were no sales staff; the notion
was that everyone was a salesperson. This contrasted from my two previous experiences in
software houses at ULACS and RADICS, where a sales team (one person in the case of
RADICS) handled all the marketing and sales promotions and bids. In Praxis producing a bid
for a contract was the first stage of the project. I spent much of my time working on the
composition of bids.

175

The Alvey Directorate awarded grants and funding to support partners from UK industry and
academia to carry out collaborative research and development projects. Each project had a
nominated Project Officer within the Directorate. However, the Alvey Directorate was a
small organisation. The limited number of Project Officers meant that each had responsibility
for many more projects than he or she could keep an eye on. So for each project, the Project
Officer would engage an independent Monitoring Officer from outside the Directorate,
someone either from industry or academia, to observe the progress of the project and report
back. The fees for this task were individually negotiated, but fell within a broadly standard
band.

One such project was “Analyst Assist”. Its aim was to take the JSD design method and
enhance it with the Artificial Intelligence techniques of Intelligent Knowledge-Based
Systems. In the JSD method one starts by modelling the real-world entities of the problem
before proceeding with the design of the computer system which is to deal with them. One
difficulty that system designers had was with the initial step of extracting and representing
the real world entities. IKBS use a database of existing knowledge on a subject and the
automated inference techniques of AI to attempt to solve a presented problem. By applying
IKBS to the initial stages of JSD, the Analyst Assist project hoped to produce an enhanced
tool for the requirements analysis phase of system design. Some eight organisations were to
take part, some of them representing potential users of the end result and playing a reviewing
rôle in order to keep a focus on usability and commercial exploitation during the project. Data
Logic, a software and systems house, were the principal contractor. Other industrial partners
were Scicon and MJSL, Michael Jackson Systems Limited. The academic partner was
UMIST. Two of the reviewing partners were the UK car manufacturer, Rover and United
Distillers, who were about to merge with Guinness. I was asked to be the Monitoring Officer
for this project.

The Alvey Directorate understandably stipulated that its Monitoring Officers maintain strict
commercial confidentiality. I would be exposed to the research and development work
carried out by the commercial partners. I had to sign a confidentiality agreement not to
divulge any information, including my own reports to the Directorate, to any other person or
organisation. But the Praxis quality standards insisted that all my reports in a project,
especially those sent to a customer, should be reviewed by other staff in a review meeting,
before delivery. They could make no exceptions, for this practice had to apply to all projects
in order for Praxis to conform to and maintain their certification to BS5750, an achievement
which they had won only after a great deal of work and investment. These conflicting
requirements very nearly led to an impasse, but the Alvey Directorate finally agreed that one
other Praxis member of staff, our quality manager, Chris Miller, could sign the confidentiality

176

agreement just for the purpose of reviewing my reports to the Directorate. In the event, Chris
was entirely relaxed about these reviews, which were no kind of obstacle during the project.

The project rolled on over the next three years, the work was done, I attended many project
management meetings, which were occasionally quite acrimonious but on the whole
proceeded to plan, and I wrote my reports to the Directorate. As was typical with funded
collaborative projects, initial contractual difficulties made for a slow start to the work. After
ten months Distillers withdrew from the project because, following the merger with
Guinness, their new management did not have the same motivations for taking part. With all
funded projects like this, the funding provider, in this case the Alvey Directorate, require
deliverables and milestones at intervals in order to monitor progress and to have concrete
evidence that something useful is being done. It was the Monitoring Officer’s job to check
that the milestones are really reached and examine the deliverables, reporting on whether they
met their stated aims. The partners had particular difficulty in agreeing on the development
hardware that they should use. But a year in, all eventually agreed. One question perplexed
me: some of the deliverables were pieces of software. It made no sense for the project
actually to send these software items to the Directorate, who did not have the platforms on
which to run them, and who would not be interested in using them anyway. The Directorate
told me they simply wanted a statement from me saying that I had seen a demonstration of
the software and that it was working.

During the project there were the typical many hiccups all along the way, with questions of
copyright of deliverables, the evaluating partner wanting to share some deliverables with a
third U.S. Party, and some partners having staff leave or be assigned to other “more urgent”
projects. But the whole project did useful innovative work and provided a maturing
experience for the participants, leading to a stronger group that might embark on more
collaborative projects.

Right at the end of the project the lead partner made the project manager redundant. The
work had been done, but the final report had not yet been written. As Monitoring Officer I
contacted the lead partner and insisted that the final report must be delivered, otherwise they
would not receive their final payment, and could be liable to repay some of the grant already
paid to them. As I hoped, they re-engaged the project manager on contract to write the report.
This he did, in September 1990, and the report was of very good quality.

The concept of the APSE, Ada Programming Support Environment, led to more general
Project Support Environments. PSE became the flavour, not just of the month but of the next
several years. RSRE on behalf of the UK MoD began to solicit bids for a UK funded PSE.
This went through a gamut of initial reports evaluating current practice, evaluating options
and requirements, risk analysis and final conclusions. With a variety of software suppliers,

177

insisting on conformance to a standard development environment would ease maintenance
across different sources, reduce dependence on suppliers and maximise transport through
advancing computer architectures, technologies, development methods and practices for the
MoD client. We gave a presentation to RSRE to make a claim for our credentials for bidding.
These presentations were all to have a similar form: we would play back our understanding of
their requirements, with added detail of our own to demonstrate our insights into not just the
requirements, but also the technical background quality considerations, relevance of a PSE to
the client’s business, available options fro the way forward and our own take on the best
approach and wider social and strategic impacts. These bid efforts, much greater and more
intense than I had experienced in the research environment of STL, consumed a considerable
amount of effort. The cost of a sale had to be absorbed into the eventual contract, or if no
contract ensued, into overheads. Many such bid efforts, like this one, came to nothing. This
was not necessarily because our bids were not competitive; frequently the client decided not
to go ahead with the work at all, for internal economic or political reasons. I think also that
some clients would be doing an elaborate thought experiment in their strategic planning and
use invited bids to add insight and knowledge to their own ideas.

IFIP, the International Federation for Information Processing was established in 1960 by
UNESCO following the first World Computer Congress in Paris in 1959. IFIP contains over
one hundred working groups covering numerous aspects of information technology and
computing. National computing professional bodies are affiliated to IFIP, which often leads
international research in knowledge and practice. Every two years IFIP runs a world
congress, a major event in the computer science calendar. IFIP’86 was held at Trinity
College, Dublin, and I was invited to give an introductory talk on the scientific aspects of
software engineering. My talk was one of a pair, the other being given by Professor M. M.
Lehman of Imperial College, London. I sought to draw parallels between schools of thought
in the philosophy of science and those in software engineering. Formal methods and the use
of proof in software development were akin to the theories of Popper3 and Lakatos4, which
emphasised rationality, whereas metrics and the more sociological studies of the development
process were related to the ideas of Carnap and Kuhn5. Professor Lehman’s paper
concentrated on an empirical account of the laws of software development, resulting from
extensive observations.

The difference in viewpoint between followers of formal methods and advocates of metrics
evolved into a considerable rivalry, at times approaching hostility, and reflected, I think, the
differences between the two cohorts of philosophies of science. The metricists would claim to

3 See Popper 1963.
4 See Lakatos 1976.
5 See Khun 1962.

178

have the more scientific approach because they measured the phenomena of software
development, and experimentation and measurement are fundamental to scientific method.
The formalists would claim that there is no scientific theory without an underlying theoretical
model of what software actually was. In fact, I believe, there is no real need for conflict
between the two viewpoints.

Working for Praxis, I came across models of business relationships and techniques that I had
not encountered before. On a visit to London Transport in Acton, I learned that they accepted
software from their suppliers, GEC and Westinghouse, on a sale or return contract! In other
words, if the software did not perform to the customers satisfaction, no payment was due, it
seemed. LT, the customer, validated the delivered software in parallel with the suppliers.
Satisfactory performance was related to calculations of MTBF, Mean Time Between Failures.
These failure calculations were related to reliability claims. Thus, metrics and reliability have
relevance where the software sits in an environment whose characteristics are not fully
defined or understood.

Despite being much nearer the commercial coal-face, opportunities for attending and
contributing to conferences, and participating in professional committees continued. I gave
papers to a conference on Electronics in Oil and Gas, continued to take part in the BCS
Software Engineering Task Force (renamed as the SE Technical Committee), the VDM
Standardisation committee, and attended seminars on OBJ, CSP, models of polymorphic λ
calculus, the analysis of CMOS circuits. Although Praxis were keen for their programmers to
learn and use VDM and other formal methods, there were always too many pressing jobs on
hand for any substantial group of employees to take time away to attend a course. One day
Mel Jackson and I decided to lay on a brief course at lunchtimes over a few days and we
simply notified all staff using the local electronic news-board and held it. The manager
responsible for day-to-day working matters was away and we wondered how he would react
when he returned. In fact he was very pleased with our initiative and more courses followed,
in VDM, proving programs correct, and discrete mathematics - logic and set theory. We
began to think about offering these courses outside Praxis to customers as we had done to
some extent at STL.

RSRE, the government MoD technical research establishment, designed and built a computer
for high reliability embedded systems, called Viper. The Viper machine was specified in
LCF, Logic of Computable Functions originated by Robin Milner at Edinburgh University.
They had gone to considerable lengths to make it near impossible for the machine to go into
the kind of error states that frequently plagued other computers, endless loops, deadlock,

179

arithmetic overload, division by zero, array bound violation, et cetera. RSRE also designed a
language called NewSpeak, primarily for programming the Viper machine. NewSpeak had
various unusual features: finite types enabling compile-time bound checking, a limited form
of recursion to prevent infinite recursion at run time, and others. The language design would
necessitate a rather particular programming style. RSRE were inviting bids for writing a
compiler for NewSpeak, and wanted to have constructive discussions with the implementers
on the language design. I had some concerns about parts of the language, because I thought
there was one area where ambiguity might be possible. Back on Praxis premises we had
numerous internal meetings to discuss the bid. Our proposal needed to emphasise our
understanding of the client’s needs, as well as our own skills and competence to do the job.
The bid was scrutinised in several review meetings by the most senior staff. The Viper
machine already had government funding, and the NewSpeak compiler would be financed
from the same source. RSRE did not want NewSpeak to be implemented in itself, a process
called bootstrapping, and for a time favoured Algol68 as an implementation language. The
whole piece of work would be a cooperative effort between supplier and client.

In the end, once again no project resulted from this bid. As far as I know, NewSpeak was
never implemented.

The National Computer Centre was preparing to produce a new series of guides for the IT
industry on current best practice, the STARTS Guides. These were to follow a number of
successful advisory publications on software development and usage. They were preparing to
produce a STARTS guide on software development methods, giving a comparative account
of the various methods available, much in the manner of a Consumers’ Association Which?
Report, with scores allocated to each method for a list of criteria. Joe Rhodes of EASAMS,
an IT services and consultancy company, was to be the team leader. Joe was assembling a
team from different organisations, a common practice for independent government-funded
institutions like the DTI and NCC. The practice was intended to minimize commercial bias.
He approached Praxis to provide a team member. The NCC had a fixed consultancy rate for
this kind of activity, £300 per day, substantially lower than the normal Praxis charge-out rate
for someone of my grade. But the new Managing Director, David Allen, considered that this
was “strategic” work and wanted to go ahead with the task. I certainly wasn’t going to
complain, but I was surprised, because I had had to argue strongly in favour of other more
worthy contracts which were likewise less profitable than desired. So I joined the work along
with four other recruited team members, most of whom I already knew.

The first thing we had to do was to decide on the criteria against which to score the various
design methods. We discussed these at length, Abstraction, Data Refinement, Information
Hiding, Functional Decomposition, Module nesting, Import and Export control, Expressive

180

Power – that one expanded into a long list of subcategories, Traceability, Support for
Designers – expanded again, Ease of tool use, Performance... We reckoned to have a first
draft of a scoring scheme with all the criteria by the beginning of December 1986, three
weeks later. One month later we had the scoring scheme and agreed to rate seven methods,
giving reasons for each score. The methods were to be SSADM, Yourdon (a method based on
the principles of structured programming), Object Oriented Design as promulgated by Grady
Booch6, Smalltalk, VDM, Z7 and OBJ. We agreed to spend up to half a person-day for each. I
set out to score the formal methods, VDM, Z and OBJ.

Like all other work done at Praxis, my contributions to the STARTS Guide work had to go
through an internal review. My Praxis colleagues had some reluctance to discuss the scores I
had given. Still their other comments were helpful. When the team began to compare scores
for the different methods, we found the same difficulty. As the project proceeded, we found it
necessary to adjust the criteria. Some facets, such as Availability (public domain, in-house
only, in development etc.) were easier to compare. We allocated different weights to different
facets in order to obtain an overall score and comparison, and again, we debated and adjusted
these weights continually through the project.

The project rolled smoothly to its completion at the end of 1987 after just over a year. It was
one of the most unproblematic projects I have ever worked on, substantially owing to the
relaxed and capable leadership of Joe Rhodes.

Praxis made a great play of its quality standards. They were a selling point for the company’s
business. One member of the small management, team, Chris Miller, was Quality Manager.
He insisted that the programming staff owned the local standards, so that there should be no
sense of their being a bureaucratic burden. This did not entirely work; the staff struggled to
meet the standards, but the will was certainly there. Chris asked me if I could draft some new
standards, as at the time I was not fully engaged on revenue-earning projects. So I agreed to
write three technical standards on Modules, Data Structure and Metrics.

For a piece of software to be easily manageable, it should be divided into suitable pieces
called modules. Each module needs to be as self-contained as possible, with simple interfaces
to other modules. There should be a clear relationship with the overall specification of the
software. Much has been written on this topic over the years, from about 1972 onwards. If
software is written according to good principles of modular structure, it is easier for the
maintenance of the software to be handed on from one programmer to another, inevitable if
the software will have a long lifetime. Good modular structure helps to make the software
comprehensible to the next programmer to delve into it. One of the most authoritative writers

6 See Booch 1980.
7 See Abrial 1996.

181

on the subject was David Parnas who has been affiliated to many universities8. Modules can
be hierarchically nested by which modules make use of the services that others supply.

When constructing a program, designing the data is at least as important as designing the
operations that are to manipulate it. The primary data is a model of the information that
permeates the problem in the real world that the program is to solve. It is often useful to
design the data before considering how to design the code that works on it. If one is using a
more primitive programming language, one has to represent the information with numbers,
text strings and possibly the Boolean values, True and False. With a more advanced language
one can use more elaborate types, records and arrays, or invent one’s own to suit the
circumstances. Michael Jackson’s system development method9 recommends considering the
entities in the problem in order to reach a useful data design. Data has value, structure (its
type), access mechanisms and properties. Different modules may have access to different
pieces of data. So different modules have various ownership and access rights; Dijkstra’s
principles of information hiding can assist the separation of concerns that help to make a
program well designed, straightforward to understand and less error-prone.

I had more reservations about writing a standard about metrics. The original starting point for
software metrics was to help predict the amount of effort it would take to produce a piece of
software, how fast it would perform and how much storage space it would require. These
ideas were fairly useful when programmers were using low-level languages, for much of the
effort would be spent on coding from the design. But with high-level languages, the greater
part of the effort was spent on the design; coding was largely automated by the high-level
language compiler and other tools. Consequently, more complex systems could be built with
the same effort. So the formulae of software metrics were continually being rendered
obsolescent, and collection of all this metric data over many projects was to my mind, of
limited value. Nonetheless, large quantities of metric data had been collected and was
reported in the literature.

I reviewed the available literature, trade-offs, empirical formulae, proportions of effort on
different tasks in the life-cycle, claims of different writers. Putnam10 coined a “technology
constant” which had a dramatic effect on cost and development time: productivity increased
if one used more advanced technology. At the same time, observations were made on the
processes involved in the building of software and laws proposed for patterns in these
quantities11. Much of the work reported in the literature seemed to consist of measuring first
and hypothesising afterwards, which made me very agitated. Experiments and measurements

8 See Parnas 1972.
9 See Jackson 1983.
10 See Chapter 4 of Putnam 1980.
11 See Lehman and Belady 1985.

182

should be carried out to test a hypothesis, preferably by trying to refute it. This was the
modern view of scientific method12. It seemed to me that only when one had reached a certain
point in the progress of a project could one make any predictions on its cost. As the state of
the art advances, the less is the cost of the later stages because they become automated,
hence, the total costs become less predictable. The total costs will also themselves become
less, of course. So each advance in technology tends to wreck any investment you may have
made in establishing a prediction method. For example, in one published text13 I found that
one project had been deliberately omitted from the authors’ analysis because it showed a
productivity an order of magnitude greater than the rest! They also admitted that, because
“understanding the algorithm” is a more substantial cost than the coding, one gets completely
different effort/code ratios for “easy” and “hard” algorithms14. By “understanding the
algorithm”, they must mean understanding the problem and theorising an algorithm to model
it. At the time I quipped that investment in metrics was a force for sustaining mediocrity. As
we introduce more technology into the software development process, we automate the parts
we understand well, reducing the effort and cost required to achieve those parts. This reduces
the total effort and cost, the remainder of which relate to the parts we understand less well
and thus cannot predict. Hence, as we bring more technology into the development process
we reduce total cost but increase our inability to predict it. I dubbed this “the Denvir effect”,
but the name did not catch on! All contemporary estimation techniques required as an initial
input an estimate of the eventual program size. I wondered if there was any evidence that
effort estimates based on program size were any more accurate than direct estimates of effort.
Conte et al claimed there was15 – but all the subjects in their study were students.
Development environments could cause variations in productivity of factors up to 6 times16.

Of course, any talk of productivity begs the question of how to measure programmer
productivity; the crudest measure was lines of code per person-day, but in languages of
different expressive power, the same number of lines represent vastly different amounts of
functionality. There were several attempts to devise more sophisticated measures of
productivity, by Halstead17 in particular. Halstead’s metrics counted the number of
occurrences of “tokens”, certain language entities, in a program rather than lines of code,
among other things. But this can vary considerably with different programming styles, and
did not take into account the scope rules which most high-level languages possess. Several
other metric schemes were current, all of them with substantial limitations.

In my report I reviewed the literature and the state of the art of the time. Software metrics is a
behavioural science akin to sociometrics or econometrics, perhaps classifiable as a “science

12 See Popper 1972 and Lakatos 1976.
13 See page 179, Conte et al, 1986.
14 See page 210, §2 and footnote 3, Conte et al, 1986.
15 See pp. 217-218, Conte et al 1986.
16 See pp. 242-243 ibid.
17 See Halstead 1982.

183

of the artificial” in Herbert Simon’s terms18 rather than a so-called exact science. I
recommended not spending much on special metrics schemes and support tools, but taking
some simple measurements to gain a profile of some of our typical projects. On the whole, I
received positive reactions.

Integrated project support environments had been a strong technical aspiration since 1983. It
had grown out of previous less focussed research on Computer Aided Software Engineering,
CASE, tools, such as ICL’s CADES. Researchers had spent much time investigating the
desired properties of an APSE and of the more general IPSE. Environments became a driving
obsession in software engineering for the next decade. A coordinated, integrated environment
of tools for management and development should, everyone hoped, raise the level of software
quality all over the UK and Europe. At the end of 1990 ECMA published a standard for
PCTE19 and in 1993 the PCTE Interface Management Board, PIMB, published the first
general introduction to PCTE20. ISO adopted the standard in 199821

The first step to achieve this noble aspiration was to define the interfaces between the
environment and the tools which it supports. The specification of this interface comprised the
Portable Common Tools Environment, PCTE. With this specification in place, any software
developer could produce an environment which conformed to the specification, and tools
could be ported from one proprietary implementation to another. Standardising the interface
would assist the portability of tools. In 1986 many firms were involved in PCTE and its
implementations: Bull, GEC, GIE Emeraude, ICL, Nixdorff, Olivetti, Siemens and others.
The implementation of PCTE and the use of it was the topic of a number of European
projects, some of them supported by ESPRIT: PACT, Sapphire, GRASPIN, and others.

Meanwhile across the Atlantic, the USA DoD supported a similar project, CAIS. The first
version, CAIS 1, provided portability, data sharing and interoperability. CAIS A, the second
version, provided more: data types, database schemas, bit-mapped screen support and
security controls over access. Softech had a contract to implement CAIS A. CAIS was really
an updating and amalgamation of previous work on the APSE. CAIS was started first but in
1986 PCTE seemed more technically advanced, although lacking access controls at first, and
more advanced in development. CAIS had support from the DoD but little from US industry,
whereas PCTE was getting massive industrial and governmental support. Formalising the
PCTE interface and designing a PCTE over distributed hosts and target machines were
examples of further PCTE projects. A version called PCTE+, providing additional features
for security of access, was sponsored by the MoD and other European defence ministries and

18 See Simon 1996.
19 See ECMA 1990
20 See Wakeman and Jowett, 1993.
21 See ISO 13719.

184

their contractors. PCTE+ would be available for civilian use, so civilian software houses
could contribute to its development. I was amused to hear the Italian MoD representative
assert that they could not afford to fund PCTE without very necessary industrial sponsorship;
in the UK the boot was definitely on the other foot. The organisations involved in PCTE grew
to a plethora and the relationships between PCTE and other project support environment and
CASE tool projects began to look like a metro map. Implementations of PCTE were, of
course, themselves pieces of software, and so their continued development should be
supported by PCTE where possible. Schemes of progressing through this bootstrapping
process were much discussed. A central feature of PCTE was the Repository, a database to
hold the tools and services which would interface with and “sit on top of” PCTE. A
purposeful aim of PCTE was to support Object Orientation and Object management.

A PCTE implementation would not normally be produced on a bare machine, but on top of
an existing operating system, on a host machine. At the time, the probable operating system
was assumed to be UNIX, since that was favoured by software and other engineers. There
was much discussion over intricate details, like the hosting of more specialised local tools on
top of a “normal” collection of tools for software development. The first draft of PCTE+ was
scheduled for August 1987 and the final one for December. We hammered out procedures for
its evaluation and recording the result, all to be supported, of course, by PCTE.

Praxis encouraged all its staff to try to “sell”. “We’re all salespeople”, they told us. Selling is
a skill that does not come to me easily. I feel awkward asking anyone to buy anything, even a
raffle ticket in an excellent charitable cause. Nonetheless, I got in touch with previous
colleagues and told them of the fine qualities of Praxis. Slightly to my surprise, whereas
many people had listened attentively to me when speaking on my own behalf as a proponent
of particular methods and techniques, now that I was making a pitch on behalf of Praxis, I
was mostly met with tolerant cynicism. Still, one of my contacts eventually led to a contract,
albeit a very short one. A previous manager at STL, David Pitt, had become a director at a
small firm, Renishaw, operating in the charmingly named Wotton-under-Edge in
Gloucestershire. Renishaw made mechanical sensors of high precision. The firm has since
expanded and covers many areas of machine tool components and metrology. I wrote a letter
to David Pitt outlining the services that Praxis offered. Several months later he telephoned
and I visited Renishaw. At the time their main business centred round a particular design of
highly accurate mechanical sensor, based on a patented invention of the managing director. A
probe was held in position by three springs and in electrical contact with three internal
conductors. Any minute disturbance to the tip of the probe broke the circuit and the presence
of an obstacle was detected. The probe was tipped with an industrial ruby to limit mechanical

185

wear. The internal design was such that the sensitivity and accuracy of the probe was 50
nanometres. The probes were typically attached to a robot arm driven by servos and
controlled by computer software. In the entrance hall to the firm a probe on the end of an
articulated arm was feeling its way round the surface of a teddy bear, and linked by software
to a machine tool that was carving out an identical teddy bear – in brass. This demonstration
was running continuously without supervision to impress visitors.

The manufacturing plant made use of Renishaw’s own probes and software, in order to
duplicate their own products. I was impressed by how few staff were needed to oversee the
whole manufacturing process. There seemed to be just a handful of people watching over the
automated processes, most of them eating sandwiches or reading magazines while keeping an
eye on things. David explained the product and general design of the whole facility, and
spoke with some admiration of the very clever software that their programmers produced to
drive it all. I did not visit the software group on that occasion.

Fourteen months later I heard from them again. They wanted to talk to us urgently about their
software team and its product. This time, Martyn Thomas, Praxis MD, and I went to speak to
Renishaw’s MD, David McMurtry and other senior members of the company. They wanted
to know how much the software produced by their team was worth. During the conversation I
began to understand that the software team was “out of control”, doing what was required but
not under control of the management simply because the management did not understand
what software engineering was about or what the team were doing. A few days later I
returned with two other Praxis software engineers and we spoke again with one member of
management and then with the team. Relations between the two were clearly not good; some
individuals were scarcely on speaking terms. I was almost certain I knew already what the
answer to the question would be. The team were highly competent but lived a maverick
existence. Standards of software development were almost entirely absent, because there was
no member of management who understood the pressures and needs of software production.
For the same reason the team felt isolated and consequently made their own rules:
idiosyncratic decorations and habits of dress, a pet tarantula in the team leader’s office, and
no tedious regimes of documenting their software products and processes. They were also
able to purchase all the latest high-tech equipment, for no-one above them in the hierarchy
was in a position to judge whether it was really necessary.

The management was anxious that the software team would not cooperate in giving us
information. In the event, they talked to us fully and frankly. Their relief at meeting someone
outside their own group who understood their language was palpable. The team leader was an
intense man of great charisma. He told us how they had decided to construct their own office
furniture in order to acquire exactly what they wanted. They took a week to do so and I have
to say the results were excellent. The meeting was a steep learning curve for those of us from
Praxis, for process control, the use of embedded computers in manufacturing processes, had

186

its own terminology and technical culture. For example, when they referred to a PC, they did
not mean a Personal Computer, but a Process Controller, which could be a programmable
logic array or other small device that was essentially a small computer designed for process
control. We spent most of the day with the software team before returning to the management
later in the day, when Martyn Thomas, Praxis’ MD, rejoined us.

Like anything else, the value of software is how much someone is prepared to pay for it.
Without supporting documentation explaining how it should be used and how it works so that
it can be maintained and upgraded, no-one would be prepared to buy it. Reconstructing the
detailed knowledge of the software would probably need more effort than rewriting the
software itself. Hence I had a highly unwelcome message to deliver: despite the firm having
spent half a million pounds on the software, and despite the fact that it worked fairly well, it
was worth nothing at all.

The meeting with management was a little uncomfortable, but they accepted our judgement.
The reason they wanted to know was that they suspected that the software team might go
AWOL taking the software with them or selling it. I thought and said that there was no
danger of this, and that the team would probably get the software working well enough for a
forthcoming exhibition which the firm regarded as a showcase for their products. We also
recommended that they make organisational changes that brought the software team more
under control and more recognised by having representation in management.

All these events happened in 1987, over twenty years ago. Today Renishaw are a high
achieving company who give their considerable software expertise a high profile, being an
essential part of their product range. I continue to be impressed by this UK firm. Their
products are of great expertise and fine up to the minute technology. Their record of
innovation and expansion to a world wide market is inspiring.

The British Computer Society, the professional society that had represented the interests of
those working in software and hardware research and development for over twenty-five
years, was changing to move with the times. They were deliberately seeking an industrial
input to their policy making. They established a “Young Professionals” group. They started
Quality Control and Career Development plans to fit with industrial employers’ schemes. In
all this, the society was moving away from its previously exclusive academic stance.
However, membership of the BCS was to be an academic qualification and would lead to the
opportunity of becoming a Chartered Engineer. Membership was by examination, but there
was to be a route for “mature” candidates with some ten years experience after an honours
degree exempting them from the examination. Anyone whose membership had lapsed could
rejoin with no formality by paying a year’s membership fee.

187

I left the BCS in 1964, but thought that I might rejoin. I telephoned their headquarters and
was assured that all I had to do was give details of when I was last a member. When I gave
the date, 22 years earlier, there was a pause on the end of the phone. All membership details
older than ten years were kept in the basement; they would phone me back. They called back
later to tell me that archives had only been kept since 1965. I would have to reapply using the
mature entry rules. This I subsequently did and resurrected my membership.

Most of Praxis’ work comprised relatively short-term projects. As a result, we all spent
considerable time seeking new work, approaching potential customers and preparing bids.
Sometimes other consultancy firms approached us with an opportunity for which they did not
have all the requisite skills. Enator had spotted an opportunity. IBM Vienna Laboratories had
implemented an interpreter for the language PL/1 and wanted a compiler developed for it. All
Enator’s compiler people were occupied on another project for the next six months. They
proposed that, if we won the contract, Enator would take commercial responsibility for the
job while Praxis would provide the technical effort. Praxis would have to agree not to pull out
and bid via any other route. Enator would take 20% of our fee rates as a commission and
administrative overhead.

I had a number of questions for IBM, mainly technical, about what subset and features of the
language were to be included, the host and target machines, and why they were
subcontracting the work anyway. After all, IBM Vienna Laboratories were a research
institution with an international reputation for their technical expertise. I wanted to know if
there was a definition of the language subset available at the time we were to make the bid.
Numerous questions occurred to me, to none of which Enator had answers. What
implementation language should we use? It might be possible to use PL/1 itself given that
there was already an interpreter; the implementation could be bootstrapped. Was there
already a run-time library? What documentation were we to produce, for example, user
manuals? Did they have a validation suite (a suite of PL/1 programs which when successfully
run on the compiler would constitute a criterion for accepting it)? A compiler is a complex
piece of software and I had numerous other technical questions. We arranged to meet IBM at
their Vienna Laboratories.

There was a lot of snow in Vienna in late November. Cars parked at the side of the road
appeared as just large car-shaped snowy mounds. I thought they would be there for the
winter, immovable. Eighty technical people worked at the laboratories in the Programming
Product Development Centre. They were subcontracting the work because, once again, all
their compiler people were engaged on other projects. They still had to get internal approval
for the contract; it could yet be cancelled! Clearly, the whole proposed project was at an early
status and subject to change. Various ambiguities in the work plan meant that we would be

188

best advised to do the work charging for time and materials spent as we went along, rather
than as a fixed price job. The customer envisaged three or four people from Praxis and one or
two from Enator, all working in Vienna for three months. They were agreeable to a time and
materials contract, at least at first. They wanted corrections of errors after delivery guaranteed
and fixed free of charge. This was unusual for a time and materials contract, but they were
willing to negotiate; higher rates could be charged to compensate, or some such arrangement.
Some flexibility could be accommodated. As for documentation, they would require an
implementation guide and a user guide, but IBM had their own publication department who
could produce finished manuals. I suggested that we could provide some part of the
implementation guide in VDM, knowing that VDM had originated at IBM Vienna
Laboratories. This produced some embarrassed shuffling of feet and an admission that no-one
working there had any knowledge of VDM any more, and they’d rather not, please. Of
course, we could use other means!

More meetings and discussions, mostly by telephone, ironed out issues of quality and
commercial confidentiality, which were considerable. That was why they insisted on our
doing the work on their premises. It was not even clear that the customer would allow us to
produce any documentation in our own offices at Praxis. IBM had their own quality and test
plans and these would have to be coordinated with those of the Praxis quality system.

Over the next few months and more telephone calls, after all the effort, nothing transpired;
we had no contract. If IBM ever did the work, I think they carried it out using internal staff.
This was a typical story and happened many times with many different customers; IBM was
in no way exceptional, but these procurement efforts that led to nothing could leave one with
a sense of some frustration.

ESPRIT had been operating for several years. Those of us who were enthusiasts for VDM
sought some sponsorship from ESPRIT to set up an international special interest group to
promote VDM. We thought that an international, Europe-wide group could accelerate the use
and understanding of the method. We found a champion within the ESPRIT organisation,
Karel de Vriendt, and his support enabled the initiation of a group that flourishes today, now
independently of EC support and with a wider focus on formal methods generally. Formal
Methods Europe continues to hold international symposia and itself funds a few small
projects.

At the end of 1986 we had our first meeting in Brussels We drafted our terms of reference, a
list of proposed activities, and planned the first VDM Europe symposium. This was held in
Brussels in March 1987 and covered the history, experience of use, support tools,
standardisation process and some foundational questions such as the precise mathematical

189

model of types in VDM. There were also a few tutorial papers. For a first symposium, this
was a mature and balanced event22.

Very soon after I joined Praxis I found that I was once again working on multiple projects:
twelve in March 1987. We found email a great facilitator for communications, at least within
the company. People would sit silently at their desks, exchanging notes with others who
might be only a few yards away. It enabled the regimen of staying silent within the open plan
office area; those who wanted face-to-face discussions were urged to book a small meeting
room. But the teething technology of email was less reliable hence less useful between
companies. Frequently messages would bounce back with spurious error reports like
“unknown host” when one knew very well that the host was definitely present.

The British Standards Institution and the International Standards Organisation published
standards in a huge variety of fields. Computer science and software engineering were
becoming increasingly the subject of standards. Languages, protocols, and methods of
development and quality assurance were being standardised. Many of these standards
included definitions of languages and other technical items. What better means of expressing
definitions could there be than formal methods? In the spring of 1987 the BCS held a meeting
on the use of formal methods in standards. This meeting gave birth to a working group and
Springer-Verlag together with the BCS published this working group’s conclusions in 199023.
“Standard” practice and the technological avant garde were catching up with each other.

There was a lively exchange of messages on the local electronic news-board at Praxis. These
days one might call this facility a blog. From time to time a discussion sparked off some hurt
feelings, which time usually healed. One day someone reacted rather upset to a charge of
sexism in something he had written. I thought I might mollify this upset by saying how we all
found it difficult to change our linguistic ways after years of habit and avoid gender specific
turns of phrase. I had distributed my own book on discrete maths for software engineers24 to
those members of Praxis who attended the various courses that Mel, Roger and I had given
on formal methods. I said that I had tried hard to be gender-inclusive in my book, but I would
buy anyone a drink if they found examples where I had not done so, the first in each case (I
slightly feared an avalanche of discovered transgressions). I had an ulterior motive, to
encourage people to reach for my book and read it! I began to be alarmed as I received three

22 See Bjørner et al, 1987 for proceedings.
23 See Ruggles, 1990.
24 See Denvir 1986.

190

emailed examples within ten minutes. Fortunately no more arrived, so there was no serious
damage to my wallet.

IPSE 2.5, in which the software research department at STL had shown an interest, was
moving forward, with ICL, STL and the Universities of Manchester and Newcastle as
partners. Praxis was fairly easily persuaded to join the consortium. The proposed
environment in IPSE 2.5 would support both informal and formal methods of software
development, management, formal reasoning, and the integration of all these activities. These
five themes were allotted to different partners, with Praxis handling the management support.
Bob Snowdon from ICL was chosen as the project architect and Anthony Hall headed the
Praxis effort. Anthony was keen on, and knowledgeable about Object Oriented methods, and
we determined to use an object model as a language to describe the management activities in
a software project. In the process of a development, people carry out different rôles which are
responsible for various activities. Activities can interact with each other, waiting for another
activity to finish before being able to start, sharing information and so forth. Clive Roberts,
ex-STL, had joined Praxis a the same time as I had, much to my surprise; I had no idea he
was considering a change of job. Clive, also an enthusiast of Object Orientation, defined the
language in which a development process could be described, having considerable
discussions with Anthony and me along the way. We called this language PML – Process
Modelling Language. I was to provide a definition of the semantics of PML.

If we were carrying out this project today, UML – Unified Modelling Language – would
spring to mind as an obvious choice for the process modelling language that we wanted. But
UML did not come into being until 1997, ten years after the IPSE 2.5 project.

I had great difficulty in persuading Praxis of the amount of time that defining the semantics
of a new language under development would require. I managed to get the originally
proposed six days increased to ten, and in that time I produced a first draft, much of it hand
written on account of the extensive mathematical text involved. I could happily have spent
three or ten times that amount of time and produce a more polished result, but the other
partners in IPSE 2.5 seemed to find what I produced acceptable. I was particularly relieved
that the academic partners approved of it. To this day I feel it may be the most intellectually
demanding piece of work I have ever done, so to have had to squeeze it into ten days was a
considerable rush. Parts of my handwriting betray my writing the script on high speed trains.
A tip: sitting in the centre of the carriage equidistant between the wheels reduces the
vibration considerably.

VDM was coming of age. Three main academic centres spearheaded the development at the
Technical University of Denmark, the University of Manchester and Trinity College Dublin.

191

Industrial organisations were using VDM in live developments and researchers were starting
to write computer-based support tools. The VDM language was originally designed for
human readers, and contained many mathematical symbols that you cannot find on a
computer keyboard: logical symbols like “and” ∧ “or” ∨ , “not” ¬ , and set theory
operators like “subset” ⊂ . Dialects of the language were beginning to emerge, including
computer-readable variations. It was time to standardise on the language so that publications
used the same notation with the same meanings, and so that specifications written in the
VDM language could be moved across tools without too much recasting. We formed a
committee under BSI rules and set about defining a standard that would be published by the
BSI. The language would be known as VDM-SL – the VDM Specification language.

All the tool designers would need to be involved in the standardisation effort, as well as the
universities that were teaching VDM on their undergraduate and graduate courses. Industrial
users contributed to the committee’s work, notably CEGB – the Central Electricity
Generating Board, who were the nationalised predecessor to the now multiple private
electricity companies in the UK – ICL and STC. We needed to agree on the use of terms,
often with duplicated meanings, circulated working papers and notes, and met every few
months. Because several institutions were writing support tools, we also needed to agree
about the meaning of the language elements, that is its semantics, so that different tools
would agree about the validity of VDM-SL scripts and their properties. One of the most
important properties of a VDM specification is its context conditions or proof obligations;
these are the set of conditions that have to be proved in order to demonstrate that the
specification is self consistent and that a given implementation satisfies it. People were trying
to produce tools that would generate these conditions. Academics in several countries were
prominent in the attempt to define the semantics of VDM, and some of the meetings went
into deep mathematical discussions, including over just what flavour of mathematics was best
for modelling some of the concepts. The work on the semantics became the focus of a
subgroup, a semantics review board, which gave advice and input to the standardisation
committee.

The British National Physical Laboratory worked hand-in-glove with the BSI and two of their
own researchers became interested in VDM too, contributing to the standardisation work and
providing a useful link to the BSI as well. We explored new features too. To specify a large
system, the VDM script could become awkwardly large to manage. Some features for
breaking a specification up into modules would be an asset, but had not been part of the
original language.

The technical work leading to standardisation mostly took place in 1986 and 1987, but final
details lingered on, together with the procedural processes that seem to dog all international
efforts of this kind. Promoting the standard from a British one approved by the BSI to an
international, ISO standard added a few more months to the process and it was not until 1990,

192

after more than 130 working papers and many discussions, that VDM-SL became a BSI
standard and 1996 when it achieved ISO status25.

FACS held its AGM every May and in 1987 its membership was still fairly small. But it
subsisted with a grant from the Alvey Directorate and £500 worth of services from BCS. We
remained solvent and the newsletter, FACS Facts, continued to improve under the editorship
of Roger Shaw. At Professor Bernie Cohen’s request FACS were editing a special issue of
the Software Engineering Journal on formal methods. We agreed to hold events on term
rewriting, algebraic approaches and the specification and verification of communication
systems during the forthcoming year. We proposed and agreed on fees for membership and
attending meetings. We decided to negotiate with EATCS, the European Association for
Theoretical Computer Science, for reciprocal arrangements, reduced mutual membership
subscriptions and such-like. These were entirely typical matters that were agreed at any
FACS AGM. I became secretary at the 1987 meeting and remained so for some years. I had
been secretary of VDM Europe for some months and felt that doing the two tasks would be
much less effort than twice that of doing one of them. I had made a routine for writing
minutes and establishing actions and recording their progress that would work for both.

VDM Europe itself pressed on, coordinating the British standardisation effort with bringing a
focus on VDM into the next year’s ESPRIT work-plan, education material, and topics for
subsequent VDM conferences. We held the second conference, VDM88, again in Brussels,
complete with an exhibition of tools, computer-based demonstrations, applications,
information stands and posters.

In September John Cooke and Roger Shaw approached the publisher Springer-Verlag UK to
propose starting up a new international journal on formal methods, specifically as a flagship
publication of FACS. We already had a newsletter, FACT Facts, but this was not a journal of
serious refereed papers; it was more like a parish magazine with news items and so forth.
Springer were enthusiastic about the idea, so several of us set about making the journal
happen.

Of course, Mel Jackson, Roger Shaw and I continued to give VDM courses at Praxis, and to
“the public” through and on behalf of the NCC. The arrangements for doing this took some
negotiating, but after a few meetings were agreed and we gave the courses. These usually had
a small number of delegates, but were an interesting change from giving courses to mostly
one software organisation.

25 See ISO/IEC 13817-1 1996.

193

The British Computer Society has many Special Interest Groups. I was interested in the
Disability SIG because I believed that computers and software provide a great but unrealised
potential for assisting and enabling disabled people. I met the group chairman, Geoff Busby,
who was himself disabled with cerebral palsy and who was seconded from GEC to the BCS
Disability SIG. The group aimed to increase awareness and to enable disabled people to be
employed in IT, using specialised equipment such as specially adapted keyboards and user
interfaces. Where possible, however, they preferred to use standard equipment, since in
general it was difficult to modify. There was cooperation between different disciplines –
robotics, optics, computing, AI, software and electronics. There was £¾ million funding
offered by the EEC but at the time that was not matched by any UK grants. Some simple
facilities were needed: page turners, text and graphics input on to disc, feeding machines,
machines to assist in driving a car, simulation software and even arcade games.

The computing industry at large was concerned with the issue of software quality. Praxis was
one of many software engineering houses that had its own quality system, procedures which
had to be followed when building a product. “Quality” was defined variously as “Conforming
to the Specification” and “Fitness for Purpose”, a phrase which has recently been applied
negatively by politicians and some media to institutions and individuals. Setting up a quality
system requires substantial investment in training and establishing practices. The cost of
developing software could consequently increase. Was the payback worth this cost? The
benefits could be reduced by risk of failures and all the consequential damages. The BCS
Software Engineering Technical Committee held a meeting where some experienced speakers
talked about these questions. How can one measure these costs and benefits, time-scales,
levels of reliability, maintenance efforts? The meeting sparked off considerable debate.

Honeywell got in touch with Praxis, wanting to hear what we could tell them about formal
methods. They might want to become capable in formal methods themselves. I prepared a
short talk, explaining the underlying theory, the kind of mathematics FM practitioners would
need, and compared different methods against some criteria. Some worked at a greater degree
of abstraction than others, which usefully defers design decisions to later in the development.
Some could cope with developing large systems better than others. The experiences of actual
use varied. User manuals and texts were more supportive for some than others. Some could
define concurrent and communicating systems, others only sequential ones. The route from
specification to design could be well documented or not at all.

Honeywell described their organisation structure and were attentive listeners. But two months
later they telephoned to say that they had not won the work they were bidding for, so would

194

not be going ahead for the time being. They acknowledged that they would need to know
more about FMs in time.

At one of their meetings, the BCS Software Engineering Technical Committee rather casually
nominated me as vice-chairman, and without any other contenders, suddenly I was appointed.
Various specialist groups were represented on the committee, the Database group, the Object
Oriented group and others. The SETC attempted to coordinate matters between them:
streamlining the production of the SIG newsletters and so forth. Other groups not connected
to the BCS carried out related work. The IEE in particular had a subcommittee on software
engineering, which had a parallel rôle to the SETC. Indeed, I was a member of that too, so it
was natural for me to be a BCS representative on it and to report back when necessary.
Independently of the BCS and the IEE, a UK Logic Programming group was being set up as a
branch of a wider international group. We asked them to consider being affiliated to the BCS.
The CCTA, a quango, supported the use of SSADM, a structured systems analysis method
developed a few years earlier. Then of course there was the DTI Alvey Directorate. The
SETC prompted joint working parties between these several organisations and itself, to
reduce duplication and encourage coordination. It was better if we all told the same story.

The Alvey Directorate sponsored several projects to develop and propagate the use of
software tools to assist different phases of development. From time to time they would hold a
conference at which these various projects described their work and exchanged news of their
progress. Alvey sponsored projects on predictive software metrics based on formal
specifications, building software libraries, quality assurance and reliability and project
support environments and metrication. The aim of metrics are in general to predict useful
properties of the development, such as how long the work will take and how likely it is to
have faults, from characteristics available at the beginning of the project. In a, perhaps
oversimplified, view of a project development the drafting of a formal specification precedes
the design and coding in a programming language. Traditionally metrics are derived from the
code or its design itself, so basing these on a specification should enable predictions before
quite so much of the work has been done, a clear advantage if one is trying to predict features
like the total effort. Other projects examined the overhead, if any, of effort if formal methods
are used.

The corresponding committee on Software Engineering in the IEE organised their own
colloquia, something that the IEE effectively did and does a great deal. High integrity
systems, the costs and benefits of quality assurance were typical topics. They advised the DTI
on criteria for assessing research proposals for the second phase of the Alvey initiative and

195

regularly discussed engineering educational issues with British universities. They welcomed
the invitation from the BCS Software Engineering Technical Committee to collaborate.

One of the most compelling reasons for using formal methods in software development is to
prove that a program is correct. This means proving that the program does what it is supposed
to do; for this one needs a watertight, unambiguous description of what the program is to do,
that is a formal specification. The specification needs to be formal, that is mathematical in
form, to be unambiguous and for a logical proof to relate to it. This is one of the principal
motivations for methods such as VDM, Z, CSP and the like.

There are different kinds of formal methods. VDM and Z are examples of model-based
specification languages. In these languages one defines what the program is to do by making
a model of the program’s function in terms of set theory and logic. One can then prove
whether or not a given program truly fulfils the function defined by the model. One difficulty
is that considerable mathematical skill is needed to derive proofs of correctness. The vast
majority of software engineers do not have these skills. A dream of adherents of formal
methods is to produce an automatic system which can generate a proof, given a formal
specification and a program which is claimed to implement it. This is particularly difficult
with model based methods, partly because there is an wide choice of ways in which the
actions of a program can be modelled, even in set theory and logic. The best that can be done
is to produce a “proof assistant”, a program which interacts with the user to generate a proof.
The user gives hints and guidance to the program, which does the mathematical donkey-
work.

There are other kinds of formal method, in particular, algebraic methods. These are based on
the mathematical topic of Universal Algebra26. Instead of modelling the program’s functions
with set theory and logic, an algebra is defined whose data types and functions model those
of the desired program27. It is much more feasible to design automatic proof systems which
generate proofs of program correctness related to algebraic specifications, although it is by no
means easy. Such proof systems rely on rules of term rewriting: a term in algebra or logic is
an expression, which can be a proposition. With a defined algebra it is possible to derive rules
for rewriting terms without changing their meaning. If the term is a proposition, this means
that the truth or otherwise of the proposition is unchanged, i.e. it is deducible from the initial
term. By using various strategies a sequence of term rewrites can be generated that proceed
from the axioms of the algebra to the desired target term, that is the theorem.

Automatic term rewriting systems have been devised and are continuously researched. Some
of the first canonical systems were based on the Knuth-Bendix completion algorithm28. There
26 See Cohn 1981, for a comprehensive text on Universal Algebra.
27 See H. Ehrig and B. Mahr, 1985 for a tutorial text on algebraic specifications.
28 See D. Knuth and P. Bendix, 1970.

196

is, however, a very large step to take from a mathematical algorithm and a computer system
which uses it for such a sophisticated purpose as a proof generator, and a great deal of
research work was done and continues on this problem. Nonetheless Knuth-Bendix, term-
rewriting and algebraic specifications were of intense interest in the late 1980s, and continue
to be so. The University of London Royal Holloway and Bedford New College in association
with the London Mathematical Society, Hewlett Packard and the Science and Engineering
Research Council held a stimulating conference on this topic, “Algebra and Automated
Deduction”, in January 1988. Not only academic institutions were active in this quest.
Hewlett Packard and the Rutherford Appleton Laboratory were both developing proof
systems for algebraic specifications - AXES from HP and ERIL from RAL.

One snag persists. Devising model-based specifications comes more easily to most software
engineers than devising algebraic ones. An abstract algebra is a step more abstract than a
model in set theory and logic. The latter is not far away from a specification written in the
more traditional methods of database technology or systems analysis.

I was flattered to receive an invitation to give a seminar at Queen’s University Belfast. I
talked about the uses of mathematics in software development, in modelling the problem area
that the software addressed, the semantics of the program languages used, the deductive
system needed for proof by construction and the theories of computation. My employers,
however, were not impressed. Please consider what use this is going to be for company, they
said. I offered to visit some firms in Northern Ireland with whom we had so far not made
contact, such as Harland and Wolff, the shipbuilding engineers. All engineering firms were
using computers for various purposes by then. But Praxis were not interested. This surprised
me, since they frequently said that all their software engineers should also be salespeople for
the company. I considered, decided that the trip would be good exposure for the firm, and
went anyway, but without contacting Harland and Wolff or any other potential clients. My
audience came to life, taking notes assiduously, when I concluded with a mathematical
syllabus that would be useful for industrial programmers.

In 1988 Praxis took part in an ESPRIT project called VIP, VDM Interfaces to PCTE, along
with other institutions from Britain and the Netherlands. Both PCTE and its interfaces were
subject to international standards, the latter being managed by PIMB, the PCTE Interfaces
Management Board. Praxis made contributions mainly during 1988.

At this point after numerous collaborations with academic institutions, I frequently wondered
whether the grass was greener on the other side of the fence. Bernie Cohen had crossed over

197

from industrial STL to Brunel University, and asked me if I would like a visiting position
there. Mel Jackson had long previously crossed the other way, from Hatfield Polytechnic
(later the University of Hertfordshire) and advised me against the idea. But I thought his
experiences were probably not altogether typical, involving a very heavy teaching load in a
non-research environment. I would have limited duties and would be on release from Praxis
for one day per week. I discussed the arrangements with Professor Pat Hall, who had been
chairman of the BCS Software Engineering Technical Committee. He explained the details of
my proposed post: half a unit or one unit of the fourth year undergraduate and MSc Course, a
lecture course on the formal development of software, my position as an Associate Reader.
So I started on the second Thursday in October 1988, and would carry on for a year. There
were related courses on System Software and Automated Reasoning. My course was to
include “practical skills”: writing specifications, refinement, VDM, Z and Equational
Reasoning, Denotational Semantics and Concurrency. My first lecture would be on 13th

October and I had to define an exam paper by Christmas. This was to be a 3-hour paper
comprising eight questions of which the candidates had to attempt five. The MSc students
would also do projects in their third term. These could arise out of the course. I was to
produce sample exam questions for the students in addition to the real exam. The exams had
to be reviewed and subject to scrutiny by an external examination board, which also reviewed
the assignment of resulting marks and degree classes. I was irritated by the insistence of the
department head, who had a philosophical rather than a scientific background, that I could not
award a mark of over 90%. Only an Einstein could get such a mark, he said. I resisted
reminding him that Einstein had difficulty with being accepted by academia in his early days,
and presumably did not do well in his exams.

So I designed the lectures, gave them, set the exam, reviewed students’ projects, attended
meetings including a near-vitriolic one with the external exam board, marked and classified
the students’ submitted papers, and supervised several students. I found it a considerable
strain, for I felt strongly that the career future of these students depended on the quality of my
lectures and the accuracy and fairness of the exam paper and my marking of them. The range
of performance by the students was very wide, the worst showing that the individual had
profound depths of misunderstanding and the best performing better in the exam than I could
have done myself, even though I had set the questions. The Computer Science department
also held regular seminars which I usually attended. Many years later I was delighted to
observe that one of the former students on my course had progressed to being a professor in
the very topics that I had taught.

Several people in Praxis thought that my being away for one day a week had detracted from
my career prospects within the company, but I was glad to have had the experience.

198

I continued as a member of the committee of BCS FACS while I worked at Praxis. As a
special interest group of a professional society, FACS organised several events each year,
including a regular Christmas workshop. We held meetings on Formal Methods in Software
Engineering Education; Concurrent Systems; Term Rewriting; Graphs, Grammars and
Automata; Refinement; B; OBJ; AXES and ERIL; Temporal Logic; LOTOS. The
Refinement meetings became a significant series of workshop events, continuing for a
decade. We published a newsletter, FACS FACTS, at rather irregular intervals. It still thrives,
now being published on the web. We established relationships with other organisations, such
as EATCS (European Association of Theoretical Computer Science) and the IMA (Institute
of Mathematics and its Applications). Perhaps the most significant achievement of FACS in
the years 1988-1989 was the initiation of a scientific, peer-reviewed journal, the Formal
Aspects of Computing Journal, FACJ. It was largely the inspiration of John Cooke, and Cliff
Jones rapidly added his drive and influence. John Cooke became the Associate Editor and
Cliff Jones the Editor in Chief. Professor David Gries was the initial North American Editor.
I was privileged to be invited on to the thirty-strong Editorial Board. The first issue came into
print at the beginning of 1989, and the journal thrives to the present day, the flagship journal
of BCS-FACS and, now also, FME, published by Springer London.

In March 1988 I visited the firm Program Validation Limited on behalf of Praxis, to find out
what were their technical offerings. At the time their main product was the SPADE proof
checker, available then for £5750. The price included a two-day course for two delegates. A
language called FDL, Functional Description Language, was integral to the SPADE proof
checker. FDL was essentially an algorithmic programming language with provision for
assertions. The methodological approach of SPADE was post-hoc proofs on code. On my
visit the presenters from PVL put some emphasis on their experience of proving assembly
code programs. They seemed to have less experience then of proving correctness of high
level language programs, although it looked as if that should have been easier. It also seemed
to me that one should quite easily use the proof checker to generate proofs of other kinds of
theorems, such as some of the proof obligations resulting from the writing of a formal
specification or doing a refinement of one. (In fact some years later the SPADE principles
were successfully applied to Pascal and Ada).

The method used with SPADE consisted of six steps:

1. Produce a FDL model of the source text. An automated tool was provided for
translating SPADE-Pascal into FDL. SPADE-Pascal is a subset of Pascal, omitting
those features which were considered to mitigate against proof generation, such as
variant records, and functions as parameters to procedures and other functions.

199

Assembly code could be translated using a combination of manual translation and
machine assistance using a tool constructed for the purpose.

2. Perform a flow analysis using the SPADE tool.

3. Construct pre- and post-conditions and assertions. The pre- and post-conditions can be
derived from the formal specification, if one exists. All program loops must have
invariants stated for their bodies, which must be sufficient for the prover to deduce the
post-condition for the loop. These are embedded in the FDL text.

4. Auxiliary functions and intermediate assertions (“lemmas”) can be defined to
facilitate the path of the theorem prover and the statement of the assertions to be
verified.

5. The resulting FDL text is processed by the verification condition generator. This
produces conditions to be proved, in order that the proof of the program follows from
the stated pre- and post-conditions.

6. The proof checker is then used to prove all the conditions generated by the
verification condition generator.

The proof checker was interactive. It worked on one verification condition at a time. As
individual conclusions are proved, they can be added to the list of hypotheses, under the
user’s control. If the prover gets stuck, the user can define a sub-goal to be proved. When that
is proved, it can be added to the hypotheses in order to help prove the main conclusion. The
proof checker used first-order predicate calculus employing classical logic in a natural
deduction style of inferential reasoning.

The inference engine within the checker operated on a database of rules. There were about
twenty files of rules in the database. To be adept at using the checker one would need to
know about most of the rule-bases and when they were likely to contain a rule that was
applicable to the proof being constructed. For example there was quantifier elimination,
substitution, induction etc. The rule-base could be extended. By defining an “undefined”
data-type, defining functions over it and then defining rules over those functions, one could
effectively produce one’s own algebraic data-type. In that way, the type system was
extendible, but with some constraints. Higher-order functions were not possible because the
prover uses first order predicate calculus. PVL hoped to establish a user group who would
exchange libraries of proof rules. Using the prover produced a proof log, showing the
conditions and conclusions being proved and the rules used at each stage. There were
restrictions on the use of the prover, for example the verification generator could not handle
recursive functions. This would have caused the system to have only limited application to
compilers, for example. But I believe that later the proof rules for induction were extended so

200

as to incorporate proofs of recursive functions. Some components of the proof checker itself
had been proved correct.

On my visit, the proof checker was demonstrated. It operated with, to me, surprising rapidity.
On the whole I was impressed. The system seemed to be quite effective, efficient and easy to
learn within its rather limited constraints.

The audience at this seminar were all concerned with safety critical applications. Indeed, only
one person apart from myself, someone from the UK CAA, was not either from a military
organisation or a military contractor. In conversation with these people I learned that there
was a general consensus in safety critical applications that a number of programming
techniques taken for granted elsewhere should be mistrusted or avoided. These included
compilers, recursion, even procedures and functions, and high-level data types. “Straight-line
code” was to be achieved if possible. One attendee said that where he worked, one had to get
a high-level signature to program a loop! I thought that this was surely barking up the wrong
tree as a means of seeking confidence in the correctness of programs. One may be able to
prove a program correct with respect to a low-level specification, but one is just shifting the
lack of confidence to a different part of the development process, and furthermore one which
is less amenable to machine support. In another conversation I raised the question of how the
user had to have a considerable understanding of mathematical proofs in order to use these
tools effectively. People generally agreed, and considered that it was probably necessary to
have a mathematics degree or to have gained the knowledge in some other way. This is a
conclusion I had been reaching from reading the literature on a number of other theorem
provers, and SPADE seems easier to use than most.

SPADE was subsequently developed further and evolved into the SPARK system, and
included SPARK-Pascal and SPARK-Ada.

At this stage there were eight current or completed projects being done by Praxis which used
VDM and other formal techniques. They were:

• Daffodil, an office communication system done under contract for ICL;

• IPSE 2.5: Praxis’ part in this project included the formal definition of a process
modelling language. The definition used some techniques from VDM, and others
from denotational and axiomatic semantics.

• VIP: VDM Interfaces to PCTE. This ESPRIT project to define the interfaces to PCTE
was done entirely using VDM and was one of the largest VDM specifications ever
produced at that time.

• PCTE+, enhancements to PCTE: a collaborative project in which Praxis was to define
the semantics.

201

• Factory Controller: a project under contract from ICL. CSP was used for defining the
interfaces of the distributed system and VDM to specify one component.

• ELLA VLSI simulator and development system. ELLA was Praxis’ proprietary
language for simulating electronic hardware systems. Part of the development system
was defined in VDM.

• NEA (Northern Examining Association). Praxis was implementing a new examination
administration system for the change-over to GCSE exams. The system test was being
specified in VDM.

• CASE (Support system for SSADM for the CCTA). The ‘Z’ formal method was
being used to specify the infrastructure, that is, the underlying database support.

As regularly happens with industrial projects of any kind, not all of these projects came to
fruition, nor did all of them continue to use the same methods that they did at the outset. But
a decent proportion of them were successfully concluded and delivered. Also, of course
Praxis was not the only industrial firm to use formal methods. Even at the time (1988) other
firms were contributing significantly to bringing them into practice, notably IBM, the Danish
firm IFAD and others. By 2003 some thirty firms formed the initial founding membership of
the Formal Techniques Industrial Association.

From industry’s point of view, the whole purpose of using formal methods was to improve
the quality of delivered software. The costs of correcting errors was becoming massive. The
US Department of Defense had produced a statistic of $1009 per line of delivered, correct
code. In June of 1988 I contributed a paper to an IEE colloquium on Software Quality
Assurance. Brian Oakley, who then headed the DTI Alvey Directorate, led with issues of the
day, and other papers were given by people from several supplier and user organisations (the
latter including a speaker from the London Stock Exchange). The event included an
exhibition of software tools supporting quality management. The next month I was chairing a
session in the Software Engineering 1988 conference, where Praxis had a poster in the
exhibition.

The work of the Alvey Directorate ran for five years from mid-1983 to 1988. The total cost of
£350M was funded jointly by industry and government. Many projects involved academic
partners, whose contribution was funded by the SERC. The Alvey Programme had come to
an end. David Morgan, whom I had met twenty years earlier when I was at Elliotts, was the
director in charge of the Information Technology division of the DTI, which division had so
to speak hosted the Alvey Programme. All the projects had been concluded and their results
delivered and reported on. But a rationale of the programme was that the communication
between industrial and academic partners, which had perhaps only been rivals before, would

202

produce informal communities, with less tangible benefits to industry. David wanted to know
what “secondary achievements”, not yet published, had resulted from the programme. Were
there perhaps themes across projects, or had duplicate work been avoided? David brought
together a team of four to study this question and report back after three months. Naresh
Mohindra from PA Consulting, already seconded to the DTI, was experienced in human
factors. John Llewelyn, ex-STC, specialised in industrial applications. I would cover formal
methods and software engineering. Professor John Buxton, later at Kings College, London,
would be wide ranging, determining the general structure of the project and defining its
overall roadmap. Our reporting point in the DTI would be Graham Mackenzie-Washington,
someone I would come to know very well.

Although David Morgan gave us no instructions as to how we were to organise ourselves, we
immediately fell into a tacit, mutually agreed working structure. John Buxton took the lead, I
adopted a second in command rôle, and the other two members arranged themselves in order.
I had a strange feeling of instinctive compulsion, as if we were a small pack of dogs
inevitably following our inner evolutionary imperatives. We worked together very well. We
would look for “secondary achievements” in four categories. Did any new projects arise
involving the same partners in cooperation or in consultative rôles? Did any technical transfer
arise, in particular of people from the partners to other parties? Was there any stimulus to the
partners’ infrastructure? Was there any technical spin-off? Technical transfer could take place
through the giving of courses, distributing tools, transfer of people, and other Alvey or
ESPRIT projects. Cooperation could take the form of conferences, workshops, papers, special
interest groups, consultancy. Additionally, we would enquire if the initial aims of the project
had changed. We would focus on a few projects, visiting them in pairs at first, then singly as
we became more adept and established a firmer modus operandi. We devised a list of seven
criteria for selecting projects to investigate. As well as visiting the projects, we would study
the deliverables which they had sent to the DTI and which resided in files in the Department.

The DTI finally approved the contracts to engage the services of the four of us some while
after we had started the work. Praxis, as would any software house that need to maximise the
revenue-earning effectiveness of its staff, had by then put me on other work. So I had to
announce that I would now be otherwise engaged for the next two weeks, something the other
members of the team accepted with understanding. And of course, being a senior member of
staff, I had to draft the letter of acceptance from Praxis to the DTI.

The project was to go for three months. We agreed with David Morgan that we would
produce an interim draft of our report in two months. We could then make a case for
extending the work if necessary. We selected the projects to visit, drew up a questionnaire to
send them in advance, decided on a calendar. David Morgan wrote a standard letter to the
project managers to ease the way for our contacts.

203

We carried out this project quite intensively over the next few months. I visited half a dozen
projects or more, which was quite a fascinating experience. At one point there was some
dilemma over issues of confidentiality. The Praxis quality system demanded that my reports
to the DTI should be reviewed by another Praxis staff members in order to ensure its quality:
accuracy, professional integrity, conformance to our contract with the customer (the DTI in
this case), etc. But because my reports were relating to work done by other parties funded by
the DTI, I was also under obligations of confidentiality to the DTI and had signed an
agreement not to reveal any information about the project to anyone apart from the DTI. This
latter obligation indeed had implications for the confidentiality relationship between the DTI
and the partners in the projects which were the subjects of the study. Praxis and the DTI
struggled with this issue for some time, both sides digging their heels in to a degree. I felt that
this project was unusual in this respect and that Praxis ought to relax their normal procedures,
but they did not agree. In the end one other member of Praxis staff signed the confidentiality
agreement with the DTI for the Secondary Achievements project, our Quality Manager Chris
Miller, and he rapidly reviewed my reports before I sent them to John Buxton and on into the
DTI management. As far as I remember, Chris himself was very relaxed about the process,
and never needed to query any issues in my reports. All along I felt that the “problem” was a
storm in a teacup.

We finished the project, and our conclusions, reluctant I think, were that there were no
significant “secondary achievements”. In looking for them, we found ourselves scraping the
barrel to find anything. There was a telephone conversation here and there, a few papers
published, but nothing amounted to very much. John Buxton’s leadership helped us come to
an honest conclusion of a pretty much nil result. I must admit, left to myself I would probably
have strayed a little way into the error of saying what the customer wanted to hear.

At the 1988 AGM of BCS FACS, we celebrated the group’s tenth anniversary. Dan Simpson,
a former chairman of FACS, gave a short talk on its history, describing it as a ginger group. I
liked this description: FACS was indeed, I thought, in the avant garde of software
engineering, and I had always enjoyed being in the vanguard of any movement, ready and
willing to stir up controversy and shake people out of their comfortable, conventional ways of
thinking. At the next Christmas workshop, Mike Shields gave a day-long account of his
research into automata theoretic models of parallelism. His work was in later years to lead
into significant advances in unifying theories of parallelism29. FACS were also conscious of
the need to teach formal methods, and the difficulty found in doing so, so we held another
meeting that year on “Explaining Formal Methods”.

29See Shields 1997

204

The process of deriving a specification or design from a more abstract one was called
“Refinement”, a term coined, I believe, in the early 1980s by Michael A Jackson30, who is a
visiting professor at the Open University and the University of Newcastle. The process of
refinement was very important, one could say the raison d’etre of formal specifications: they
were there in order that they could be refined into correct designs. The steps taken in
refinement are mathematically based processes, all preserving correctness with respect to the
more abstract specification. FACS decided to hold an event on refinement at the 1989
Christmas workshop, and this was successful enough that it became the first of a long series
of Refinement Workshops that is still extant, the most recent at the time of writing being held
in November 2009 in Eindhoven.

In the widespread effort of propagating formal methods, Praxis in collaboration with Rolls
Royce, with funding and support from the DTI, produced a video explaining their benefits
and a broad brush description of their processes. The text was narrated by Eugene Fraser,
whose voice was extremely well known to radio listeners in the UK and instantly
recognisable. Before the days of the DVD (and any successor medium), the video was
produced on VHS cassettes.

On 23rd June 1988 the Management Services Division of HM Customs and Excise in London
asked Praxis to bid for a piece of work. This Management Services Division was in effect an
internal software house. They wanted a requirements analysis done for a particular project;
they would continue with the design and implementation themselves. Their own project
management of their internal projects was impressive: they were using a variety of
sophisticated computer based tools to support project management. They wanted
comprehensive information from Praxis in our bid: a profile of the company and its
experience, CVs of the staff who were to assigned to the job, our business methods used to do
the work, a full proposal with a variety of cost options, recommendations of procedures,
software packages and hardware needed to do the requirements analysis, and what method of
business analysis we would use. This last item somewhat nonplussed me, because we didn’t
use a “business analysis method”. We just talked to the client and produced a plan of how we
proposed to do the work. I had questions for them: how did they determine the cost
effectiveness of their current projects? What recording systems did they use, e.g. time-sheets
etc.? Did they use systems of project budgeting, estimating and monitoring expenditure,
assessing progress, setting milestones? They in turn wanted to have a list of our people and
their availability, skills, projects and resources. They wanted our bid by June 10th, two and a

30See e.g. M A Jackson 1983

205

half weeks away. I have found that government departments and agencies are among the
most demanding of clients, and this response from the HMC&E was quite typical.

As usual we didn’t get the job, probably because the work was never carried out.

One credential of the maturity of a computer language is that it becomes the subject of a
standard, approved by one of the standardisation bodies such as the BSI or the ISO. From
mid-1988 after a great deal of preliminary work a number of us began to prepare a draft
standard for VDM for submission to the BSI. This required agreeing with users and suppliers
of VDM tools the exact syntax and semantics of the language. This was no easy task, not
least because there were three or four developments in usage and tools for the language all
going on simultaneously, in Denmark, the UK, Ireland and more recently Japan. There was
an imminent danger of up to four different dialects, something none of us wanted! Technical
meetings and discussions had been going on since 1986 and finally in October 1988 a
proposal was put before the ISO (BSI and ISO work hand in hand with many standards). The
ISO meeting rejected the first proposal, but with VDM Europe’s support we were reasonably
confident of its passing the next time. At least two forms of the syntax were defined ,one for
publication of specification texts, called the mathematical syntax, and the other being a
machine-readable ASCII version for input to support tools. The discussions within the VDM
BSI committee revealed areas where the intended meaning was not altogether clear, and there
was much argument over whether extra features with which there was less experience, such
as the ability to write specifications in modular form, should be included. Could the two
forms of syntax be mixed within a single specification, for example? An abstract syntax was
defined which expressed the syntax of VDM, shed of any lexical decisions about how
elements were printed on the page.

By the spring of 1989 three parsers for the machine-readable VDM syntax had been written,
in yacc by the DDC, in Bison (a compiler-generating tool) by NPL, and in ProLog by Brian
Monahan. All these parsers reduced the concrete syntax to the abstract form before further
analysing it. LPF, the Logic of Partial Functions, was used to define the semantics of pre- and
post-conditions of functions and operations in VDM. LPF is a logic devised by Cliff Jones
for VDM, and indeed was inspired and necessitated by the ideas in VDM.

In August 1989 a separate subcommittee, the VDM formal semantics review board, began to
concentrate on the semantics and met for the first time in Lyngby, Denmark. Andrzej Blikle
and Dines Bjørner were the leading lights of this effort. Some advanced mathematical ideas
were needed to cater for some of the features of VDM, and extensions were defined to Scott
domains31. The wheels of the standards bodies ground slowly, but VDM became a BSI and
later an ISO standard in 1990.

31See Scott 1976 and 1982

206

In several of the bids for contracts submitted by Praxis, the client asked what business
analysis method we used. We did not have a defined method, but just interviewed the client,
formed a view of the requirements and drafted a statement of them, then replayed that back to
the client, discussing and amending it until an agreement was reached. Then we would
mutually sign this requirements document and refer to it in the contract. I had several times
been in a meeting with a prospective client in which they asked what method of requirements
analysis or business analysis we used. Having to waffle in reply was embarrassing, so we
tried to find out what other software houses did at this stage of a development task. The firm
Oracle had a method of business analysis which used Entity-Relation modelling, a technique
used in database work, incorporating a pictorial data model and a data dictionary. The
“Requirements Capture” process consisted of interviewing the client and a series of feedback
meetings. There were no fixed questionnaires or forms. They claimed that the feedback
produced a reliable model, and they would then go and write the system specification. It
seemed to me that Oracle did not do anything much different from Praxis, except that they
had names for the various components of the process and used a database paradigm, not
surprisingly since databases were the principal technical offering of the company. Praxis used
SADT-SSADM as an in-house design method, so I wondered if we could similarly use that
as the basis of a business analysis method, or indeed use the set theoretic and logical methods
of formal methods as a basis. I worked for a time trying to devise such a business analysis
method based on set theory and logic, but never got very far. It would have been a substantial
task.

Meanwhile I continued to give formal methods courses along with Mel Jackson, Roger Shaw
and Anthony Hall. We gave some courses through the NCC to all-comers, not necessarily
Praxis customers or collaborators, and occasionally in conjunction with Manchester
University. We constructed a variety of courses: Overview of VDM, Overview of Formal
Methods, VDM for Software Engineers, VDM Workshops, Z for Software Engineers,
Discrete Mathematics for Formal Methods. During the construction of these courses,
Anthony Hall formulated his “Seven Myths of Formal Methods”, which became the subject
of a paper in IEEE Software32 and acquired some fame. We gave in-house courses to IBM,
Honeywell, the Civil Aviation Authority and CEGB. The IBM training department
incorporated our FM courses into their own training programme, offered on demand to their
internal departments.

32 See Hall 1990.

207

One can go to great lengths to make sure that the software that is designed and written
conforms to stated requirements. What often, and especially today, remains a significant
problem is that the stated requirements don’t meet the real need. The customer frequently
underestimates or simply misunderstands what the end users are expecting or how they will
try to use the product. This can be a technical issue, where the amount of “traffic” of
enquiries to be handled by a system is underestimated, or a more human one of how operators
work in reality, for example. Either way, the problem is that of knowing what is the
environment in which the system is to operate, and this determines what are the actual
requirements for the system. Discerning this at the outset of a development becomes
increasingly difficult as we become more competent at the specification, design and
implementation phases. The distinction between the two areas was dubbed by software
people in the USA as “building the software right” and “building the right software”. With
our increasing competence in the later stages, larger and larger projects become undertaken
and the cost of failure of the delivered system to meet requirements has risen dramatically
and notoriously. Requirements Engineering has become of paramount importance and is still
a less understood area. Procurers of large systems, especially in government, seem reluctant
to learn that incremental developments are a way to avoid these massively expensive
disasters, but still they try to seek “big bang” solutions. Suppliers too should refuse to enter
such contracts, but offer incremental solutions with usability checkpoints and frequent
deliveries.

I gave papers at two conferences in 1988, one on Achieving Software Quality held at the
Wembley conference centre and organised by Blenheim Online, and the other on Prototyping
held at the European Commission as part of the PCTE (Portable Common Tools
Environment) project. The first paper33 tried to explain how formal methods and proof were a
necessary ingredient of top quality, but not a sufficient one. Validation activities are needed
at every stage to check the what is being produced meets requirements. In a context of formal
methods, validation is a form of prototyping, in that a skeletal or abstract form of the final
product is shown to the customer for checking against requirements: “Is this what you really
want?”

Advances in mathematics have been driven by applications of the subject over the ages. In
the seventeenth and eighteenth centuries the needs of navigation inspired much of the
advances in the mathematics of the time, and in much earlier centuries the Greek
civilisation’s urge to build monumental religious and civic buildings inspired the geometry of
Euclid. FACS had several members in common with the IMA, Institute of Mathematics and
its Applications, and at one informal meeting a few of us mused whether computing or
computer science was having an influence on the development of mathematics, right at the
33See Denvir 1988

208

present time. For example, in mathematical logic, proofs have always been meticulous, step
by step constructions. When we have proofs of correctness of computer programs, a proof
starts to have much in common with the proofs in mathematical logic; that is, they are more
rigorous than traditional proofs in “ordinary” mathematics, where one might have phrases
like “without loss f generality” and “extending the notation in a natural way”, without going
all the way to the formality of mathematical logic. However, as soon as we start to try to
construct computer-supported provers and proof checkers, the proofs have to be totally
meticulous and formal, and they can become exceedingly long, thousands or even millions of
lines. Mathematics has no tradition for handling or manipulating proofs of this size.

Another example is the use of category theory to provide a model of some of the more arcane
features of programming languages, such as polymorphic and recursive data types. Indeed,
the types and functions used in computing are similar to, but in their fundamentals, different
from types and functions in mathematics. Everything in computing is computable and
countable. The so-called real types in programming languages are in fact computable
numbers, because they can only be generated by computable processes and functions.

We decided to have a joint conference, organised jointly by FACS and the IMA, to explore
the idea that computing has inspired a revolution in mathematics. It was and is a debatable
assertion and the title of the conference was deliberately provocative. The result was a
conference in 1989 at which mathematicians and computer scientists presented twenty-three
papers34.

Apart from work on the regular contracts for Praxis and its technical infrastructural support,
such as inter-project reviewing, I found myself being asked to chair sessions at conferences
and do other “professional” work: Software Engineering ‘88, Discrete Structures for Software
Engineering, Modula 2. In general employers were willing for their staff to spend some time
on activities of these kinds, in the hope that it would improve the company reputation in the
longer term. Certainly, the general exposure is helpful, and if nothing else will encourage
staff recruitment.

Praxis spent some time in internal meetings discussing its own strategy, future and business
policies. This was reminiscent of the software research group in STL and of RADICS, only
the discussions in Praxis were more “commercial”. We reviewed the monthly revenue against
targets, sales orders to date, sales prospects, staff numbers and whether and how much to
grow. Some managers considered a target of 30% per year was desirable, arguing that greater
numbers enabled “big, exciting projects, opportunities for staff growth, and geographical
spread into Europe”. A growth plan of 30% annually would bring us to 500 plus in five years
time (it did not happen). We discussed types of projects (developments, research), and how to

34See Johnson and Loomes, 1991.

209

get them funded. Having identified a desirable project, the construction of a formal methods-
based systems analysis method, say, we could approach potential funders, such as CCTA. At
the time our technical policy was in effect determined by the sales group and the
opportunities they sought. This was not, we thought, the best way to set the technical
direction of a group. We discussed the rôle of consultants, of which I was one. Our
understanding of business sectors, the company, technologies and markets should lead to
obtaining further business. We should consider expanding into the government sector,
telecoms, transport, critical systems and medical electronics. For these we would need new
skills in telecoms, secure databases, encryption etc.

John McDermid, Professor of Software Engineering at the University of York, asked me if I
would contribute a chapter on discrete mathematics, the subject of my own book and of the
first FM course I constructed, to a substantial volume he was editing, the Software Engineer’s
Reference Book35. I agreed, and when I sent him the first draft, he replied that part of my text
would fit better into the Introduction, which he was writing. So John and I co-authored the
introduction and I wrote the discrete maths chapter, one of sixty three contributed chapters.
The Software Engineer’s Reference Book, now perhaps a little dated from a technical point
of view, was a thoroughly informative and useful volume. I felt that if one read a chapter
each evening one could get an excellent understanding of software engineering in less than
three months. I found several of the other chapters most instructive myself.

One of the more interesting opportunities we explored at Praxis was with the EFTPOS
consortium. EFTPOS is Electronic Funds Transfer at Point Of Sale, the system now familiar
to us all, where one can pay for goods at a shop or supermarket with a credit or debit card. To
start it all off a UK consortium was formed consisting of four banks and the national debit
card company. They were to begin with a pilot study. Hardware for the trial was to be
supplied by IBM, terminals by Ericsson and Ormeron, a Japanese firm with an outlet in
Chessington, and IMI. Cryptography was to be supplied by Plessey, their Base 24 standard
networking product. Praxis was never involved, but the ubiquitous presence of these systems
today shows that the trials and studies all took place successfully back in 1989.

Lucas developed and supplied the control systems, including the control software, for Rolls
Royce aero engines that powered many civil passenger aircraft. The target embedded
microprocessor was the Motorola 68000. The software was developed on a micro-VAX
development environment. At that time (1989) Lucas were using a local language, LUCOL,
for the code development phase and a method called Auto-G for the design. Auto-G was
35

210

based on Yourdon and data flow diagrams. Lucas were under contract from Rolls Royce to
build the control software for the next generation engines to be produced in the late 1990s,
with new control systems using the Z8002 as target machines. Lucas had promised to
produce a new controller within the next eighteen months, delivering the first prototype
within three to four months. They were expecting to write about 10,000 lines of code.
LUCOL was an autocode-level language, but I recognised that it was designed in the tradition
of analogue computers, a thirty-five year old technology. They were in effect using digital
computing techniques to simulate analogue computing, even electronic servo systems. The
code structure was linear with modules being repetitively executed every so many
microseconds. The modules were equivalent to macros in a more conventional language.
Within each module there were determinate loops. About 40-90 modules had to be produced.
Previous versions had to be rewritten for the Z8002. Rolls Royce had commissioned Lucas to
do a static analysis of the code for the 68000 using Spade. Both parties proposed to do the
same for the modules designed for the Z8002. I could see that translating the LUCOL code
into FDL would be feasible, which would enable using the more powerful SPARK proof
system.

All in all, an interesting project, and encouraging to some degree, that new techniques were
being explored to increase the confidence in the safety of this kind of critical software.
Although some of the methodology in the project’s technology was a little retrograde
(analogue computing traditions, and little separation of concerns in the design), the team were
now taking a considerable leap forward. A concern I had was that, with different
organisations being responsible for the controllers, the engines and the plane, Lucas, Rolls
Royce and the aircraft builder, no-one seemed to have responsibility for the overall cohesion
of the architecture of the control system from the pilot to the engine. This continues to be a
feature of today’s urge to unbundle responsibilities, for example on the railways, with
different firms taking charge of the rail network, the stations, the trains and their schedules:
who takes care of the coherence of passenger safety from entering the station, alighting from
and to the platform, having enough time to board and disembark from the train safely, and
safety throughout the whole journey?

A short time afterwards we spent time with Marconi considering another consultancy
opportunity.

Those of us who gave courses also attended them, both technical ones and “management”
courses. I personally attended management courses on appraisal interviewing, leadership and
recruitment interviewing. As well as the many FACS events that I went to in my rôle as a
FACS committee member, I attended courses on Type Theory, Theorem Proving and Frame
Theory. Type Theory is the mathematical theory which can form a model of the data types

211

that one can use in programming languages. This is especially tricky where the language
allows the programmer to define their own types. Theorem proving and logic is one of the
most abstruse topics in mathematics, left only until part III of the Cambridge mathematics
tripos when I took it in 1962, and hence a post-graduate course. To design and even use an
automatic theorem prover or proof assistant, which is an aid to proving programs correct, one
needs to know about mathematical logic, which underpins formal proofs. The course was
held at Leeds University.

The Ministry of Defence standard DS0055 is related to BS5750, to which Praxis had recently
been certified. With our propagation of the use of formal methods, we investigated how these
standards should be applied to projects using FMs. There are in DS0055 a number of rôles,
organisational structures, records, notions, documents and life-cycle activities. It was possible
to relate most of these features to the activities specific to a safety critical project, in which
formal methods were most likely to be used.

In the context of safety critical systems, whether or not they have an IT component, a
technique called “Hazard Analysis” was developed, became a mature, well defined approach
and the subject of standards itself. It would cover an initial review of the contract for the
project under scrutiny, its technical validity, a review of system safety, operating and support
analysis, review of system safety during maintenance, and more.

The IEE was becoming more interested in computing, seeing it as a branch of electrical
engineering. It began to rival the BCS as the professional society that supports software
engineers, and does so to this day. In 1989 they got together with the NCC and awarded
certificates in software engineering. Ten polytechnics and higher education colleges offered
courses that would lead to accreditation. Today ET, the fortnightly Engineering and
Technology magazine of the IET, and the frequent regional meetings of the IET, are often
dominated by articles and lectures on information technology matters.

Maybe there is a parallel between this movement in the IEE/IET and in the software
engineering industry. One could see it as a movement away from the coalface of hard
engineering work, the technology of materials and their manipulation, to the more arm’s
length control, where software prevails. At about this time I went to the Praxis library and
looked up the archives of the twenty most recent projects. (The practice of keeping an archive
of completed projects can lead to many useful insights afterwards and is much to be
commended). Only five out of the twenty projects were required to deliver an implemented
program. It seems that customers needed most help in the early stages of the development
cycle. Three delivered project plans, two requirements analysis, four produced designs, five
were more general consultancy projects and two were software or system audits. Having said

212

that, the implementation projects were generally among the longest in terms of effort and
duration. I personally came across customers who wanted to retain control over the
implementation of their projects, and they perceived that they could do so most easily by
“doing it themselves”, after help with the tricky early stages.

The BSI standardisation of VDM continued to progress. ISO voting was positive, STC
copyrights of certain key documents were expected to be released, a contribution on good
style of writing VDM was included, and the committee considered issues relating to
polymorphic and recursive types. The process of defining the standard uncovered quite a few
areas where different uses and meanings had been assumed by different VDM writers. We
decided that the standard VDM should not permit any language extensions and only admit
changes necessitated by problems in the semantic definition. At the same time, funding was
needed for the whole process of standardisation, and we pursued funding opportunities from
the DTI. The DTI had an initiative called TickIT for certifying software quality. The DTI
used BSI as a certification agency for TickIT, and so funding for IT standards could be
obtained through this route. Some eight intensive meetings over twenty months later and the
standard went to the BSI and ISO in “draft” status.

FACS held the Third Refinement Workshop in Oxford in January 1990. The topics included
the refinement calculus, originated by Carrol Morgan, refinement applied to CCS, CSP,
Action systems, the proof of a compiler, ML, RAISE, and VDM. I continued to be heavily
involved in BCS FACS. The committee meetings generally took place in the evenings, or
occasionally over a weekend. So on the whole this did not impact my work at Praxis very
much, although responding to emails, organising further meetings and the like took up a little
time during “normal” working hours. This time had to be recorded as an overhead, and I
found it quite difficult to keep this to an acceptable minimum. Staying late at work was
frequently necessary. FACS got close to the London Mathematical Society, as well as the
Institute for Mathematics and its Applications, the IMA. We held events on functional
programming, concurrency, LOTOS and the formal definition of specification languages. We
decided to include a tutorial event once a year on a subject such as denotational semantics.
During those years, 1990 – 1991, we often held committee meetings in a booked room in the
City Pipe, a Wetherspoon pub in the City of London. There was no charge for the room, the
proprietors reckoning that hosting a meeting on their premises would stimulate sales. They
were probably right! Various industrial and other organisations supported or sponsored some
of the FACS events, such as BT for LOTOS, IBM for the Third Refinement Workshop and
the Logic for IT initiative of the SERC for the Concurrency workshop. The FAC Journal was
in its second year of publication (1990) and a line-up of future issues in the pipeline. I edited
a special edition on the modularisation of specifications. Almost all formal specification
languages were “flat”, that is, had few facilities for expressing a specification of a system in

213

terms of the specifications of its parts, unlike most modern programming languages. This was
a deficiency. So we invited papers on the subject for FACJ.

There was a tradition that had grown up in FACS to hold an event over a day or two in late
December, which we called the Christmas meeting. On 20th December 1990 the topic of the
Christmas meeting was formal aspects of databases. Databases were normally associated with
commercial applications, where formal methods were less in evidence. Although this meeting
went off well enough, I felt that it was used by some of the database devotees as an
opportunistic platform for advocating database techniques rather than formal ones. We held a
weekend committee meeting in January 1991 and did a lot of forward planning, plotting out
events for the next two years into 1993, with proposed events on B, Measurement, Databases
again, RAISE, Domain theory, and Process Algebras. We drew up guidelines for organising
events and established a working arrangement with Springer in London to publish the
proceedings of the more significant events in a dedicated workshop series. One of these was
on the topic of formal methods applied to measurement. There had always been a tension
between formal approaches to software development, where a solution is derived
progressively by logical steps from an initial specification, and a by then burgeoning school
of thought, software metrics. The latter regarded the software development process as
something subject to experimentation, measurement and theorisation about resources and
error rates. On the face of it, these two schools are in opposition: formal development asserts
that the use of proof must eliminate errors, whereas metrics asserts that errors will always
happen, so the way to control them is by experimental observation of trends and thence
prediction of reliability. Robin Whitty, professor at South Bank University, London, and I
believed that these two positions were too stark and there had to be common ground. We
started to plan a FACS event on Formal Methods applied to Measurement. The resulting
event in May 1991 at South Bank University was particularly successful, avoiding the
traditional clichés of the opposing positions, and with several speakers (Austin Melton and
Horst Zuse in particular) putting forward thought-provoking ideas on abstract models and
measurement theory.

Meanwhile we were planning the Fifth Refinement Workshop, to take place in London in
June 1992. Lloyd’s Register, Program Verification Ltd. and the DTI had agreed to sponsor
the event. The Refinement Workshops had by now become the major annual British formal
methods event.

Towards the end of 1991 the BCS came into some temporary financial problems, owing to its
difficulty in selling its London headquarters in Mansfield Street. FACS was in a very good
financial state, having its own bank account and facilities, but constitutionally we were part
of BCS and so there was a possible danger to our own financial autonomy. We seriously
considered setting up a company owned by the committee and at the committee’s risk. In
fact, this never happened. BCS recovered extremely well largely by mounting a very

214

effective recruiting campaign, holding out benefits of status, qualifications and facilities for
new members. The Mansfield Street headquarters were sold, BCS moved to Swindon where
costs were lower, but in due course moved back to London to substantially superior premises
in Southampton Street. BCS is in 2011 a financially and scientifically thriving professional
society.

Of course, I was working for Praxis all this while, and supporting FACS and the
standardisation of VDM had to be done mostly in my spare time. It was acceptable to use
some of the firm’s resources, secretarial and communications, for these “professional”
purposes, since the involvement enhanced the company’s technical reputation and image.
One Praxis project I carried out was for a London finance company client. Their business was
with real estate, mortgaging, insurance, valuations and the like. The project was named
“Abacus”. I was chosen to do this project because I lived in London; Praxis was based in
Bath, an hour and a half’s train ride away. Anthony Hall at Praxis wrote the bid for the work.
Anthony was experienced with Z, the formal method developed at Oxford University and
used in projects at IBM and INMOS. In his bid he proposed using Z in the Abacus project. I
had not used Z before, although I was familiar with it; I had concentrated on VDM, which
had broadly the same characteristics. So I had to get up to speed rapidly with Z, which I did
with little difficulty. In the project I used a simple support tool for Z written by Mike Spivey
at Oxford University, called fUZZ. The firm wanted to produce a database which reflected the
structures of their clients, properties and users, with their rules built in to the database. The
firm were extremely concerned with security and commercial confidentiality, and wanted a
secure database for these reasons. They were adamant that their name should not be recorded
in any of our documents, for fear of their competitors learning of their use of formal methods
in the project. Although I spent some weeks on the customer’s premises, constructing the
specification in Z using fUZZ, I’m to this date not sure what the firm’s name was.

The usual process with any project of this kind is to start with eliciting the customer’s
requirements. They had a large rule book, which was full of a mixture of technical and other
requirements. By making experimental formal fragments of aspects of these rules in Z, I
unveiled numerous uncertainties and produced lists of questions for them. My main contact
within the firm was two software engineers, who were the two most IT technically oriented
people in the company. We had a string of meetings where I asked questions. Do the users
form a hierarchy? Is it the case that no property can belong to more than one property group?
And so on. Within a few weeks I was writing copious quantities of Z, checking its
consistency with the fUZZ tool, and giving small presentations to my contacts in the firm. The
project was delivered after six weeks, with apparent satisfaction on the part of the customer.

215

My manager at Praxis, John Thornton, spoke to me about a prospect, some consultancy work
for a firm called Headland. They had bought out four other companies and wanted to unify
the five different accountancy packages. All were product -oriented. The R & D functions of
three of the companies had been brought together under one roof near Basingstoke. Research
was separate from development, but all were innovative enterprises. The packages in question
were wide-ranging, covering variously Planning, QA, Methods, Configuration Management
and Documentation. The customer offered a fifteen day contract to analyse what was
required, leading to a feasibility study, an action and cost plan. They wanted a 10-15 page
report with a plan for further work, including networks and bar charts etc. The company had
480 employees. I could do the work from home. But it was another prospect that never
matured into a contract. Once again, I suspect that the company issued an invitation to tender
to a number of consultancy companies like Praxis, surveyed the resulting bids and used them
as the starting point for the feasibility study, which they then carried out in-house. That way
they got several considered top-level analyses for free.

John Thornton, who was in charge of the Consultancy group in Praxis, searched for possible
contracts that I could do. I still lived in London and still worked under an arrangement where
I was considered to be based at home, charging my fares to Praxis headquarters in Bath and
taking any London based contracts I could. John had been negotiating with the DTI for me to
be seconded there, in the Information Technology directorate, for a lengthy period. I went to
the DTI in London for an interview with the directorate’s head, Professor John Buxton, with
whom I had had several earlier associations. John Buxton was also on secondment; indeed, it
was a policy of the DTI to bring in specialist talent from academe and industry to help
operate their more technical directorates. I would be given a job title of Assistant Director of
the IT Directorate, along with about four others. The Directorate used to initiate programmes
of work, such as software engineering or speech and language technologies, offer grants to
proposed projects, usually carried out by industry, but frequently in mandatory collaboration
with academe, judge the contending grant applications, and fund the most promising of them.
I had already been in the rôle of Monitoring Officer for a couple of projects, notably Analyst
Assist, on contract with the DTI. Within the DTI, I would be Project Officer for a list of
projects, in a number of areas. One of these would be Speech and Language technology,
taking over from Nicolas Ostler, who was expected to leave in a few months. Projects in this
area related to the analysis and understanding of speech, and translation and processing of
natural languages. I would also be Project Officer for European and ESPRIT projects. There
were several other European initiatives besides ESPRIT, some of which worked under the
arrangement that a collaborative European project would be funded by the national
government of each partner, taking responsibility for that partner’s share of the expenditure.
So in a collaborative project with industrial partners from France, Spain and the UK, for

216

example, the UK firm would be funded by the DTI, the French and Spanish companies would
be funded by the French and Spanish equivalents of the DTI, and the European Commission
would oversee the whole project in some way.

John Buxton advised me that at the end of my secondment I was likely to find that the
“wound” that I left by my absence from my employer would have healed by the time I
returned, and that many secondees found themselves out of a job when their secondment
terminated. This did not entirely surprise me.

The SERC was running an initiative called Logic for IT, and under that was holding a course
on Frame Theory. Frame Theory is a topic in mathematics related to lattices and topology,
and a generalisation of the latter: that is, any topology is a frame. Frame theory and topology
can be used to model computations. Having been engrossed in the rather mundane, less
academic work of Praxis, I felt a need to stretch my brain a bit on some demanding
intellectual computer science. Shortly before the start of my secondment to the DTI I asked to
be released to go on the course, which was three days long and held in Oxford. Praxis agreed
to let me have the time, recorded as training, but said I had to pay the course fee myself.
There was one price for academics and a higher price for industrial participants. I asked the
course administrators if I could be granted the academic fee, since I was paying it out of my
own pocket. They silently agreed. I was the only industrial attendee and I suspect that I was
the only one paying myself. The course, given by Harold Simmons of Aberdeen University,
was demanding, enjoyable and stimulating.

Chapter 11 Civic Duties
I started my secondment at the DTI in April 1990. Nicolas Ostler was, indeed is, a supreme
expert in languages and the technology for processing languages. It was unwise for the DTI
to end his assignment as a secondee, but this move arose from their policy and outlook that
no-one needs to be a specialist; generalists were the order of the day. I felt embarrassed at
stepping into Nick’s shoes when I was so clearly less qualified to do this work, but he
explained the ins and outs of the tasks to me with the utmost care, to make my learning curve
as easy as possible. In the event, he stayed on at one day a week for the next six months,
which was immensely useful.

I was made extremely welcome on my arrival at the DTI. Their care for employees was
without parallel in all the different types of organisation where I had worked. However,
working there was stressful, on account of the enormous importance attached to the results
and timeliness of the work one had to do. A Project Officer’s duties related to past projects
that were at completion, projects currently running, and new programmes of work with
applications for grants from prospective projects.

217

One requirement for those working in the DTI was that one should not have any interest in
any particular company. This included owning stocks and shares. I had inherited a few shares
from my mother, and had to declare these. It was decided that the quantity was so small that
there was no issue.

Working for the civil service, one has grades. So-called Management grades are numbered 1
to 7, 1 being the highest. This was in contrast to Praxis grades, where the higher the number,
the higher the grade. At first, the DTI proposed that I should be grade 7, but John Thornton
negotiated that I should be grade 6. This would bring more money into Praxis from the DTI
for the secondment. So I was a grade 6; comparing myself with the other grade 6 staff, not
many of them, I felt that this was perhaps higher than I deserved. The grade was also one’s
job title; instead of saying “my department manager” or “my division manager”, people
would talk about “my Grade 5” etc. I was one of three grade sixes in the directorate. Nicolas
Ostler and Graham Mackenzie-Washington were the other two. Graham was a regular DTI
employee, and something of a guru of the directorate’s ropes. He was a tremendous support
in guiding me through the mores of DTI’s ways of working.

Every DTI project, whether it was a large scale initiative, support for a project under an
initiative, or even engaging a secondee such as myself, had to have a ROAME reviewed and
accepted. ROAME was an acronym for a case for the required funding, consisting of
Rationale, Objectives, Appraisal, Monitoring and Exploitation. Nick Ostler was in the
process of writing a ROAME for speech and language technology projects. The plan was for
me to take over this work once he had got the ROAME through the lengthy approval process.
A ROAME of this kind had to go before Government Ministers, but not the Treasury (some
did, however). I was to concentrate on formal methods projects and their European
connections. Besides ESPRIT, there was a separate European initiative called Eureka. Unlike
ESPRIT, Eureka was not funded through the CEC (Commission of European Communities),
and a Eureka project could include partners from any of 39 specific European countries, not
just those from the EC, although the 39 included those.

SALT was an association of organisations active and interested in speech and language
technology, the UK members funded by the DTI and the SERC. It too needed an approved
ROAME to secure the DTI part of the funding. It funded some projects, and encouraged
exchange of ideas and information between active parties through meetings and conferences.
A considerable number of the ITD were involved in SALT.

There was a plethora of committees and subcommittees within or including the ITD. ITAB,
the Information Technology Advisory Board, oversaw funded IT projects. It had two
subcommittees, A and B. I found myself most often attending meetings of subcommittee B.
An extract from some private notes I took at a meeting of subcommittee B where a certain
funded project was being discussed, may give a flavour of its way of working.

218

There seem to be several factors contributing to the lack of success of this project. None of
them are disastrous or overwhelming in themselves; none of them are such that some party is
obviously to blame; all of them are easy to recognise in retrospect, but easy to have been
passed over at the time; none of them alone would have definitely jeopardised the project to
the extent that the they would have been adequate reason for suspending the project.

One major factor I think is that there was not a sufficient coherent unified technical vision for
the project as a whole that could lead to plans for technical integration of the work. Hence the
disjointed results, and the collection of deliverables which are difficult to conceive as a united
whole. But I want to look at other parts of the file to get a better idea of the initial planning.

...

There was sometimes a temptation for Monitoring Officers to identify too strongly with a
project, especially if they were subcontracted from outside the DTI, so that they began to
“defend” the project against the DTI instead of acting as an objective observer, reporting on
the project to inform the DTI. Seasoned DTI staff referred to this phenomenon as “going
native”, recalling an imperial past!

Two important programmes in the ITD were Systems Design and Safety Critical Systems.
Both were overseen by Subcommittee B, but the projects in each had their own project
officers. I was project officer for Systems Design projects, Simon Attwood was PO for Safety
Critical Systems projects with Bob Malcolm, another secondee whom I had known for many
years, technical coordinator. The immense level of scrutiny of these funded projects was a
surprise to me; all of them had Monitoring Officers too, a rôle I had carried out for the
Analyst Assist project. In addition, there were some more ad hoc groupings of projects.
Metrics for example was not a programme, but consisted of a few pieces of work and
individuals, possibly in different programmes. Great emphasis was put on attempting to
coordinate and cross fertilise between different projects, to the desirable advantage and
advancement of UK industrial firms. In some ways, one could say that inter-company rivalry
within the UK was discouraged in order to promote international competitiveness.

Eclipse was a knowledge engineering collaborative project, which has now grown to a strong
technological community. A further project was set up to evaluate the Eclipse project. This
project in turn had to have a ROAME, and I was asked to provide a view to contribute to the
evaluation of this project. I found it a bit odd evaluating an evaluation project, especially with
respect to the aspects of its ROAME: how could one evaluate its exploitation, for example? I
thought that the only way an evaluation project could be expected to be exploited was by
informing the original project under study, Eclipse in this case, and observe whether such
information had been taken on board and whether Eclipse in turn had been exploited, a
second order exploitation if you will. All these were indeed positive outcomes.

All these activities came under the umbrella of the Advanced Technology Programme in the
DTI. This covered more than just the activities within the ITD, thus more than just IT related

219

work. I was sent on a two-day course on the ATP. We were told about the general aims,
Support For Innovation (SFI), the Small firms Merit Awards for Research and Technology
(SMART); acronyms abounded in the DTI and often seasoned DTI staff had forgotten what
were the original expansions of many of them. Government support had moved away from
being near-market in recent years. The thinking was that government should not take on
industry’s initiative. On the other hand, the DTI at any rate was not going to support blue-sky
research (however, the EPSRC and parts of the EC would do just that). EC rules prevented
governments from giving grants that would make for unfair competition, hence funded
projects had to be some distance from “market”. Much of the course was devoted to
explaining terminology. A Scheme is a broad heading of government funding. Programmes
were technical areas within a Scheme. Projects could be funded within a programme. (In the
CEC context, programmes were grouped into a Framework. ESPRIT was one of 37
programmes forming, in 1990, Framework III.) There were various criteria which applied to
both programmes and projects. Additionality was one such: research and development had to
provide some additional advantage to a wider audience than just the participants.

The ROAME approach was explained, including the desirable form of a ROAME, down to
the recommended number of pages for each section. The Rationale should explain why the
project/programme was to be carried out, in terms of the benefit for the UK. Policy, Rationale
and Objectives form a hierarchy of abstraction, each being a reification of the former.
Objectives could be commercial, economic, operational, technical or relating to
dissemination. Much store was set by Market. Market was supposed to provide the ultimate
value of any endeavour. But if through some explained quirk of mechanism, market failed,
then that market failure could be used as a reason for government funding. Personally, I was
never convinced by this emphasis on the mechanism of market. It seemed to me to smack of
bias towards a particular kind of political-economic theory.

Eureka covered 39 European countries including but extending beyond the European
Community. There were at the time 297 current projects under Eureka, with another two to
three hundred further proposals in the pipeline. Each country had a national coordination
office. In the UK this was a section within the DTI. Criteria for funding under Eureka were
much the same as in other schemes, but a collaboration could involve just one UK partner,
projects could be nearer to market and industry-led, they need not involve government
funding (about 30 were unfunded but were still Eureka projects), funding was a maximum of
50% of eligible costs, projects could co-opt more companies after starting up, and the IPR
could be negotiated between the participants, with the respective national coordinating offices
putting in their bids for national interests.

Some programmes could incorporate “Uncle” projects. These were academic projects that
had an industrial “Uncle”, an individual from industry who would visit the project at
intervals, typically every three months, to provide industrial input and try to keep the project

220

of ultimate practical utility, even if that was long-term. This was a very light form of
academic-industrial collaboration, but it gave the academic partner some ratification for
government funding. Even these projects required a monitoring officer. For Uncle projects,
these MOs were from another academic institution, and were paid a standard rate of £200 per
day, working out at about £25 per hour in 1990, modest even then.

The DTI was involved in PCTE and PCTE+, already mentioned, since Praxis took part in
several PCTE-related projects. The MoD and ECMA were highly interested in PCTE+, and
ECMA proposed to adopt it as a standard: ECMA PCTE would be PCTE+ re-badged. The
DTI proposed to host a workshop on the industrial use of PCTE, publicised within JFIT and
the BCS Computer Bulletin (a newsletter of the BCS, which is now renamed as IT Now). A
PCTE newsletter was being published by the French R&D firm Emeraude.

The European Software Factory, ESF, was an international endeavour to define and produce
an environment for developing and supporting software: a PSE in other words, but wider-
ranging than most. BT were participants in the project, assisted with funding from their
internal customers. BT saw ESF as near market, and were not interested in its commercial
exploitation as such. Their interest was to encourage their software suppliers such as ICL and
SEMA to use ESF and thereby ensure a uniformity of quality and direction of their supplied
products. Having BSI registration, BT was motivated to follow a quality route in its policies.
They considered that DTI funding would help to sell the concept and wanted to know
whether such DTI support was forthcoming, to what percentage and scale, the appropriate
details. A possible spin-off downstream of ESF itself might be common components and
general experience. STC, ICL and Logica were among the other UK participants, and SEMA
in France. A Council drawn from the participating members steered the work and direction of
ESF. One technical concept within ESF was a Software Bus. (This nomenclature suggested
an analogy with a hardware bus, which is a general term for an information highway carrying
data between a large variety of components). The Software Bus was a medium by which the
ESF process model was integrated with the processes in ESF, for example Reuse, Project
Management, etc. It was sometimes described as a discipline of integration. There was a
degree of compatibility between ESF and PCTE, and parts of PCTE were reused in ESF.

There was some slight tension between the need for the ESF consortium to align its partners
to the project’s objectives and a temptation for an individual partner to use the project merely
to further their proprietary developments. But mechanisms were in place to control these
difficulties, all reinforced by contract.

Three programmes within the DTI were approved or in progress: Safety Critical Systems,
Knowledge based systems and Speech and Language technologies, whose ROAME was

221

being written. A future programme was to gather ideas from these three existing ones and
carry them forward, with some developments of emphasis. This new programme was to be
called Systems Design and Productivity. I was to be the “link man” to write its ROAME and
run it. I would have to collect ideas from interested parties and formulate viable arguments
for its approval. The programme would have to be worth doing, of benefit to the UK; the
arguments would have to be primarily economic. For example, if one could speed up the
route from requirement to delivery of systems, this would lead to competitive ability.
Computer supported cooperative work could lead to large, complex long-lived systems built
by groups of people. One might promote compatibility of tools across different vendors.
Government funding could overcome sectoral specialisation especially across diverse user
populations, leading to reuse across sectors. Productivity thus became the primary argument:
productivity can lead to interdisciplinary working and better quality. The concept of reuse
needed to be interpreted widely, as reuse of designs and concepts for example, not just of
software, which was in any case rare. Sectors were of various kinds, products, markets,
technologies and others.

I attended a seminar for Project Officers, to which Monitoring Officers were also invited.
Project Officers worked within the DTI and had oversight of a group of projects within one or
more programmes. Each project had a Monitoring Officer engaged from outside the DTI on
contract, who reported in principle to the Project Officer. Having been a Monitoring Officer,
and now a Project Officer, I had some suggestions for how the activity could be improved.
Monitoring Officers could be given feedback on whether their reports were at a useful level
of detail. More knowledge of the structure of staff and their rôles in ITD would help, as
would an understanding of what was done with their reports; currently, Monitoring Officers
received communications from half a dozen different people within the ITD, which I had
found perplexing. One reason for this was that the DTI was excellent at using junior staff to
the limit of their abilities, in taking minutes of meetings, chasing up due reports from
Monitoring Officers and deliverables from projects, and all manner of clerical activities,
which nonetheless required a measure of intellectual ability. A result of this is that people
who had a relationship with the DTI, managers of funded projects, Monitoring Officers and
others, would receive communications from many different DTI staff, and this could be
confusing. An initial one or half day seminar for monitoring officers would have been a help.
As a monitoring officer I never received the Project Monitoring manual, or knew of its
existence. Being kept informed of changes of Project Officer would have been helpful! The
monitoring officer needs a copy of the project proposal, so as to know what deliverables,
activities and objectives were expected of the project, preferably before signing the contract.
That way a prospective MO could make a better judgement about whether he/she was capable
of monitoring that project. I had to ask my project for a copy. I would have liked a clearer
understanding of what, as an MO, I could demand of the project: e.g., to see a list of what

222

personnel they are charging to the project month by month and the specific contributions of
each one. I felt that monitoring officers should be advised on how proactive/reactive they
could be – I thought they should be encouraged to be as proactive as their skill allowed. On
the Project Monitoring Manual, under “Rôle of the MO”, nothing was said about whether the
MO should try to influence the project to be successful! I thought that this was both desirable
and feasible. As an MO I required to see copies of all working documents that were
communicated between the partners, so that I could keep track of the technical progress etc. I
suggested that this should be a standard “right” of Monitoring Officers. There were various
other discrepancies between the duties that the MO had to carry out, according to the Project
Monitoring Manual, and the information provided enabling him/her to do so.

All these criticisms of mine might suggest that the process was a bit of a shambles, but in
practice an intelligent MO could deliver meaningful and helpful reports without too much
difficulty. But as a PO I found that some Monitoring Officers were surprisingly lacking in
initiative.

The DTI kept a watching brief over all the European Framework projects having UK
partners, and the ones funded under ESPRIT would feature in the annual JFIT conference. A
wide view would generally be taken of ESPRIT projects: their context within other
Framework projects, their position in the context of ITD, and the general shape of funded
initiatives in Europe. There were, in 1990, 19 UK leaders of ESPRIT projects, and 24
projects having at least one UK partner. These ESPRIT projects were within Frameworks I
and II; Framework III had been approved but was at the time yet to start.

I was taking over the PO duties of projects for which Nick Ostler currently had responsibility,
as well as other items. There were three “Clubs” within Nick’s domain. These were largely
unfunded associations of organisations having a specific common interest. SALT was one.
The others were Logic Programming, and Advanced Databases and Knowledge Bases. Also,
there was Eurotra.

Eurotra was a programme comprising a collection of projects researching the machine
translation of natural languages. Eurotra had started in 1982. There was a steering committee
and I would be taking over from Nick as UK representative on this. Eurotra was financed by
the CEC and member states. The project originated from a perceived need of the CEC: there
would be economic savings for the CEC if the numerous translations of documents into the
languages of all the member states could be done automatically. This, in 1990, was seen as a
forlorn hope, but the project was a medium for considerable and wide-ranging research. This
led to the CEC letting subcontracts to member state organisations to do the work. The UK
participants were UMIST and Essex University. Within the DTI the funding source for
Eurotra seemed always to be passed around from one budget to another.

223

In July 1990 I attended an interesting seminar on the Japanese software industry. The most
notable contributor was perhaps Alan Benjamin, who was the first director general of the
Computing Services Association and founder of the Worshipful Company of Information
Technologists. He noted that long term high investment and patient marketing were
characteristic of the Japanese software industry. He recommended using the British embassy
to find a partner in order to gain entry to the Japanese market. No “NIH” (Not Invented Here)
prejudice operated in Japan. Alan Benjamin recommended that an Anglo-Japanese industrial
club be formed.

My own personal observations from the range of published Japanese research papers were
that there was a stronger link between research directions and long-term industrial aspirations
in Japan than in western countries. Research focussed on very large scale parallelism and
sophisticated (mathematical) logics. From this I predicted that one long term industrial aim
was the development of very clever human-machine interfaces, possibly using natural
language and spoken words. If this was the case, we have yet to see it emerge, but some work
along the way might be discerned.

Although I was seconded to the DTI, I still spent occasional days at Praxis in Bath, reporting
briefly on my secondment, which was viewed as a Praxis contract, and taking part in some of
the indirect Praxis activities. I remember, for example, participating in a committee to review
the Praxis project review process, which was crucial to the in-house quality system.

There were many specific duties and fierce deadlines working in the DTI, but one had a large
measure of freedom too. The approach to timekeeping was relaxed, provided the work got
done, and one was free to arrange a visit to an industrial or academic institution on one’s own
say-so, for example. I was interested in the use of IT to assist those who were disabled in
some way, blind people for instance, and was a member of the Disabled SIG of the BCS. I
visited Sight and Sound Technologies, a firm that designed and manufactured equipment
enabling blind people to use a computer, among other things. Being a representative of the
DTI, and hence the “Government”, one had considerable clout: a visit was always granted,
and demonstrations arranged and provided. Sight and Sound Technologies showed me their
various pieces of equipment and told how they were being used in libraries and other places.
Today, such “accessible” interfaces are provided as part of the latest operating systems as
built-in facilities.

224

Springer-Verlag London publishes a lot of computer science and software engineering books,
and FACS had developed something of a special relationship with them. Springer published
the FAC Journal and several proceedings of FACS conferences. After some negotiation, in
1990 Springer agreed to start a special series of volumes, called FACIT – Formal Approaches
to Computing and Information Technology. An advisory board was set up and we had
lengthy discussions on the content and emphasis of the series. Springer expected members of
the board to procure proposals for books from our contacts, something that I suspect did not
transpire as much as they would have wished. However, a healthy collection of volumes
appeared in the series over the years, and it was the first port of call for many computer
science authors looking for a publisher.

In July 1990 the DTI held a seminar on ESPRIT Framework III. I introduced the day: the
purpose of the seminar, format of the day, circulated the attendance list and introduced the
first speaker, Derek Flynn. A number of speakers gave position papers and there was a fairly
free-ranging discussion. ESPRIT Framework III was to run from 1990 to 1994, and had a
total budget of 5,000 MECU, millions of ECU. Participation by UK organisations was
allowed up to 16% of this total. Speakers from academic and industrial organisations in about
equal numbers contributed positions: IPSEs, software reuse, safety critical systems,
technology transfer, quality, user interfaces, foundations of software engineering, software
components, measurement and metrics, reliability, testing and validation, performance,
exploitation, distributed systems, neural networks, learning systems, genericity, formal
methods, speech and language, and multi-media were all topics of discussion.

I had been Monitoring Officer for the Analyst Assist project, of which Robin Pyburn was the
project leader. Robin and I had both worked at RADICS in 1969-1970. Now Robin Pyburn
was the Monitoring Officer for the project CLARE, and I was the Project Officer. It is mildly
amusing how the same people waltz around each other over the years.

John Buxton and I presented the ROAME for the proposed System Productivity programme
to Subcommittee B. We received several pieces of advice: to emphasise the problem of scale,
i.e. how to build large systems; to strengthen trans-sector reuse; building systems in a generic
environment; to show how the objectives lead to revitalisation of British software industry.
The discussions at these meetings were always in very general terms with much metaphorical
hand-waving. The programme had originally been called System Design, but the name had
changed to Productivity to change its emphasis from the technical to the economic. The
estimated budget was some £36M with half provided by industry and half provided by
Government, of which DTI would supply £14M and SERC £4M.

John appointed me as Project Officer for the applications of Imperial College and BT to take
part in ESF (European Software Factory). ESF was a project under the Eureka scheme. In

225

many ways, ESF was more like a programme rather than a project, because of the loose
associations between the work of the different partners. Another member of ITD retained the
PO responsibility for ICL’s participation. John Buxton and I visited BT, who already had
experience in project support environments: MCHAPSE in 1983 and ISTAR in 1984 to 1988.
I attended an ESF conference in Berlin at the end of 1990. Fourteen organisations were
participating in ESF, including three academic. Imperial College was one of the latter. My
conclusions at the end of this conference were that these kinds of massive infrastructure
systems will only ever be afforded by the biggest organisations, even with European
collaboration. But it was good to have a European competitor to the US efforts in support
environments. The collaboration could help to achieve standardisation which would
otherwise be slower. Conformance to such a standard would make such a software factory
more competitive and saleable. But little UK collaboration was visible. Having said that,
using a software factory could bring large companies such as BT and ICL into a modern era.
Funding the collaborative overheads seemed justifiable, especially for European standards
and compatibility. I still had grave doubts about the plausibility of these huge infrastructure
systems. The main trend seemed to be towards user-driven and user-definable systems, not
massive institutional ones. I would have liked to see more technical issues aired in the
conference.

I visited SEMA who were another partner in ESF. After a discussion on their expenditure and
claims to the DTI, always a necessary topic on a PO’s visit, we talked about the direction the
project was going. They were going to put less emphasis on tools, more on the kernel of the
system. They wanted to investigate and seriously develop means of integration with other
platforms. I urged them to marshal arguments to show how wider benefits would result. For
example, they wanted to enable ESF to support the traditional development method, SSADM,
which many organisations were still using. Other continental partners included Matra, AEG,
Telesoft, Softlab and CGS.

By July 1991 BT had withdrawn from ESF, and a company sprung from the University of
Durham, independent but in the university Science Park, had joined. This company was
formed mainly because the French participants did not want to subcontract to a university;
otherwise the company, albeit “Ltd”, comprised members of the Durham computer science
department.

ESF, funded through Eureka with the French government funding the French partners 100%,
was an advanced generic environment for software development. The aim was to bring a new
generation of integration technology to industrial scale software engineering products and
practices. The watchword was integration: of software product management, developments of
actual pieces of software, configuration control, production of manuals and documentation
etc., a framework to support all the computer-based activities of software production. What
was believed to single ESF out was its genericity: not oriented to any specific method,

226

application or programming language. Particular instances of these environments or
“factories” can be provided which would be built according to the underlying architecture
and conforming to a number of technical standards specific to ESF. That was the idea. It
aimed to be the major software environment project in Europe. ESF as a Eureka project was
to have a ten-year lifespan from 1986 to 1996. The partners comprised 3 German, 4 French, 1
Swedish, 1 Norwegian and 3 UK bodies. SEMA and ICL were the UK industrial partners,
Imperial College the academic one. Durham University’s participation was still only a
proposal in August 1991.

In February 1991 I visited Imperial College to discuss their latest proposal for taking part in
ESF. I had various questions, of the kind I had learned that it was necessary for a PO to ask.
Since the previous version of their proposal, the collaboration seemed weaker, because there
were no longer any references to sub-projects within ESF; not a good thing from a DTI
perspective. One justification for government funding was that it fostered collaboration,
which in turn stimulated technological advance. The proposal had notes of pessimism: “It is
widely recognised that there are difficulties with some of the strategies of ESF”. The proposal
did not elaborate this any further. This would cause alarm within the DTI, even to the extent
of questioning the existing funding that the UK were providing to ESF. They would think, are
we being asked to throw good money after bad? IC needed to explain and itemise this, and
reassure as to how the difficulties could be resolved. It conflicted sharply with the euphoric
style of most ESF publicity. Later on, the proposal offered new and helpful promise of
collaboration, to some extent counteracting the earlier weakness. More details of the
collaboration mechanisms would help. Each major task would deliver a consultancy report.
Were these the only deliverables? They needed to provide a list of all deliverables with time-
scales, preferably not all coming to fruition at the end of the project’s two-year time span!
These deliverables were needed to assist the Monitoring Officer’s task (of monitoring the
project). I give this detail here to convey the flavour of the relationship between Project
Officers and their projects. These are the kinds of questions a PO has to ask and issues to be
understood.

Another EC funded initiative that was more of a programme than a project was Eurotra. The
programme was funded by the Commission through “Contracts of Association” with the
participants, the British participants being two universities, Essex and UMIST. The DTI part-
funded the British participants and the equivalent national administrations likewise part-
funded the participants in the other EU countries. The European Commission coordinated the
whole effort, provided a proportion of the funding and periodically called meetings of project
leaders and representatives from the contributing national administrations. I thus found
myself attending these, essentially steering group, meetings, as well as funding and other
policy meetings within the DTI. The EC chaired meetings were all held in Luxembourg, my

227

first visit to that country and its eponymous capital. There we discussed and agreed on
matters of distribution of results and IPR, the proportions of EC and national government
funding for different aspects of the projects, royalties, and matters of that kind. The
Commission wanted identical clauses on IPR to be signed in the contracts of association. But
also discussed were technical strategies. All participants wanted to work on translation to and
from English and most also to/from German; technical matters included common
grammatical issues such as morphology1 and modifiers2. The EC wanted final reports on the
work done from each member state to cover the whole programme period. Both scientific and
management reports were proposed, the latter to relate what happened to the project and what
it produced, the former to concentrate on software produced and such like. The whole
programme was to cost some 10 million ECUs.

Meanwhile, within the DTI there were the usual requirements for any UK government funded
programme: a ROAME had to be written, and with something of this size, the advance
expenditure had to be agreed at a meeting involving representatives from several DTI
divisions and the Treasury. I wrote the ROAME and then presented it to the the approval
meeting. Since the programme had been running for a couple of years, I thought that
provided I clearly stated the work to be done and related issues, the decision would be taken
on the merits of the case, which since it had been approved for previous years would be quite
apparent. In an industrial situation, of which I had had considerable experience, this would
have been the case: no industrial organisation would casually put a large investment into
something and then halt it before the results had arrived. I couldn’t have been more wrong.
This was my first time presenting in one of these committee meetings and the experience was
ghastly. The process in the DTI, and probably throughout the civil service, was for the
protagonist of a case to come with a band of supporters, or at least an ally or two, all of whom
could contribute their views in the argument. Decisions were taken not so much on the merits
of the case as on the rhetoric and debating skills of its defenders and opponents. The Treasury
representatives, and some of the others, would see their rôle as trying to save government
spending, of course understandable to a degree. The result was that the committee rejected
my ROAME, which would mean that the UK’s participation in Eurotra would be stopped.
This was disastrous, considering that the teams in two universities had been working on their
projects for several years and had every right to expect that funding would continue until
their conclusion. One of my grade 7 colleagues in the DTI IT division heard of this calamity
and helped me bring about a change in the decision. Together we wrote carefully worded
memos to the grade 5 manager who chaired the committee. My colleague explained to me
that challenging the committee’s decision would not do; it had been taken through an entirely
correct process. Essentially I had to say, cap in hand, that it was my fault for not bringing all

1 Morphology concerns changes to the forms of words, usually endings: has, had, have for example.
2 A modifier is a general term for an adjective, adverb and also the word change that alters its grammatical rôle
such as give - giver - given.

228

the salient facts before the committee. The one missing fact that we hit upon was that a
government minister had put his name to the funding of the British part in the programme at
its inception, and to cancel it now would cause him great embarrassment. After several
exchanges of memos with the grade 5, he eventually agreed to reverse the committee’s
decision. Phew. I could go back to Essex University and UMIST and tell them that all was
well. I felt somewhat humbled by the fact that the colleague who guided me through this
repair process and saved the day was a grade 7, a lower grade than mine. I often wondered if
I really deserved to be grade 6.

Because the previous DTI project officer for Eurotra, Dr. Nicolas Ostler, had so much
expertise in matters of languages and translation3, I felt I should at least teach myself
something of the technicalities of the subject area. I did not want to be just a government
administrator. I asked Doug Arnold, who was the lead researcher at Essex University’s
contribution to Eurotra, for suggestions on some reading matter that might help me obtain
some technical background. He recommended Lectures on Contemporary Syntactic Theories
by Peter Sells4, which was in their MSc reading list. I found this most illuminating, and
learned that there was much more to grammar and syntax than the traditional parts of speech
that those of us of a certain age were taught at the age of nine or so, and which were part and
parcel of the process of learning Latin and classical Greek.

An illuminating meeting of the Language Round Table (the government funded programmes
had a penchant for inventing these little committees) in Paris revealed some rather interesting
statistics: 9.1 million person-years are devoted to the written word each year, which is 19% of
the world total: it varies from 22.7% for the lowest level worker (“office worker”) to 16.5%
for the highest (“high-level executive”); 30% never use DP tools; 5% of foreign language
dictionary usage is computerised; 11 people out of 242 (4.5%) used computer-aided
translation. These statistics date from 1990.

In June 1991 I attended the Eurotra Advisory Committee in Luxembourg. this committee
selected the project proposals that would be accepted into the Eurotra framework. There were
rolling calls for proposals every few years, each call designated ET1, ET2 onwards. The
deadline for ET9 was at the end of the next month. The committee comprised delegations
from twelve European Union countries: Belgium, Denmark, France, Germany, Greece,
Republic of Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain and the UK. There
was a question about how follow-up projects resulting from previous calls, even from ET6,
related to ET9. Follow-up projects could include implementing software and extending
research. Not all scientific problems that previous calls addressed had been solved. ET6 was
complete and its final report would be produced the following week. Then the means of
selecting proposals in the forthcoming ET10 was discussed; the selection process evoked a

3 His various recent books, see Ostler 2005, 2007 and 2010, are very accessible to an intelligent lay reader.
4 See Sells 1985.

229

lot of criticism. There was a desire for more visibility in the selection process and
opportunities for discussion prior to a fait accompli. Objections to the current selection
process were voiced by four of the delegations. Then one delegate expressed concern about
the absence of contracts of association in the projects. This led to difficulties: some groups
had to reduce their size for organisational or financial reasons. Further follow-up work would
include the creation of linguistic resources and applications of machine translation. One
project selected focussed on reusability of grammars, dictionaries and other linguistic
resources of Eurotra. The relationship between ET7 and the EC Third Framework was
discussed. Using external experts to assist in the evaluation of project proposals was agreed
for the future. Invitations had been issued to the national administrations to nominate experts.
The committee needed the list by the end of September 1991 for ET10. Evaluators would
have to declare their interests and to abstain from evaluating their own proposals, or
competing ones in some areas.

By the time I came in on the act, the ROAME for the SALT (Speech and Language
Technology) programme was at its seventh draft and was still being scrutinised closely by
many parties. A steering group codenamed “Link” had been set up to examine the ROAME
and subsequently to play a part in overseeing the programme. The forecast was for 15
projects and an expenditure of £14M over four years. After that the club was expected to be
self-financing. Meanwhile the DTI and SERC would fund two workshops per year. The
participants would include academics and SMEs, but enable exploitation by large
corporations. The ROAME included claims of UK leadership in the field, scientific
capabilities, economic interest and involvement of SMEs. At last the ROAME gained
acceptance from the governmental approval committees and was ready for presentation to
ministers.

In January 1991 I gave a presentation on SALT to an international audience in Versailles.
The programme would include speech processing: the acoustic basis of speech and computer
analysis of spoken information; assigning meaning to natural language text in computer
accessible printed form; and script recognition, the analysis of hand-written text for computer
input. We would aim to include international collaboration in some projects and widen
awareness by encouraging new entrants to the technology.

All fourteen projects within SALT contributed to the workshop held in January 1991, and
again to that held the following June. By September 1991 the role of SALT was widening.
The SALT programme could fund Eureka projects. SALT projects could involve foreign,
such as US, partners, funded by foreign sources. But the UK government would not fund
foreign partners. More adjustments were made to the structure of the coordination committee,
an assessment panel, means of reviewing, publicity and so on.

230

One of the most famous software engineering institutions in the world is the SEI, Software
Engineering Institute at Carnegie-Mellon University in the USA. They had devised a means
of assessing the capability of a software development organisation, called the Capability
Maturity Model5 - CMM. Five levels of maturity were defined, and there was a battery of
questions which, if answered honestly, would place an organisation at a level in the model.
This maturity model became very well-favoured and used internationally. It was part of a
more general investigation into the Software Process6, the process of building and
maintaining software from inception to retirement, as opposed to the Software Product, which
is the actual software and associated documents, test data and other delivered products. Part
of the reason for the popularity of the CMM, I believe, was that it is extremely difficult to
assess the actual quality of a given piece of software. So assessing the ability of the team that
built it was the next best thing. (This may be considered a slightly cynical view). However,
given this background, it was interesting to have a visit from a member of the SEI in October
1990. The SEI had a budget of $30M, and employed 150 people. They were 100% funded by
the US Department of Defense.

In November 1990, in my rôle as PO for formal methods projects, I accompanied a scientific
officer from the SERC to the Laboratory for Foundations of Computer Science at Edinburgh
University to review the projects funded by SERC grants to Rod Burstall and Gordon Plotkin,
who founded the LFCS along with Robin Milner and Matthew Hennessey. We were given a
series of presentations about the research work going on there. I was extremely impressed,
especially by the work being done on Extended Calculus of Constructions. The Calculus of
Constructions is a formal language which can express both computer programs and
mathematical proofs. It was developed in the late 1980s by Thierry Coquand and Gerard
Huet7 at the French research centre, INRIA. In CoC, types can be first-class values, that is
they can be assigned to variables, passed as parameters, returned as results and constructed at
run-time8. This theory enables the building of practical proof assistants, and was the basis of
the proof tool, Coq. The LFCS were extending CoC to allow reasoning about abstract
structures such as groups, topologies, etc., whereas CoC enabled the definition of concrete
mathematical structures such as natural numbers, lists etc. Thus in ECC, first class objects
also included theorems and proofs.

5 See Paulk et al. 1993.
6 See Humphrey 1988 and 1989.
7 See Coquand and Huet 1988.
8 The term, “first class value” was coined by Christopher Strachey in the 1960s. He advocated that functions
should be “first class citizens”. See Burstall 2000.

231

Our review meeting was held in Edinburgh University’s James Clerk Maxwell building,
which then was the home of LFCS. I was embarrassed and, indeed, rather shocked that my
co-visitor from SERC did not know who James Clerk Maxwell was.

A few weeks later I was again with a SERC panel reviewing the rolling SERC grant for
“Foundational Structures for Computer Science” at Imperial College, led by Samson
Abramsky. The Computer Science department at IC had eight sections. There were 70 PhD
and MPhil students in its post-graduate programme, which included both conversion and
advanced MSc courses. Sixty research projects were in progress, 20 funded by ESPRIT, 25
by SERC and other UK government sources, and 15 funded by industry and other agencies.
Along with the LFCS at Edinburgh and the PRG at Oxford, the IC CS department was one of
the leading academic computer science research groups in the UK.

We were given presentations by Tom Maibaum, Samson Abramsky, Steve Vickers and Mike
Smyth. Their investigations into the mathematical foundations of CS focussed on “deep
structures”, the basis of effective analytical methods. They were building on work done in the
previous two years, which had studied domain theory, models of polymorphism and
information systems where infinitary objects are defined as limits of of finite objects, after
the methods of Scott. The results promised to unify areas in which the current research efforts
were largely separate. There was also a deal of work in progress on the connections between
topology and domains, topology and logic. Once more, it was clear that radical new
theoretical research was being effectively pursued at Imperial College.

The Alvey project Poetic intended to establish a dynamic database about road conditions in
the UK, linked to police mobile radios. The partners were the AA (Automobile Association),
the Independent Broadcasting Authority, the University of Sussex and Racal. There was
liaison between the project and the Home Office, (who were in effect the authority for the
police then). The principal planned output from the project was to be a demonstrator version
of the software system; certain Alvey projects were known as Alvey demonstrators. A
prototype that could demonstrate the feasibility or otherwise of an idea which could then be
taken forward was a legitimate justification for Alvey funding.

Sussex University were to carry out all the software implementation, using Poplog. Poplog is
a multi-language software development environment supporting, among other languages,
ProLog and LISP. Sussex University had also developed Poplog. The software was to support
natural language processing, in particular, police traffic reports. One difficulty they had
discovered was that police in different areas used different vocabularies, although in a
restricted domain. Other developers could be brought in to help develop the software in the
future. Sussex University would undertake the technology transfer, dissemination being a

232

required facet of Alvey projects. Cartographic data would form part of the system; supplying
this would be the AA’s rôle. The IBA would be responsible for providing access to radio data
systems.

In December 1990 I received a proposal for a Eureka project from a UK company that none
of us had heard of. The proposal was interesting if only because it was utterly infeasible.
There were to be two partners, the other one an Italian company, but it was not clear from the
proposal whether the two were in the same group: if so, it would not have been truly
collaborative and therefore not eligible. The proposal was for a 32-bit microprocessor
designed using formal methods, and therefore suitable for safety critical applications. Some
work at the time had been done on formal methods applied to hardware design, but the
proposers made no reference to such previous work or how they would build on it. The really
stunningly ambitious part of the proposal was that the proposed machine would execute high-
level real-time languages directly. This would have moved enormously more complexity to
the hardware and to run-time: lexical and syntax analysis, name reference resolution, etc.
They proposed to “expand formal design and verification methods to system engineering,
production, manufacturing testing...”. all in a two-year project. Furthermore, they planned to
build a CAE environment to support it all. What mainly worried me was that they proposed
to develop a product, yet there were a whole string of research questions needing to be
answered on the way. We had never heard of the company, and if they were capable of doing
this kind of work I suspect we would have done.

That was one request for government funding that did not get off the ground.

Although the Monitoring Officer kept watch over a DTI funded project at least quarterly, the
Project Officers were also advised to visit their projects once a year or thereabouts if possible.
I was Project Officer of some twenty projects and at this beginning of my stint at the DTI, I
thought it wise to visit as many of them as I could, to get some familiarity with the individual
projects and to get a general view of their landscape and context. The next one I visited was
the ReForm project, run by IBM, Durham University and CSM Ltd. The purpose of the
project was to produce a system of tools that could take software written in assembler
language and generate from it a formal functional specification that was an abstract model of
it, in the Z notation. IBM wanted to develop this system in order to assist the maintenance of
CICS. CICS is a transaction manager that oversees multi-part transactions that must not be
interrupted, such as financial transactions initiated by banks, and manages restore actions in
case of breakdowns. It has many other features. IBM would share this tool with the
community of CICS users, customers of theirs. CICS was first released in 1969 and has
undergone further development ever since. It was an example of legacy code: software dating

233

from possibly many years in the past, that may work well and be useful, but whose details of
design have long been lost. The process of taking legacy code and deriving design and
specification documents from it is known as Reverse Engineering. In the normal, or perhaps
ideal, development process, one works from a statement of requirements, produces a
specification, then a design and finally an implementation, code that runs on a computer (I
am simplifying to an extreme degree here). Reverse Engineering in a sense reverses this
normal engineering process, by deriving a design or a specification from the final product.
This can be a notoriously difficult process, because one has to find the structure of the wood
when only being able to see the trees.

Thus, I paid a visit to the project at IBM Hursley research laboratory in January 1991. This
gave rise to a slightly amusing event. In welcoming me, as we were settling ourselves in the
meeting room, my hosts asked me if I had ever visited IBM Hursley before. As it happened I
had done a vacation job there while an undergraduate. Yes, I said, in 1961. There was a
moment’s stunned silence and I realised that this date was probably before some members of
the team had been born!

The project was going well, the collaboration agreement was being signed and arrangements
for approving the publication of results were well in hand, something the DTI wanted to
happen so that the benefits would be spread as wide as possible. Collaboration agreements
between the partners were also needed so that the intellectual property could be shared, but
the agreements could take a very long time to be negotiated and sometimes were signed only
at the end of all the work. The project control was the most superb I had seen so far, with
computer aids that actually seemed to be a help and not get in the way. The project was now
in the last quarter of its term and the team was making preparations for post-project
evaluation and exploitation.

The DTI maintained a bipolar relationship with its industrial and academic funding
beneficiaries. It could not be seen to direct their technical policies: that would be unwarranted
and unpopular government interference. On the other hand, any funding had to encourage
national economic and technical advancement. The DTI guidelines for eligible projects and
programmes were therefore broad but strictly applied. Within those guidelines the funding
beneficiaries (we used to call them the “punters”) could make their own technical decisions
without interference. To maintain a transparent profile, the DTI would hold conferences for
projects in progress within a programme, and workshops for establishing programmes at their
initiation. One of the latter was a workshop introducing the Systems Engineering programme,
held in March 1990. The purpose of this was both to gain views from technological leaders in
companies and academe, and to communicate to them the objectives and emphases of the
forthcoming programme. The Systems Engineering programme was to integrate two previous

234

programmes, Systems Engineering and User Enhanceable Systems. The driving emphases
were to be productivity, technology integration and benefits for the user. Increasing the users’
productivity would benefit the national competitive edge. This was the flavour, rather than
technological advancement for its own sake.

After debating this, we reached a form of words which summarised the policy of the
programme: “To enhance the productivity of IT systems users in UK business by establishing
requirements for and researching and delivering the right technologically integrated
scientifically-based advances, in both the medium and long term”. There was further debate
on this. The programme should include the enabling of users, and the link between
productivity and effectiveness. A few more sentences were agreed which gave the definition
of the programme. These would be incorporated into a call for proposals and proposals would
be assessed on their conformance to those objectives. These workshops were a part of the
process of formulating a new programme of funded R&D.

The DTI’s Information Technology Directorate was quite relaxed about enabling its officers
to attend conferences and other technical events. This may have been partly due to the head
of ITD being John Buxton, an academic also on secondment. ICALP 90 took place on the
campus of Warwick University. ICALP stands for International Colloquium on Automata,
Languages and Programming. ICALP is an annual international colloquium sponsored by the
European Association for Theoretical Computer Science. It first took place in Paris in 1972,
and in 1990 twelve European countries had hosted it. ICALP 90 was an intensive but very
interesting five days incorporating 57 papers grouped into 17 sessions. Parallel sessions were,
of course, inevitable. ICALP is one of the most prestigious international computer science
events and it was a privilege for me to attend it.

Another interesting conference that year was a workshop on Concurrency, held at Leicester
University. There is in practice little difference between a workshop and a conference,
although workshops are intended to present more recent work that may be in a less final state,
and be opportunities for discussion amongst researchers working in the same areas.
Concurrency is that research area which studies and develops the theories behind processes
that proceed in parallel, at the same time, and is motivated by modern digital electronics
involving multiple processors, and software working under the control of time-sharing
operating systems, both of which are now ubiquitous. At this workshop Robin Milner
introduced his idea of “mobile processes”, which was a development of his CCS9. In Mobile
Processes, processes themselves can be created, destroyed and passed as arguments to other

9 See Milner 1980.

235

processes10. Bill Roscoe described a theory of Tony Hoare’s CSP, and gave an account of the
difference between CSP and CCS. CSP, Communicating Sequential Processes, is defined in
terms of a mathematical model, whereas CCS is defined as a calculus. (A calculus is a set of
rules for transforming terms or formulae, without particularly prejudicing what those
formulae denote, whereas a mathematical model will be a specific algebra, for example).
Other papers dealt with temporal properties (Colin Stirling), causal semantics (Samson
Abrasky), multi-traces (Antoni Mazurkiewicz) and much else besides.

These various theories of concurrency, process algebras like CCS and CSP, Petri Nets and
Temporal Logic, are principally concerned with the mathematical modelling of concurrent
processes, so that, if a concurrent system conforms to an interpretation of the theory, then one
may reason about it and draw deductions about its behaviour. None of the theories are
specifically designed as a specification language to be used while developing a concurrent
computing or electronic system, although in principle most of them could be, at least to some
extent. A specification language was developed, based on CCS, CSP and algebraic
specifications of abstract data types, called LOTOS11. FACS held a one-day meeting on
LOTOS in September 1990, soon after the language was published.

VDM Europe, ongoing then for four years, was planning its next symposium, VDM ’91. The
organisation was still being funded by the European Commission, with project officer Karel
de Vriendt. He was the group’s “champion” in the EC. Every funded initiative needs a
champion in the governmental funding organisation, EC or DTI; the same probably applies in
local government. However, he warned us that this funding could not continue indefinitely.
We were technically classified as an “advisory group”, i.e. giving advice to the EC. Further
funding could only be justified if VDM Europe widened its scope. Proselytising,
communicating the technology to a wider audience and therefore benefiting European
industry and academia, would make the funding easier to justify. We discussed whether to
widen our scope to include other formal methods such as RAISE, CSP, LOTOS. For the time
being at least we would continue to focus on VDM. But VDM ’91 should contain two tutorial
tracks, one advanced and the other more “elementary”.

Alexander Moya took over the rôle of project officer in January 1991. In that year we decided
to broaden our scope to include other formal methods, but limited to other model-based
methods for the time being: these in practice included RAISE, Z and B. A draft charter for
the organisation was distributed. A more umbrella-like structure was adopted, with a
controlling body and other subcommittees dealing with various activities, some permanent,

10 See Milner et al 1989 and 1992.
11 See ISO 8807:1989.

236

others temporary. Examples were a newsletter, technical events, the symposia planned at 18
month intervals, and perhaps other activities such as standardisation. This committee meeting
in January 1991 was to be the last meeting of VDM Europe; henceforward it was to become
Formal Methods Europe.

My secondment to the DTI had another eight months to run. I knew that at the end of that, my
manager at Praxis, John Thornton, would want to end my six-year long arrangement of being
notionally based at my home in London, and I would have to be a normal employee, based at
the firm’s location in Bath. I didn’t want to pay the expensive commuting costs myself, and
with my family ensconced in London; with my wife in a London based job and my teenage
children at a crucial stage in their schooling, I did not consider moving to Bath. So I started to
plan working for myself as an independent consultant when the time came. I thought there
was a good chance I could secure another secondment contract with the DTI. At the same
time, at the suggestion of my ex-colleague Roger Shaw, who was already working there, I
approached Lloyd’s Register.

Lloyd’s Register, previously called Lloyd’s Register of Shipping, originated from Lloyd’s
Insurance. Its original purpose was to assess the insurance risks of seagoing vessels. LR
would maintain a list, known as Lloyd’s List, of seaworthy vessels. Now, an independent
organisation, it covers the safety of lives and property more generally and actively promotes
safety. First, LR developed rules of design and construction. Then surveyors would check
vessels on a five-year cycle. Fees provide 50% of their income. Over the last 50 years LR
have expanded into more industrial areas such as power generation and civil engineering, and
they now have 300 offices throughout the world.

Over the previous few years software had become embedded into engineering control
systems. LR recognised that they needed to be able to certify and assess software to ensure
that it was fit for purpose. They wanted to devise guidelines for the development of
dependable systems containing software. They wanted to establish their competence in expert
systems and formal methods. A software department had been set up and had grown from 30
to 40 over the previous six months. We discussed a consultancy contract for me in which I
would work two days per week to help them devise a software certification procedure. My
ultimate embarkation into independent consultancy in eight months’ time was beginning to
look almost secure.

In April 1991 BCS FACS ran a three-day tutorial on B12. B is a formal system for describing
abstract machines that can be used as abstract models of computer systems, and hence as
formal specifications of systems. J-R Abrial developed B while working as an independent
12 See Abrial 1996.

237

consultant and as a researcher at the Oxford University PRG. An abstract machine is defined
as a formal system consisting of data types and operations with state: that is, the machine
contains a collection of variables of specific types whose values can be altered by the
operations. Operations can have input values and output values, but can also alter the state of
the machine; they are therefore not like mathematical functions, which do not have “state”,
and an abstract machine is for that reason not quite the same as a program in a functional
language. A program in a functional language does not contain a state.

The B language is a formal language, which technically consists of an alphabet with rules of
formation of well-formed formulae (wff). Along with the formal language there is a
deductive system consisting of axioms and rules of inference that determine what wff may be
deduced from some given wff(s). There are automated proof assistants and other tools for B;
the one demonstrated at this tutorial was called the B-Tool. (Another was subsequently
developed in France under Abrial’s guidance called Atelier B).

In this three-day tutorial, David Till of City University presented logic and deductive system
for B and J-R Abrial presented the B language and B Proof Assistant. B, he declared, consists
of the B Tool, the Theory of Abstract Machines, and Abstract Machine Tool-kit. David
Nielsen presented more details of the Abstract Machine tools, the type-checker, proof
obligation generation, refinement and other features.

This course was a hard, stimulating three days. I found the notion of abstract machines very
reminiscent of VDM; indeed VDM, Z and RAISE are all examples of approaches based on
the concept of abstract machines, in addition to B. All these languages, based on abstract
machines, that is data types, operations and a state, became known as model-based
specification languages.

Over the subsequent years, B has been used in important safety-critical projects. The Paris
Metro line 14 was started in 1993 and opened to the public in 1998. It is completely
automated with driverless trains. The critical parts of the control and signalling software were
specified and designed using the B notation and method, which allowed for stages of
refinement down to a version that can be translated into a conventional programming
language. The improved confidence in the safety of the overall system meant that trains can
be scheduled more closely, 85 seconds apart with trains arriving at a platform just as the rear
of the previous one is leaving.

The DTI Subcommittee B would review funded projects, along with its other duties. One of
the speech and language projects was “Aviator”, which was developing text searching and
retrieval software with facilities for lexical clustering and filters that interfaced with the
retrieval mechanisms. The academic partner was the University of Birmingham, with the
publisher Collins (who produce continuous editions of a collections of dictionaries), Nimbus

238

Records and BRS (British Road Services). This was one of a long list of other projects:
PEBA, headed by SEMA, aiming to build an environment supporting SSADM; FERESA,
again headed by SEMA for an environment supporting JSD; the Eureka project ECMA PCTE
already mentioned; the Eureka project Europicon (European Process Intelligent Control)
which aimed to make advances in process control using knowledge-based systems; and the
British National Corpus.

The British National Corpus was led by Oxford University Press, that part which published
the renowned Oxford Dictionaries. The project aimed to build an ongoing corpus of English
text, a “bank of English”. Again, to be useful, such a corpus of work needs search, retrieval
and related software. Another project planned to enable computer analysis of the content of
spoken discourse.

One of the concerns the DTI had when monitoring Eureka projects, which had British and
European partners, was to ensure that the benefits after the project, such as royalties, were
equitably distributed, not biassed in favour of another participating country. The ROAMEs
for these projects had to justify government funding. Distance from market of the proposed
research would often be cited, yet there had to be an eventual market for the work. The
proposal had to demonstrate that the aims were technically viable. The work had to be
innovative and “pre-competitive”, that is, at an early enough stage that there was no
competition, for the DTI could not favour one firm over another. While collaboration was a
requirement, it also had to have merits for the project: usually a case would be made that no
one organisation had all the requisite skills or experience. The proposal would have to show
knowledge of previous related work so that it could build upon it, and the ROAME would in
turn bring such points out. High risks, long time-scales to market, a generic approach, wider
eventual benefits could all add justification to the case. A very detailed project plan would be
required with milestones and deliverables allowing the DTI to monitor the progress of the
project effectively. Such was the lengthy and meticulous work needed to construct not only a
proposal by the partners but a ROAME by the DTI project officer.

In July 1991 I took part in the JFIT conference, which the DTI organised and hosted every
year. Some dozen industrial and academic representatives presented their views and
experiences, and the conference finished with a panel session and subsequent discussion.
Some, to me, surprising views were expressed: one academic asserted that IBM had saved a
seven figure sum by using Z to specify CICS, and that PROLOG and Type Theory originated
in the UK. I think that some French academics might vigorously disagree with that asserted
origin of PROLOG, and I wasn’t sure he would have had access to enough detail of IBM’s
finances to know the extent of saving due to the use of Z. The ADJ group in the USA might
reasonably claim the application of Type Theory to computer science, although I suppose one

239

might refer to Russell and Whitehead’s theory of types in their Principia Mathematica which
long pre-dated computers. Nonetheless, the JFIT conferences were always a fruitful
networking event.

The DTI did not have a technical policy in IT themselves: it would not do for government to
influence industry’s market-driven R&D. On the other hand, the DTI tried to predict what
would be the future needs for IT, so that they could foster the developments that would meet
those needs and thereby boost the UK’s IT industry. So papers were written, studies
conducted and meetings held to try to determine the future needs for IT: this was called
variously the “Forward Look” and “Strategic Overview of IT”. How does one predict future
trends in IT needs? Straightforward extrapolation of current trends does not work; for
example, the sixties and seventies saw an ever-increasing use of main-frame number
crunching computers. Yet in the two next decades, these fell by the wayside and networked
workstations and desk-top computers were coming into their own. Advances in AI had almost
halted, but were beginning to move on again, more slowly. The surge of formal methods had
been checked, but still had a continuing demand. The decreasing price of chips had many
repercussions that were hard to foresee. The need for integration in general was prevalent in
these DTI papers and discussions. Users could easily identify their specific problems, but less
easily see how to combine solutions: for example, how can I integrate my point-of-sale
transactions with my stock control programs, my stock control programs with financial
management and forecasting? How can I integrate my sales processing and invoicing with
my raw materials ordering, financial forecasting, throughput forecasts, process control, day to
day staff planning? My new product design with longer term financial, site requisition
forecasting? It could be highly advantageous if the IT systems supporting all these activities
were integrated and worked together.

Another approach to predicting the needs for IT is to observe social trends: they follow each
other. IT systems support social structures and activities, such as processes between people in
a work-place, or processes used to develop engineering systems, including software intensive
systems. The architecture of the IT systems supporting people at work depends on current
social trends: one can envisage two scenarios, one community-oriented and the other
individual-oriented. In a community-oriented scenario, users form a large team who identify
with the objectives and products of the team. These are embodied in the information
structures and processes which are held centrally on (in 1991) a mainframe computer. All the
users have access to these central resources via, again in 1991, a terminal. They agree to
comply with the centralised procedures, access rules etc. and cooperatively construct
powerful, large information structures and processes. The knowledge that they have
contributed to this effective powerful system, in which they are in direct contact, gives the
individuals in the team a personal feeling of gratification, protected because of being part of

240

something large, but not being individually exposed. The sense of community is enhanced by
communication facilities such as electronic news-boards, email etc. The user feels as if
logged into a corporate consciousness, losing individual identity but gaining an identification
with a more powerful and authoritative composite.

In an individual-oriented scenario, users develop their own, more individual, information
structures and processes, sharing them through the communications facilities. The items may
be integrated later into the “official” system. Each individual feels identified with the items
for which they are specifically responsible. Centrally available facilities are presented to the
user as personal tools that assist and add to the power of the individual: spreadsheets, word
processors, fourth-generation languages etc. were typical in an office system. Through these
the user can build complex information structures. This power gives the user a sense of
fulfilment and individuation.

Hybrid systems are possible and indeed frequently occur. Organisations that are building
software systems or systems that require a high degree of discipline, for example where
quality or reliability is paramount, will tend to the community-oriented scenario. Where the
systems developed are largely for use within the organisation, the individual-oriented
scenario is more likely. Within the DTI itself one could observe that we used a hybrid system,
with common structures such as divisional and departmental files to which access was
disciplined, but with a heavy emphasis on the individual-oriented system: each user can use a
battery of common facilities — database packages, word-processors, calculator, spreadsheet,
graphics and drawing packages. But other facilities such as data management were
community-oriented.

In principle a system can be produced by either of these social structures, or by any which
lies in the spectrum between them. The resulting system will have facets that depend on
which social structure was used to construct it. In particular, high reliability requires a
discipline which fits more easily into the community-oriented model. Otherwise, the choice
of what type of system will be popular depends on the preferred social structure. In the 1990s
the trend was far more towards the individual, and will probably continue for a considerable
time.

In the 1990s one could perceive a broad trend towards constructivism: the individual as
authority, owner of rights, creator, and the demise of the institution as regulator of people’s
lives and values. This was exemplified by the then recent political changes; trends in
intellectual thought (philosophy, religion, psychology); social attitudes and public behaviour;
a general atrophy of public deference; economic trends (more people than ever before owning
cars, personal bank accounts, houses etc.) at least in the West. A small symptom of this is that
people tend to ignore instruction manuals: they don’t want to be told what to do. People
prefer to try out an artefact themselves, straight off. The result is that instruction manuals are

241

ignored and become deficient, written in awkward unpolished language. There is almost a
tolerance of faulty engineering provided that useful features are provided. By contrast, the
Japanese had a tendency more towards community-oriented modes, and as a result they
showed a capacity to produce goods of high quality and reliability.

A two-pronged approach was proposed: a large prong and a small one. Both were essential.
The large prong is an enhanced user-machine relationship: interfaces, speech and language
processing, computer-vision, integration of facilities and function, which required research
into the abstraction of functions in order to coordinate them. These were reflected in parts of
the DTI ITD programme. The small prong was that part of systems that users want to feel
secure about, so that they can ignore it, so that their personal power is facilitated: for
example, engine control systems in cars and other vehicles. The end-user does not want to be
concerned with them, but wants them to work transparently.

The foregoing was a perception and opinion summarised from papers circulating in the DTI’s
“Forward Look” cogitations. Much of it still applies today, although some of the supporting
technology has changed. Networked PCs with a central server would now replace a
mainframe and terminals. News-boards have been replaced by blogs, although they are in
essence a new name for much the same thing. There are today other more sophisticated, often
web-based, tools and facilities. Over the subsequent decade, during the noughties, that trend
in the UK began to reverse: the individual became more regulated by the community’s rules.
But now, in the 2010s, we are seeing a societal rebound back to individuation.

The Fifth Refinement Workshop, sponsored by Lloyd’s Register, Program Validation
Limited and the DTI, and organised by BCS FACS, took place in the imposing board room of
Lloyd’s Register’s offices in London from 8th to 10th January 1992. The proceedings were
published by Springer-Verlag in their Workshops in Computing series13. There were 19
papers presented, including an opening address from Mr. Patrick O’Ferrall, the Deputy
Chairman of Lloyd’s Register. There were also demonstrations of eight support tools for
formal methods: the Genesis Z Tool from Imperial Software Technology; μral from
Manchester University; Specbox from Adelard; RED (Refinement Editor) from Oxford
University; the RAISE Toolset from CRI; Cadiz from York Software Engineering; the
SPADE Theorem Prover from Program Validation Limited; and a refinement tool from the
Victoria University of Wellington, New Zealand. Program Validation Ltd. hosted a most
enjoyable social evening in the London Transport Museum, at which there were refreshments
and a delightful recital from a string quartet. These Refinement Workshops run by FACS
were becoming the major regular formal methods events in the UK, and the Fifth was a
particularly memorable one.

13 See Jones, Shaw and Denvir (Eds.) 1992.

242

As I have said, my secondment from Praxis was coming to an end, and my manager at Praxis
did not want to renew it: secondment to the DTI was not very profitable for the company. I
decided to leave Praxis and try to renew my secondment myself. This required writing – a
ROAME! All proposals needed a ROAME, and my own secondment was no exception. I
would need to outline the scope of the problem that my leaving would create, the Eureka and
other projects for which I had project officer responsibility, why I was uniquely qualified to
fulfil the rôle and why a “normal” civil servant in the department was not so well qualified to
perform it. There would have to be “deliverables” and the normal criteria for an acceptable
ROAME, monitoring arrangements and all.

So my ROAME proposed that the DTI engage a consultant to provide the technical expertise
necessary to appraise proposals for Eureka projects in IT and to monitor them when approved
and in progress. I estimated the support required would be one day of consultancy per week,
with some allowance for travel, over three years in the first place, subject to review after that
time. I referred to the DTI policy that required it to have responsibility for Eureka projects
(these ROAMEs had to go before committees, not all with DTI staff, so contextual
explanations were always necessary), the activities that this would involve and the skills that
were necessary. Those skills I identified as knowledge of DTI procedures, knowledge of
Eureka criteria, good knowledge of IT and software engineering so as to be able to assess the
technical aspects of proposals and the competence of proposers, familiarity with UK IT
companies and academe, familiarity with European IT and software engineering companies
and academe, an understanding of the differences and nuances between UK and European IT
culture, and some understanding of European administration: Eureka, ESPRIT and the EC.
Then a statement that this mixture of skills was not available in ITD and the ROAME
therefore proposed engaging a consultant to fill the rôle.

Next I wrote some words about the scale of the activity, visits to industrial and academic
sites, the need to attend some international events and conferences. I was, of course, uniquely
qualified to do the job, my ROAME was approved and I was re-engaged.

Chapter 12 Independence Days
<to be writ>

243

References
A. E. Abdallah, C. B. Jones, J. W. Saunders (Eds.): Communicating Sequential Processes:
The First 25 years. LNCS 3525, Springer 2005.

J-R Abrial, The B Book, Cambridge University Press, 1996.

K. R. Apt: Obituary: Edsger Wybe Dijkstra (1930 – 2002): A Portrait of a Genius, Formal
Aspects of Computing, Vol. 14, no. 2, pp. 92-98, 2002.

J. W. Backus: The Syntax and Semantics of the Proposed International Algebraic Language
of the Zurich ACM-GAMM Conference, ICIP Proceedings, Paris 1959, Butterworths,
London, pp. 125-132, 1960.

D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Strachey: The main features of
CPL, The Computer Journal 6:2:134-143, 1963.

D. Bjørner, C. B. Jones, M. Mac an Airchinnigh, E. Neuhold (eds.): VDM ’87; VDM – A
Formal Method at Work, Springer-Verlag LNCS 252, 1987.

R. S. Boyer, J. S. Moore: A Computational Logic, Academic Press, New York, 1979.

Grady Booch: Object Oriented Design, USAF Academy, Colorado, 1980.

Taylor Booth: Sequential Machines and Automata Theory, John Wiley and Sons, New York,
1967.

BS 5750-8:1991, EN 29004-2:1993, ISO 9004-2:1991 Quality systems. Guide to quality
management and quality systems elements for services; British Standards Institution, 1991.

R. Burstall and J. Goguen: Putting Theories together to make Specifications, in Reddy (ed.)
Proceedings, Fifth International Joint Conference on Artificial intelligence, pp. 1045-1058.
Department of Computer Science, Carnegie-Mellon University, 1977.

R. Burstall and J. Goguen: The Semantics of Clear, a Specification Language, in D. Bjørner
(ed.) Proceedings, 1979 Copenhagen Winter School on Abstract Software Specifications, pp.
292-332, Springer-Verlag LNCS 86, 1980.

Rod Burstall, “Christopher Strachey—Understanding Programming Languages”, Higher-
Order and Symbolic Computation 13:52, 2000.

A. Church: The Calculi of Lambda Conversion, Annals of Math. Studies no. 6, Princeton
University Press, 1941.

E.F. Codd: A Relational Model of Data for Large Shared Data Banks, Communications of the
ACM 13 (No. 6): pp. 377-387. Association for Computing Machinery, 1970.

P. Cohn: Universal Algebra, Mathematics and its Applications vol. 6, Harper & Row 1965,
revised edition D. Reidel Publishing Company 1981.

244

http://www.cs.utexas.edu/~boyer/acl.text

S. D. Conte, H. E. Dunsmore, V. Y. Shen: Software Engineering Metrics and Models,
Benjamin Cummings, 1986.

D. J. Cooke, H. E. Bez: Computer Mathematics, Cambridge Computer Science Texts vol. 18,
Cambridge University Press 1984.

D. J. Cooke: Constructing Correct Software, Springer -Verlag, 1998.

Thierry Coquand and Gerard Huet: The Calculus of Constructions, Information and
Computation, Vol. 76, Issue 2-3, 1988.

B. T. Denvir, W. T. Harwood, M. I. Jackson, M. J. Wray (eds.) The Analysis of Concurrent
Systems, Proceedings, Cambridge September 1983, Springer Verlag LNCS 207, 1985.

Tim Denvir: Introduction to Discrete Mathematics for Software Engineering, Macmillan,
1986.

Tim Denvir: System Specifications, in Software Engineering, Blenheim Online Publications,
pp.11-18, 1988.

Tim Denvir: The Rôles of Mathematics in Software Engineering, in Mathematical Structures
for Software Engineering, Clarendon Press, 1991.

K. Devlin: The Joy of Sets: Fundamentals of Contemporary Set Theory, Second Edition,
Springer-Verlag, 1994.

E. W. Dijkstra: “Cooperating Sequential Processes” in Programming Languages, F. Genuys
(ed.), 1968.

E. W. Dijkstra: Goto Statement Considered Harmful, Letter to the Editor, Comm. ACM, Vol.
11, pp.147-8, 1968.

E. W. Dijkstra: Guarded Commands, Non-determinacy and the Formal Derivation of
Programs, Comm. ACM, Vol. 18, no. 8, pp. 453-7, 1975.

E. W. Dijkstra: A Discipline of Programming, Prentice-Hall, 1976.

ECMA: Standard ECMA 149: PCTE Abstract Specification, December 1990.

H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification I, Springer-Verlag 1985.

J. R. Ennals: Star Wars: A Question Of Initiative, Wiley, 1986.

Erwin Fehlberg: Low-order classical Runge-Kutta formulas with step size control and their
application to some heat transfer problems. NASA Technical Report 315, 1969.

Robert L. Glass: Software Runaways, Prentice Hall PTR, 1998.

M. J. Gordon, A. J. R. G. Milner, C. P. Wadsworth, Edinburgh LCF: a Mechanised Logic of
Computation, Lecture Notes in Computer Science 78, Springer-Verlag 1979.

245

Anthony Hall, Seven Myths of Formal Methods, IEEE Software, September 1990, pp 11-19.

M. Halstead: Software Physics – Basic Principles, IBM Research Journal 1582, May 1982.

C. A. R. Hoare: An Axiomatic Basis for Computer Programming, Comm. ACM, vol. 12, no.
10, pp. 576-80, 583, Oct. 1969.

C. A. R. Hoare: Communicating Sequential Processes, Comm. ACM, vol. 21, no. 8, pp. 666-
777, Aug. 1978.

A. Horn: On sentences which are true of direct unions of algebras, Journal of Symbolic Logic,
16, 14-21, 1951.

W. Humphrey, “Characterizing the software process: a maturity framework”. IEEE Software
5 (2): 73–79, March 1988.

W. Humphrey: Managing the Software Process, Addison Wesley, 1989.

ISO/IEC 13719-1: Information Technology - Portable Common Tool Environment (PCTE) -
Part 1: Abstract Specification. October 1998.

ISO/IEC 13817-1: Information technology. Vienna Development Method. Specification
language. 1996.

ISO/IEC 13568: Information technology. Z formal specification notation. Syntax, type
system and semantics. 2002.

ISO/IEC 14977 Information Technology – Syntactic metalanguage – Extended BNF,
1996(E).

ISO/IEC 19501:2005 Information technology — Open Distributed Processing — Unified
Modelling Language (UML) Version 1.4.2. 2005.

ISO 8807:1989 Information processing systems – Open Systems Interconnection – LOTOS –
A formal description technique based on the temporal ordering of observational behaviour.
1989.

ISTAG report on the Grand Challenges in the Evolution of the Information Society,
ftp://ftp.cordis.europa.eu/pub/ist/docs/2004_grand_challenges_web_en.pdf, EU, 2004.

M.A. Jackson: Principles of Program Design. Academic Press. 1975.

J. H. Johnson, M. J. Loomes (eds.): The Mathematical Revolution Inspired by Computing,
Clarendon Press, 1991.

G. Khan, ed. Semantics of Concurrent Computation, Proceedings Evian, 1979, Springer-
Verlag 1979.

D. Knuth and P. Bendix. “Simple word problems in universal algebras.” Computational
Problems in Abstract Algebra (Ed. J. Leech) pages 263--297, 1970.

246

ftp://ftp.cordis.europa.eu/pub/ist/docs/2004_grand_challenges_web_en.pdf
http://www.sei.cmu.edu/reports/87tr011.pdf

T. S. Kuhn: The Structure of Scientific Revolutions, 1962, Second edition, University of
Chicago Press, 1970.

M.A. Jackson: Principles of Program Design. Academic Press. 1975.

M. A. Jackson: System Development, Prentice-Hall, 1983.

M. I. Jackson, B. T. Denvir, R. C. Shaw: Experience of Introducing the Vienna Development
Method into an Industrial Organisation, in Formal Methods and Software Development,
Lecture Notes in Computer Science 186, Springer-Verlag, 1985.

C. B. Jones: Software Development, a Rigorous Approach, Prentice Hall 1980

C. B. Jones: Systematic Software Development Using VDM, Prentice Hall 1986 (Second
edition, 1990)

Cliff B. Jones, Roger C. Shaw, Tim Denvir (Eds.) 5th Refinement Workshop, Springer-
Verlag, 1992.

I. Lakatos: Proofs and Refutations, Cambridge University Press, 1976.

P. J. Landin: The Correspondence between Algol60 and Church’s Lambda-Notation, Comm.
ACM, vol. 8, nos. 2-3, pp. 89-101 & 158-166, Feb. – March 1965.

M. M. Lehman, L. A. Belady: Program Evolution – Processes of Software Change, Academic
Press, New York, 1985.

E. H. Mamdani, B. R. Gaines (Eds.): Fuzzy Reasoning and its Applications. Academic Press,
1981.

J. McArthy: Towards a Mathematical Science of Computation, in Information Processing,
North Holland, 1963.

John A. McDermid (Ed.): Software Engineer’s Reference Book, Butterworth-Heinemann,
1991.

R. E. Milne, C. Strachey: Theory of Programming Language Semantics. Chapman & Hall,
1977.

Robin Milner, Logic for Computable Functions: description of a machine implementation.
Stanford University, 1972.

Robin Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science
92, Springer-Verlag, 1980.

Robin Milner, Jachim Parrow, David Walker: A Calculus of Mobile Processes, Parts I and II;
LFCS Report Series ECS-LFCS-89-85 and -86, University of Edinburgh LFCS 1989.

A. J. R. G. Milner, M. Tofte, R. Harper: The Definition of Standard ML, MIT Press, 1990.

247

R. Milner, J. Parrow, D. Walker: A Calculus of Mobile Processes, in Information and
Computation 100, pp. 1-40, September 1992.

A. J. R. G. Milner, M. Tofte, R. Harper, D. MacQueen: The Definition of Standard ML
(Revised), MIT Press, 1997.

E. Nagel and J. R. Newman: Gödel’s Proof, Routledge and Kegan Paul, 1959.

Nicolas Ostler: Empires of the Word: A Language History of the World, Harper Collins
2005.

Nicolas Ostler: Ad Infinitum: A Biography of Latin, Harper Collins 2007.

Nicolas Ostler: The Last Lingua Franca: English until the Return of Babel, Allen Lane 2010.

D. L. Parnas: On the Criteria to be Used in Decomposing Systems into Modules,
Communications of the ACM, 15, 12, December 1972, pp. 1053-1058; (Reprinted as Chapter
7 in Parnas 2001).

D. L. Parnas, “Software Aspects of Strategic Defense Systems”, American Scientist, Vol. 73,
No. 5, Sept.-Oct. 1985, pp. 432-440. (revised version of University of Victoria Report No.
DCS-47-IR). (Reprinted as Chapter 6 in Parnas 2001).

David L Parnas: Software Fundamentals, Ed. D. M. Hoffman, D. M. Weiss, Addison Wesley,
2001.

Mark C. Paulk, Charles V. Weber, Bill Curtis, Mary Beth Chrissis, “Capability Maturity
Model for Software, Version 1.1”. Technical Report CMU/SEI-93-TR-024 ESC-TR-93-177.
CMU/SEI, February 1993.

C. A. Petri. Concepts of Net Theory, Proc. Mathematical Foundations of Computer Science,
pp. 137-166, 1973.

C. A. Petri. Concurrency, in Net theory and Applications, Lecture Notes in Computer Science
84, pp. 251-260, Springer-Verlag 1980.

K. R. Popper: Conjectures and Refutations, Routledge and Kegan Paul, 1963, revised 1972.

Laurence H. Putnam: Software Cost Estimating and Life-cycle Control: Getting the Software
Numbers, IEEE Computer Society, 1980.

C. L. N. Ruggles (Ed.): Formal Methods in Standards, A Report from the BCS Working
Group, Springer-Verlag/BCS 1990.

D. S. Scott. Outline of a mathematical theory of computation; Technical monograph PRG-2,
Programming research Group, University of Oxford, 1971.

D. S. Scott. Data Types as Lattices. SIAM Journal of Computing, Vol. 5, pp.522-587, 1976.

248

http://www.sei.cmu.edu/library/abstracts/reports/93tr024.cfm
http://www.sei.cmu.edu/library/abstracts/reports/93tr024.cfm

D. S. Scott. Lectures on a Mathematical Theory of Computation. Technical monograph PRG-
19, Programming research Group, University of Oxford, 1980.

D. S. Scott. Domains for Denotational Semantics, in LNCS 140: Proc. 9th ICALP, pp.577-
613, Springer, Berlin, 1982.

Peter Sells, Lectures on Contemporary Syntactic Theories, CSLI (Center for Study of
Language and Information) 1985.

Michael W. Shields. Semantics of Parallelism, Springer-Verlag London Ltd, 1997.

Herbert A. Simon, The Science of the Artificial, MIT Press, 1996.

C. Strachey: Towards a Formal Semantics, in T. B. Steel (ed.): Formal Language Description
Languages, North Holland, 1966.

H. Thompson: Why Scientists are Speaking Out, in New Scientist, November 1985.

UK Computing Research Committee: http://www.ukcrc.org.uk/about/index.cfm, 2002.

Von Neumann, John, Arthur W. Burks and Herman H. Goldstine. Preliminary discussion of
the logical design of an electronic computing instrument. [Princeton, N.J.: Institute for
Advanced Study,] 1947.

L. Wakeman and J. Jowett, for the PIMB Association: PCTE, The Standard for Open
Repositories, Prentice-Hall, 1993.

Glossary

Abstract Machine A term used much in the B literature: an abstract machine comprises a
set of data types, operations and a state consisting of a set of variables.
Operations can change the values of the state variables, unlike the
functions in a functional programming language.

ACL Atlas Commercial Language: an imperative programming language
used on the London Atlas machine, geared to commercial applications,
dating from the 1960s. It had similar features to COBOL but a less
verbose syntax.

ACM Association for Computing Machinery: the USA professional scientific
and educational computing society founded in 1947.

ACT1 A specification language based on initial semantics of universal
algebras with equational axioms, often called equational algebras1.

1 See Ehrig and Mahr, 1985.

249

http://www.ukcrc.org.uk/about/index.cfm

Ada A comprehensive programming language commissioned by the US
DoD to replace the plethora of languages previously used in defence
projects. Ada was chosen from four contenders codenamed Green (the
winner), Blue, Red and Yellow in 1979.

Additionality A piece of government jargon: in a R&D project, additionality is the
property of producing additional benefit to an audience wider than just
is participants. Additionality is usually a requirement when seeking
government funding for a project.

ADJ A group of researchers (J. A. Goguen, J. W. Thatcher, E. G. Wagner,
J. B. Wright) who focussed on category theoretical interpretations of
algebraic specification during the 1970s and 1980s. ADJ is a reference
to “adjoint”, a concept in category theory.

ADT Abstract Data Type: the mathematical model of a data type found in

computer languages. The latter can be integers, real numbers,

characters, lists of data of another type, records of mixed type etc. An

ADT in addition is bundled with the operations that can operate upon

data of that type. An ADT is abstract because it makes no prescription

about how the type is implemented or represented in the computer. The

concept2 is inspired by the study of universal algebra3.
AEI Associated Electrical Industries, see GEC.

AFFIRM An experimental specification language based on abstract algebra; the
effect of actions within a specification are defined by axioms.

AI Artificial Intelligence: a broad category of computer science research
in which attempts are made to mimic human intellectual activity.
Typical areas are the understanding of natural language and logical
reasoning.

ALGOL A family of imperative programming languages, Algol58, Algol60,
Algol68 and AlgolW, of which Algol604 was the most implemented
and used. ALGOL stands for Algorithmic Language.

Alvey Directorate The team within the DTI that managed the Alvey Programme, a UK
collaborative research programme in information technology involving
industry, academia and government.

ANSI The American National Standards Institute.

2 See Ehrig and Mahr, 1985, for a thorough account.
3 See Cohn 1981.
4 See Backus 1960 for the official definition of Algol60.

250

Applicative

Programming

Languages

See Functional Programming Languages.

APSE Ada Program Support Environment; a proposed integrated set of tools
to assist the development of programs in Ada.

ARPANET US Department of Defense Advanced Research Projects Agency

Network in the 1960s, the first ever email network.
Assertion In an algorithmic programming language, a statement having no effect

on the state of the program but which asserts that some proposition

about the state should be true at that point in the execution.
ASTG Advanced Software Techniques Group, a group within STC.
Atlas A computer developed by Ferranti in conjunction with Manchester

University and Plessey in the early 1960s. Four machines were

manufactured, the London Atlas (see ULICS), the Manchester Atlas,

the Chilton Atlas in the Atlas Computer Laboratory at AERE Harwell,

and the Cambridge Titan. There were substantial differences in

architecture, although the machine code was the same and enabled a

good degree of program portability between them.
ATP Advanced Technology Programme, a programme of work within the

remit of the DTI in 1990.
Auto-G A software design method based on Yourdon and DFDs.
AXES An experimental axiomatic specification language dating from the

1970s.

B A formal method for specifying and designing software, using set

theory and logic as a modelling medium. Designed by J.R.Abrial5, B is

named after the French mathematicians who published under the

pseudonym of Bourbaki.
BCL A language proprietary to RADICS designed for writing compilers. It

was an early example of a compiler-compiler, easier to use than that

designed by Brooker and Morris.
BCS The British Computer Society.

5See Abrial, 1996.

251

Bison A compiler-writing tool that inputs a grammar written in a format

upwards-compatible with yacc, and converts it to a program in an

imperative language (C etc.) that can parse a script that conforms to the

grammar. Bison is now available from the Free Software Foundation

under the GNU conventions.
BNF Backus Normal Form, later Backus-Naur Form. The description

language devised by John Backus for the syntactic definition of

Algol58, later extended by Peter Naur for the definition of Algol60.
Bootstrap To bootstrap: a technique of writing a compiler for a language by

writing the compiler in its own language. The first version of the
compiler is usually very restricted and its implementation helped along
by other means. Then a series of versions can progressively build up to
the full implementation.

BoT Board of Trade, a British Government Department, predecessor of the
DTI and its successors.

BSI British Standards Institution.
BT British Telecommunications, the successor to the Post Office as the

nationalised UK telephone and telecommunications supplier, now
privatised and with several competitors.

BTH British Thompson Houston, which merged with Hollerith to become
the British Tabulating Machine Company, BTM. See also GEC.

BTM The British Tabulating Machine Company, see BTH. BTM merged
with Powers Samas to become ICT, q.v.

C An imperative programming language developed in 1972 at Bell
Telephone Laboratories by Dennis Ritchie. It was designed for
implementing systems software, although it is of general purpose and
has also been used for developing portable applications.

CAA (UK) Civil Aviation Authority (UK).
CADES Computer Aided Design and Evaluation of Software, an ICL CASE

tool.
CASE Computer Aided Software Engineering.

Category Theory A branch of mathematics which generalises and studies the
relationships between mathematical structures. It is useful for
modelling certain phenomena of programming languages, such as type
polymorphism.

252

CAVIAR Computer Aided Visitor Information And Retrieval: a piece of

software developed at STL for administering visitors to the company

and their needs. It was developed as a case study in the use of Z, but

was a program of practical use with a non-technical person providing

the requirements.
CCS Calculus of Communicating Systems: a formalism devised by Robin

Milner at the University of Edinburgh for modelling dynamic systems

which can consist of communicating components. It is an example of

what later became known as a Process Algebra.
CCITT Comité Consultatif International Téléphonique et Télégraphique, the

international standards committee for telecommunications. Its parent

body is the ITU with which, in 1992, it became identified and ceased to

be a separate entity.
CCTA Central Computer and Telecommunications Agency, a one-time

agency of the UK Government.
CCTV Closed Circuit Television
CEC The Computer Engineering Centre, a group within ITT based in

Brussels and later in Versailles.
CEC The Commission of the European Communities, frequently referred to

as the European Commission.
CEGB The Central Electricity Generating Board, the UK electricity

generating utility before privatisation.

CHILL The CCITT High Level Language: a language used for
telecommunications systems with similar features to Ada (q,v.) and
developed about the same time.

CHILL IF The CHILL Implementers Forum. A committee of implementers of
compilers for CHILL that met to agree language features, syntax and
semantics.

CICS Customer Information Control System, a transaction server developed
by IBM, mainly for the business sector. The first release was in 1969
but CICS has been developed further ever since.

CLEAR A language based on abstract algebra for expressing models or
specifications.

253

CMM Capability Maturity Model: developed by the SEI at Carnegie-Mellon
University, a means of determining the maturity of an organisation’s
capability in developing software and performing software
engineering. Five levels of maturity were defined from chaotic to
highly defined with procedures for assessment and improvement. The
model became very popular despite very few organisations reaching
the desired level 5.

CMOS Complementary metal–oxide–semiconductor: a technology for
constructing integrated circuits, patented in 1967. It uses the principle
of field effect transistors, having a sandwich of a metal electrode, a
metal-oxide insulator and semiconductor (a semi-metal). It has
practical advantages of low noise and low power consumption.

COBOL Common Business Oriented Language. One of the first high-level

languages, contemporaneous with Fortran. COBOL was designed in

1959 by Grace Hopper, a Commander in the US Navy6. The first

compilers were written in 1960 and portability of programs, an initial

advantage of high-level languages, demonstrated that year.
CoC Calculus of Constructions, a formal language which can express both

computer programs and mathematical proofs, developed at INRIA by

Thierry Coquand and Gerard Huet in the late 1980s.
COCOM Coordinating Committee for Multilateral Export Controls. A

committee of 17 member states established in 1947 during the Cold

War which held a list of embargoed products considered to be of

potential assistance to the Soviet Union’s military capability. COCOM

was disbanded in 1994, to be replaced by the considerably less

proscriptive Wassenaar Arrangement.
Common LISP (CL) A dialect of the LISP programming language, developed in 1984 and

standardised by ANSI in 1994. In addition to list processing, Common

LISP supports functional, procedural and object oriented programming

paradigms.
Coq A proof assistant developed at INRIA, based on CoC, the Calculus of

Constructions, q.v.

6 To paraphrase Gilbert and Sullivan, “If you stick to your computer and never go to sea, you’ll soon be a
Commander in the US Navy”

254

CORAL Computer On-line Real-time Applications Language: a programming

language developed in 1964 at RSRE and stabilised as CORAL-66 in

1966. Intended for military applications, CORAL was a high-level

language in the Pascal style but with low-level facilities designed for

space and time efficiency. A version, PO-CORAL, was adopted for

industrial use by the UK Post Office in the 1970s.
CORE Controlled Requirements Expression: a method of capturing and

expressing requirements of a system, developed and used at British

Aerospace in the early 1980s. A simple diagrammatic notation was

used to show data flow within and between different system viewpoints

and shown to the customer to provide a picture of the proposed system,

as well as providing a basis for implementation.
CPL Cambridge/Combined Programming Language: a programming

language developed during the 1960s first at the Cambridge University

Computing Laboratory, then in conjunction with the University of

London Institute of Computer Science. It survived into the early 1970s.

See Barron et al, 1963.
CPU Central Processor Unit, the electronics within a computer that executes

programs held n the computer’s memory.
CSP Communicating Sequential Processes: a process algebra and

mathematical theory consisting of a notation and language for

modelling concurrent, communicating processes., devised by Tony

Hoare in 1978.
DARPA Defence Advanced Research Projects Agency (USA).
Database A file or files stored on a computer that consist of potentially many

records of information, all of the same structure. Examples could be
names, numbers and addresses in a telephone directory, or names,
addresses, account numbers and balances of customers of a bank or a
department store. The first research project database systems appeared
in the 1960s, and became commercially available in the late 1970s.

DEC The Digital Equipment Corporation, a US computer manufacturer,
noted for the VAX (q.v.) range in the 1970s, which displayed some
innovative technology.

DERA Defence Evaluation and Research Agency: previously RSRE, now
privatised as QinetiQ, q.v.

255

DFD Data Flow Diagram: a graphical technique for displaying the flow of
data through a system, without specifying the order of processing,
devised by Larry Constantine in the 1970s. Data Flow Diagrams assist
a top-down approach to design.

DoI, DTI Department of Industry, Department of Trade and Industry, previously
the Board of Trade, now (in 2009) the department of Business,
Innovation and Skills (BIS): the UK government department with the
objective of stimulating UK industry.

Domain Theory A branch of mathematics comprising partially ordered sets in which
such a set can include its own (partial) function space. Such partial
functions include the computable functions and can therefore model
certain kinds of recursive types, which cannot be modelled in more
traditional set theory. The application of Domain Theory to computer
science was pioneered by Dana Scott in the 1960s7.

DP Data Processing, the commercial application of computers to large
scale information.

DPSS A proprietary operating system for the ITT 3200 machine developed at
LCT, part of ITT Europe, in the early 1970s.

Dumb terminal A user console consisting of a keyboard and display device with little
or no processing power of its own, linked to a central computer.

EATCS European Association for Theoretical Computer Science.
EC The European Community, comprising six countries (Belgium, France,

Germany, Italy, Luxembourg, the Netherlands) at its foundation in
1957, became nine-strong when the UK joined in 1973, numbered 15
from 1995 until 2004 when ten more countries joined making the total
25. With Bulgaria and Romania arriving in 2007, the number in 2010
stands at 27.

ECC Extended Calculus of Constructions, an extended form of CoC
developed at the LFCS at Edinburgh University in the early 1990s.

ECMA The European Computer Manufacturers’ Association.

ECU European Currency Unit, the predecessor of the Euro. It was used from
March 1979 until the adoption of the Euro on 1st January 1999. There
was never any hard currency for the ECU, but it was possible in most
European countries, including the UK, to open a bank account in ECU.
On 1st January 1999 these accounts magically turned into Euro
accounts, on a one-for-one basis.

7 See Scott 1971 et seq.

256

ELLA A computer language proprietary to Praxis for programming
simulations of digital electronic hardware.

ELIZA A computer program designed in 1966 by Joseph Weizenbaum, which
simulated a psychotherapist of the Rogerian school. It worked mainly
by rephrasing many of the client’s responses as questions and posing
them back to the client. The program was named after Eliza Doolittle,
the heroine in George Bernard Shaw's play Pygmalion.

Environment Development Environment or Operating Environment: the
development environment of a piece of software is the collection of
computerised support tools that aid the developer to design and
produce the software through its development. Examples are the APSE
and IPSE. The operating environment is the characteristics and rate of
arrival of the data presented to the software, the expectations placed
upon its output by the technical system of which it is a part, and any
other software which interacts with it.

EPSRC The UK Engineering and Physical Sciences Research Council.

Equational Reasoning The techniques of formal deduction in a formal system in which the
axioms are expressed as equations.

ESA The European Space Agency.

ESF The European Software Factory: a European international endeavour to
define and produce a PSE for developing and supporting software
through its life-cycle.

ESPL1 Electronic Switching PL/1, a programming language devised for
telecommunications proprietary to ITT in the 1970s. Although named
after the language PL/1 it had little of the sophistication of the latter
and was not much more advanced than an autocode. However, it was a
great advance on the symbolic assembler language, which was
otherwise used for telecoms applications in ITT.

ESPRIT The European Strategic Programme for Research in Information
Technology, an initiative of the European Commission.

EST A 1984 research project in STL investigating the construction of an
automated proof system that was generic, i.e. that could be
parametrised by a codification of the desired logic. The intention was
to start with equational reasoning and proceed to other logics. The
project led on to the NIMBUS project.

ETOL An interpreted language for testing software produced and used by the
ESA in 1985.

257

Eureka A European initiative, not funded through the CEC, launched in 1985, to
support close-to-market R&D in all technological sectors carried out by
industry, research institutions and universities. It comprises 39 national
members, including those in the European Community.

FACIT Formal Approaches to Computing and Information Technology, a series of
books within Springer-Verlag London’s volumes on computing, initiated in
1990.

FACJ The Formal Aspects of Computing Journal.

FACS Formal Aspects of Computer Science, a special interest group of the
British Computer Society founded in 1978 and still flourishing at the
time of writing.

FCO Foreign and Commonwealth Office, a U.K. Government department.
FDL Functional Description Language, an algorithmic language with

provision for assertions, being an intrinsic part of PVL’s SPADE proof
checker.

Finite Automata A finite automaton is a theoretical machine defined by a simple
mathematical formulation. A finite automaton consists of a finite set of
states, of which one is an initial state, an input alphabet consisting of a
finite set of symbols, a state transition function and one or more final
states. Finite automata have been proved equivalent to Turing
machines, and can parse sentences belonging to a grammar defined in
certain standard forms. The pioneering work was done on finite
automata in the 1950s.

Finite State Machines A formulation of finite automata conducive to implementation in
imperative computer programming languages.

Flagship A parallel computing research and development project funded by the
Alvey Directorate in 1985.

FM Formal Method(s): mathematical approaches to software and system
development which support the rigorous specification, design and verification
of computer systems, based on mathematical logic and set theory.

FME Formal Methods Europe, instituted in 1987 with support from ESPRIT, but
for many years now self-financing.

FORMAP Formal Methods Applied to Protocols, an Alvey funded UK collaborative
project in 1984-1985; STL, BT, GEC, ICL and IDEC took part.

ForTIA Formal Techniques Industrial Association, a club of industrial users and
suppliers of formal techniques, initiated in 2003 under the auspices of FME.

258

Fortran An early high-level imperative programming language, developed by

John Backus at IBM in 1953. The name is an abbreviation of Formula

Translation system. Numerous versions have flourished and Fortran is

still in use today, the latest version (at the time of writing) being

Fortran 2008.
Functional

Programming

Language

In contrast to imperative programming languages, a functional

language has no variables, no state and no instructions that are obeyed.

A program is a collection of functions which may be defined in terms

of each other, very similar to mathematical functions. The program

works by applying the main function to one or more input values. For

that reason FPs are also known as applicative programming languages.
fUZZ A simple but effective support tool for Z, written by Mike Spivey at

Oxford University in 1988.
Framework Six The sixth in a series of “Framework” programmes, funding initiatives

of the European Commission to stimulate research and development in

a number of technical areas, including “Information Society”

technologies. Framework Six covered the period 2002 to 2006.
Gamma A software design technique developed by Mike Falla at Software

Sciences Ltd. in the 1970s. It was a tool that could support the use of a
software development method and had been used by Barclays Bank
with JSD.

GCSE General Certificate of Secondary Education. The standard collection of
examinations taken by school students at about age 16 in England and
Wales. It succeeded the GCE which in turn replaced the O-level
exams.

GEC The General Electric Company, a British company founded in 1886
manufacturing electrical apparatus. Through numerous mergers GEC
acquired AEI, Metropolitan Vickers, BTH, Edison Swan, Hotpoint,
English Electric (which included Elliott Bros.), Marconi, Plessey and
many others.

GYPSY A program verification environment developed by Donald I. Good.

HNC Higher National Certificate, a higher education qualification in the UK,
approximately equivalent to one or two years’ of a university course.

HOL Higher Order Logic, distinguished from first order logic. HOL is also

the name of a theorem proving system; the homonym is deliberate.

259

HOPE An experimental applicative (functional) language developed by Rod

Burstall, Dave McQueen and Don Sanella at Edinburgh University in

the 1970s.
Host A computer on which software runs that assists the development of

other programs, such as compilers. Contrast with target machine.

IBM 360, 370 A range of mainframe computers produced by IBM (International
Business Machines) from 1964 to 1977. The success of the series may
be attributed to the continuing compatibility of the numerous models in
the series, achieved by using the same instruction set. IBM spent a lot
of effort and money on marketing to remove the expanded form of
their name from the public consciousness.

IC Imperial College: Imperial College of Science, Technology and
Medicine, London.

ICALP International Colloquium on Automata, Languages and Programming.
ICALP is an international colloquium sponsored by EATCS, which has
been held annually since 1972.

ICL International Computers Limited, a leading British computer
manufacturer formed by a series of mergers from Elliotts, English
Electric, International Computers and Tabulators (ICT), Leo
Computers, Marconi, and others.

ICT International Computers and Tabulators, see ICL.
IEE The Institution of Electrical Engineers, now the IET.

IEC International Electro-technical Commission. An international standards

organisation for electro-technological products.
IET The Institution of Engineering and Technology, the UK professional

body for engineers and technologists.

IFIP International Federation for Information Processing, established by
UNESCO in 1960.

IKBS Intelligent Knowledge Based Systems: systems based on the

techniques of Artificial Intelligence (AI).
IMA The Institute of Mathematics and its Applications.

IMI Imperial Metal Industries, a UK engineering firm founded in 1862.

260

Imperative

Programming

Languages

Programming languages which perform actions by executing a series
of coded instructions (also called commands or statements) in
sequence. The canonical imperative instruction is an assignment, in
which a variable is assigned a new value. The “state” of a program is
the set of values held by all the accessible variables at a point in the
execution.

Ina Jo A language for formal specification and verification of software
systems, developed by J. D. Guttman at the Mitre Corporation in the
1980s.

INRIA Institut National de Recherche en Informatique et en Automatique
(National Institute for Research in Computer Science and Control): a
French national research institution of high repute founded in 1967.

Intel 8086 A 16-bit microprocessor chip designed by the company Intel, in the
late 1970s.

Invariant A logical condition which must remain true throughout the execution
of a program loop.

IPR Intellectual Property Rights.

IPSE Integrated Project Support Environment; see PSE. Also used for a
particular UK DTI and MoD initiative to develop an IPSE: see
IPSE2.5.

IPSE2.5 A particular IPSE project within the Alvey programme. Three
generations of the IPSE were envisaged: the specification of IPSE2.5
was positioned between those of the second and third generations.

ISO International Standards Organisation

ISTAR A project support environment developed by BT in the 1980s.

ITAB The Information Technology Advisory Board, a committee within the
DTI that oversaw funded IT projects.

ITD Information Technology Directorate, a directorate in the DTI.

ITT 1600 A 16-bit minicomputer manufactured by ITT and used within that
corporation mainly as an embedded computer in telecommunications
(telephony and telex) systems in the 1970s.

ITT 3200 A 32-bit minicomputer manufactured by ITT and used within that
corporation mainly as an embedded computer in telecommunications
(telephony and telex) systems, but also for software development, in
the 1970s and 1980s.

ITU International Telecommunication Union, founded in 1865 and made a
United Nations Agency in 1947.

261

INRIA Institut National de Recherche en Informatique et en Automatique
(National Institute for Research in Computing and Control); the French
national research institution, which concentrates on computer science,
control theory and applied mathematics. It was founded in 1967.

Java An Object-Oriented programming language released in 1995, designed
to eliminate as far as possible the capability of programs to corrupt the
operating system and other essential software.

JFIT Joint Framework for Information Technology: a UK government
supported advisory body for IT with members from industry and
academe.

JSD Jackson System Development: a system development methodology
developed by Michael A. Jackson and John Cameron in the 1980s.
Great emphasis is placed on modelling the real world environment of
the system to be developed, before specifying the system itself.8

JSP Jackson Structured Programming, a structured program development
method developed by Michael A. Jackson in the 1970s, based on the
principle that the structure of a program should reflect the structure of
the data that its processes.9

KDF9 A mainframe computer designed and manufactured by English
Electric, in service from 1964 to 1980. Its logic was based on
germanium solid state circuitry.

Lambda Calculus In mathematical logic, a formal system that can be interpreted as a
means of function definition and application, devised by Alonzo
Church10 in the late 1930s and early 1940s. It inspired the design and
semantics of Algol 6011. Lambda Calculus (or λ-calculus) has been
used as a component of the mathematical foundations of the formal
semantics of programming languages.

LCD Liquid Crystal Display.

LCF Logic of Computable Functions: an interactive theorem prover
developed by Robin Milner at Edinburgh and Stanford Universities in
197212.

8See Jackson 1983.
9See Jackson 1975.
10See Church 1941.
11See Landin 1965.
12See Milner 1972.

262

Legacy Code Software dating from possibly many years in the past, that may work
well and be useful, but whose details of design have long been lost.
Maintaining such systems, in the absence of detailed knowledge of its
design, how it works, and what are all its features is problematic, and is
itself the subject of much study and research.

LFCS The Laboratory for the Foundations of Computer Science was founded
by Rod Burstall, Gordon Plotkin, Robin Milner and Matthew
Hennessey in 1986. It is part of the Computer Science Department at
Edinburgh University, now called the School of Informatics.

LISP List Processing language: a programming language designed by John
McCarthy in 1958. The design of LISP was influenced by Church’s
Lambda Calculus and has been widely used for AI. Linked lists are a
principal data structure of LISP, and source programs in LISP consist
of linked lists. A considerable number of dialects and developments of
LISP have been produced since its inception, notably Common LISP.

LMS The London Mathematical Society.

Logic Programming The use of logical statements as a programming language. One of the
earliest examples was the language Prolog.

LOTOS Language Of Temporal Ordering Specification. A formal specification
language designed for protocol specification in telecommunication
systems, but applicable to many applications involving concurrent and
temporal behaviour. LOTOS is built upon concepts from CCS, CSP
and data types. Originated in 198913.

LPF Logic of Partial Functions: a logic which allows undefined values in

addition to the propositional values True and False.
LR Lloyd’s Register, previously Lloyd’s Register of Shipping, a British

organisation with charitable status, which certifies the safety of

engineering systems.
LTS A language, proprietary to STL, for defining and simulating digital

electronics.

LUCOL An autocode-level language proprietary to Lucas for engine control
software, dating from the 1980s.

Macro A textual sequence within a programming language, especially an
assembly language, which stands for a defined longer sequence.
Macros avoid repetition and can be parametrised.

13 See ISO 8807:1989.

263

Martin Löf type

theory

A theory of types based on intuitionistic logic developed by Per Martin
Löf in the 1980s.

Mascot A system design method using a graphical notation and a set of
building blocks for expressing real-time system designs. It was
sponsored by the MoD, had a substantial users’ association and its use
was mandatory in some MoD contracts. Originated in 1978.

MCHAPSE A project support environment, based on the APSE, for software
written in CHILL or Ada, developed by a consortium of
telecommunications institutions including BT in the 1980s.

Mercury A computer designed and built by Ferranti in the early 1950s. the first
version used a magnetic drum memory and its electronics used valves
(thermionic vacuum tubes). Subsequent versions of the machine used
transistor electronics and magnetic core store random access memory,
again developed in the 1950s. First customers were Manchester
University, CERN in Geneva, AERE at Harwell and the UK
Meteorological Office.

Metaconta L A computer-based telephone exchange system developed by the ITT
R&D laboratory LCT in Versailles in the early 1970s.

ML Metalanguage: a functional programming language developed by
Robin Milner and others at Edinburgh University in the early 1970s. It
was designed for programming proof tactics for the LCF theorem
prover.

MMI Man-Machine Interfaces: perceived by the Alvey programme as an

enabling technology. The interfaces between a computers and their

users, these days less gender-specifically referred to as user interfaces.
MoD The UK Ministry of Defence.

Model-based
languages

A model-based specification language is one in which the data types
are defined in terms of set theory and thence whose values and state
variables are models of types and values in a programming language.
See also Abstract Machines.

Modular One A 16-bit mini-computer built with emitter coupled logic, which first
appeared in 1969, manufactured by the British company Computer
Technology Ltd.

264

Modula-2 An imperative programming language developed in the late 1970s by
Niklaus Wirth at the Swiss Federal Institute of Technology in Zurich.
An emphasis was separately compilable modules. Its predecessor was
Modula, in turn based on Pascal, both of these also being developed by
Wirth.

Monitors A program language structure invented by C. A. R. Hoare and Per
Brinch-Hansen, facilitating concurrent programming. Monitors are
sections of code that can be executed safely by more than one
execution thread through a mechanism of mutual exclusion.

Motorola 68000 A microprocessor manufactured by Motorola from 1979 to 1996 and
used in embedded systems. Other manufacturers continue to produce
the design using later technologies to this day.

MULE Manchester University Language Environment, a collection of tools
being developed by Manchester University to support rigorous
software and language development in the 1980s.

Nassi-Shneiderman

diagrams

A graphical method of representing top-down, structured program
design, devised by Isaac Nassi and Ben Shneiderman in 1972.

NBG A system of axioms for set theory proposed by John von Neumann,

Paul Bernays and Kurt Gödel in the mid-1920s.
NCC The National Computing Centre, an organisation supporting UK IT

industry.
NewSpeak A language devised by RSRE primarily for programming the Viper

high reliability computer. Special features included finite types
enabling compile-time bound checking and a limited form of recursion.

NIH “Not Invented Here”, a syndrome in which one regards anything
invented outside one’s home territory (institution, country etc.) with
mistrust. It leads, for example, to firms selling to major European and
north American countries setting up local national sales offices and
deliberately giving the impression that the company is based in the
country of targeted sales.

NIMBUS A 1984 STL research project in constructing generic automated proof
systems, successor to the EST project q.v.

NPL The National Physical Laboratory, a UK Government research
establishment.

NuPRL A higher order proof development system originated by Joseph Bates
and Robert Constable in 1979 and further developed by many others at
Cornell University.

265

OBJ A family of programming languages introduced by the late Joseph
Goguen in 1976. OBJ languages are based on algebraic principles, in
particular order-sorted algebras, enabling users to define their own
abstract data types. OBJ incorporated many object-oriented ideas.

Object Oriented
Design/Programming

An approach to software design that springs from Abstract Data Types,
and consists of packaging together data classes and their operations to
construct the “Objects” of a system. Modularity, Encapsulation,
Polymorphism and Inheritance are underlying principles of OOD/OOP.

OCCAM A concurrent programming language based on CSP – one could say an
executable version of CSP – designed by David May of INMOS in
conjunction with the Oxford University PRG, in 1983.

Orion A computer designed and built by Ferranti in 1959-61, contemporary
with the Atlas (q.v.) but smaller.

OS Operating System: on a computer, the basic software that is necessary
for enabling the operation of application software such as compilers,
spreadsheet packages, browsers, email programs, database packages
and the like. An operating system will invariably include software
handlers for the peripheral devices that are attached to the computer,
the keyboard, monitor, hard disc and so on. It will also include the
software that enables the running of several different applications at the
same time together with input/output (time sharing). On present-day
PCs, the operating systems are programs such as MS Windows, Unix,
Linux, Mac OS, etc. Such operating systems today also have bundled
in with them applications such as web browsers and email clients, but
these are not strictly part of the OS although commonly regarded as
such.

Pascal A high level imperative programming language created by Niklaus
Wirth in 1970. It was based on Algol60 but designed to be simpler and
more efficient, and to encourage structured programming.

PC Personal Computer. At first called microcomputers, small computers
constructed around the microprocessors that were developed in the
mid-seventies, designed to be used by one person at a time,
interactively. At first there were a proliferation of designs. The IBM
PC became dominant in the 1980s, but competition became rife with
many firms manufacturing PC clones.

PC Process Controller: a small computer designed to be embedded in an
engineering system and programmed to control an engineering process,
often used in automated manufacturing systems.

266

PCTE Portable Common Tools Environment: a specified collection of tools
supporting software development that can be transported from one host
operating system to another14. See PSE.

PDP11 A minicomputer manufactured by the Digital Equipment Corporation
from 1970 to the 1990s.

Pegasus A computer developed by Ferranti, using thermionic vacuum tubes for
its electronics, in 1956 (Pegasus 1) and 1959 (Pegasus 2).

PERT Project Evaluation and Review Technique, a system using charts for
determining the time resources needed for a project and the activities
on its critical path.

Petri Nets A mathematical formalism consisting of places, transitions and arcs,
for describing concurrent processes, devised by Carl Adam Petri. Other
approaches include process algebras (q.v.). The first documented
reference appears to be in 1962 in Petri’s university mathematics
dissertation.

PIMB The PCTE Interface Management Board.

Platform The combination of hardware and software architecture that enables
other software, usually applications software, to run.

PL/1 A high level programming language devised by IBM at their Hursley
laboratories in the UK in the early 1960s. It was designed for both
business and scientific use and supported some structured
programming concepts.

PLC Programmable Logic Controller. This is an electronic device which is

essentially a computer, typically without input or output devices, or

backing storage, and with limited memory. They are normally wired

into engineering systems such as controllers for industrial processes,

engine management systems and the like. They are of similar

computing power to a 1960-70s minicomputer, but usually occupy a

single circuit board.
PLM “Programming Language for Microprocessors”, an autocode level

programming language designed by David Wright’s team at STL, ITT

in the 1970s.
PML Process Modelling Language: a language defined in the IPSE 2.5

project for modelling the rôles and activities in a software
development.

14 See ISO/IEC 13719-1, 1998 for the standard defining PCTE, and Wakeman and Jowett, 1993.

267

PO-CORAL See CORAL.

Poplog A multi-language software development environment, developed by
the University of Sussex from 1983. It supports ProLog, Common
LISP and Standard ML, among other languages. Later co-developed
and distributed by SDL, Poplog is now available as an open-source
system hosted by the University of Birmingham.

Portable, Portability Software is portable if it is designed to be easily transferred across
different platforms and operating systems.

Postcondition A logical predicate which is required to be true after a statement or
sequence of statements in a program has been executed.

Precondition A logical predicate which needs to be true before the execution of a
statement or sequence of statements in a program in order that the
postcondition (q.v.) is satisfied. The weakest precondition (q.v.) is the
weakest such predicate, and hence is the precondition which is implied
by all other pre-conditions.

PRG The Oxford University Programming Research Group founded in
1965.

Process Algebra A general term for mathematical formulations which can define
processes, where a process consists of events, including
communication events enabling process to communicate with each
other. Examples are CCS and CSP.

ProLog A language for Logic Programming, (in French, Programation
Logique) developed in 1972 by Alain Colmerauer of the University of
Grenoble, from a collaboration with Robert Kowalski at Edinburgh
University.

ProofPower A proof development system for specifications written in HOL –
Higher Order Logic. Developed originally by Roger Bishop Jones at
ICL from 1989, now an open source system with further development
continued since 1997 by Lemma 1 Ltd.

PSE Project Support Environment; a general term for an integrated set of
software tools for assisting the project management and development
of software. See IPSE.

PSL/PSA Problem Statement Language/Problem Statement Analyser: a
computer-based toolset intended to describe system requirements and
designs, developed by Daniel Teichrow at the University of Michigan,
through the 1970s. PSL/PSA is still in use and being developed.

268

PVL Program Validation Limited, a UK firm founded by Bernard Carré and
dedicated to providing facilities for program proving. PVL later
merged with Praxis.

QinetiQ A UK technology company with a tradition of supplying to UK and US
defence and government. It arose from the privatisation of DERA in
2001.

RAISE Rigorous Approach to Industrial Software Engineering, a formal
method with a set of tools developed in a ESPRIT funded project led
by Dines Bjørner. The RAISE specification language (RSL) contains
elements of VDM-SL and Process Algebra.

RAM Random Access Memory: a hardware memory medium in which the
addressing and access to contents is equally direct for all content
addresses. In practice this means that the content is accessible by direct
electronic means, without recourse to mechanical or other searching, so
no rotating medium etc. The memories mounted on the motherboards
of PCs, and USB sticks are examples. By contrast, hard and floppy
discs are not RAM, not being “Random” access.

Refinement The process and result of deriving from a formal description a more
concrete one which satisfies all its properties and prescriptions.

Reverse Engineering The process of deriving a design or a specification from an
implementation of some software, i.e. from the code. To put it crudely,
one takes some program code and discovers (with computer-aided
assistance) what it does, how it works, and possibly what it is for. It is
useful for analysing legacy code (q.v.). Reverse engineering can also
be applied to electronic and electromechanical systems, and can be
used in less legitimate contexts such as industrial and military
espionage for examining stolen or captured equipment and designs.

ROAME A DTI-specific acronym for the case made for funding support, an
activity or an initiative, consisting of Rationale, Objectives, Appraisal,
Monitoring and Exploitation.

RRE Royal Radar Establishment, a research arm of the British army
regiment Royal Signals; see RSRE.

RSL The RAISE (q.v.) Specification Language.

269

RSRE Royal Signals Research Establishment, later RRE, DERA, finally
privatised as QineticQ.

SADT Structured Analysis and Design Technique: a graphical notation for
describing software systems, developed by Douglas T. Ross at SofTech
Inc. in 1969 – 1973.

SALT Speech and Language Technology, a club funded by the DTI and
SERC for institutions with an interest and active in the topic.

SDI Strategic Defence Initiative. Launched in 1983 by President Ronald
Reagan, SDI was a research and development project whose ultimate
aim was to build a network of satellites that would detect incoming
hostile intercontinental missiles and shoot them down with laser
weapons. The initiative was highly controversial from many points of
view: technological feasibility, safety, policy, ethics and the wisdom of
UK participation. See Ennals 1986.

SDL System Designers Limited, a British software and systems
development company, subsequently merging with Scicon to become
SD-Scicon, now owned by EDS.

SDL System Design Language: a language for expressing the design of
telecommunication systems, based on finite state machines, defined
and standardised by the CCITT in the 1970s.

SDSS A proprietary (ITT) software development platform hosted on the IBM
370 and having the ITT3200 as target machine, first released in 1978.

SEI Software Engineering Institute, at Carnegie-Mellon University, who
were responsible for developing the Capability Maturity Model (q.v.).

SEMA The SEMA Group plc was a joint British-French IT services company
formed in 1988 by the merger of CAP (UK) and Sema-Metra (France).
After a succession of acquisitions Sema Group plc was itself acquired
by Slumberger in 2001, to be mostly sold on again in 2004.

Semaphore A mechanism for enabling parallel process to access shared data or
other resources in a controlled way, without mutual interference.
Semaphores were invented by Edsger W. Dijkstra in 1965 and have
been widely used in operating systems since.

SERC The Science and Education Research Council, previously the Science
Research Council (SRC), now the EPSRC.

270

SFI Support For Innovation: a guiding principle in the DTI’s Advanced
Technology Programme (ATP).

SIG Special Interest Group.

Simula67 A computer language designed for simulation problems by Ole-Johan
Dahl in 1967, Simula67 is a superset of Algol60 with object-oriented
features. It is considered to be the first object-oriented language.

SLANG Simulation Language: a language for simulating analogue computer
programs, designed by ULACS for Elliott Bros. in 1968.

Smalltalk An Object Oriented programming language, developed in the 1970s at
Xerox PARC and released publicly in 1980.

SMART Small firms merit Awards for Research and Technology: an annual
competition for single UK companies run by the DTI.

SME Small and Medium sized Enterprises. Both the DTI and the EC use the
term, each with specific but slightly differing definitions in terms of
number of employees, turnover etc.

SML Standard ML (q.v.): a further development of ML, with contributions
from several academic institutions. The first definition was published
in 1990, revised in 199715.

Spade A static analysis tool, developed by PVL, which analyses a program
without running it, and detects certain anomalies such as unreachable
code, variables not initialised and so on. See also Spark.

Spark A program analysis tool, developed by PVL, which, in addition to the
facilities of Spade, carries out proofs of correctness and facilitates
correctness by construction.

SRC The UK Science Research Council, now the EPSRC.

SSADM Structured Systems Analysis and Design Method, an approach to
analysis and design of information systems developed in the early
1980s by the UK CCTA.

Star Wars A popular name for the Strategic Defence Initiative, SDI, q.v.

State Diagrams See State Transition Diagrams.

State Transition

Diagrams

A graphical representation of a finite state machine, which defines the
abstract behaviour of a system. State Transition Diagrams have been
attributed to Taylor Booth16

15 See Milner et al, 1990 and 1997.
16 See Taylor Booth, 1967.

271

STC Standard Telephones and Cables, a leading UK telephony company.

Steelman See Strawman.

STL Standard Telecommunications Laboratories, a research laboratory of
ITT in Harlow, Essex. STL was part of STC, Standard Telephones and
Cables.

Strawman In commissioning the Ada language definition, the US DoD issued a
series of documents outlining the requirements for the language. A
straw-man is a common term denoting an initial suggestion put for to
be criticised and to invite further ideas; also known as an aunt Sally. In
developing the Ada requirements, the series of requirements
documents were named to reflect their increasing solidity: Strawman
(issued April 1975), Woodenman (August 1975), Tinman (January
1976), Ironman (January 1977, revised July 1977), Steelman (June
1978), Pebbleman (July 1978, revised January 1979), Stoneman
(February 1980).

SQL Structured Query Language, a language used to query a database. The
first commercial versions of SQL were released by Oracle and IBM in
1979. By 1986 the American National Standards Institute adopted SQL
as a standard and ISO followed suit a year later.

System X The first public digital telephone exchange system in the UK, first
installed as a local exchange in Woodbridge, Suffolk in 1981.

S3 A systems programming language proprietary to ICL, dating from the
early 1970s, designed for writing operating systems, language
compilers and other applications packages, S3 was a subset of
ALGOL68, and had a number of its characteristic features such as
reference variables: variables which could hold the “abstract address”
or information leading to the whereabouts of another variable or piece
of data.

Target A target machine is a computer on which the end product software
runs. For embedded software, it will be the machine residing in the
engineering system that the software drives or monitors.

272

Temporal Logic A logic which can accommodate statements with a time-dependent
element, such as “...will be until...”, “...is always...”, “...will eventually
be...”. Research into temporal logic in a computer science context
started in the 1960s, with notable contributions from Amir Pnueli and
later, Willem-P. de Roever.

TickIT A scheme for certifying software quality set up by the DTI IT
division’s Software Quality Unit.

Titan See Atlas.

Transputer A microprocessor architecture developed in the 1960s by Inmos, a UK
electronics company, which was designed to support parallel
computation.

Typed Lambda

Calculus

A development of Lambda Calculus (q.v.) enabling types to be
ascribed to λ-expressions. There are a number of varieties of typed
lambda calculus, which can be regarded as extensions of the simply
typed lambda calculus; on the other hand, the latter can be regarded as
a special case of typed lambda calculus with only one type. Typed
lambda calculi are the foundational mathematical underpinning of
functional programming languages such as ML (q.v.).

Type Theory The mathematical theory which can form a model of the data types that
one can use in programming languages, especially where the language
allows the programmers to define their own types. Type theory has a
wide ranging mathematical pedigree dating back to the beginning of
the twentieth century.

ULACS The University of London Atlas Computing Service. A company set up
by London University to use 50% of the London Atlas computer time
to generate commercial income to recover the initial investment. It was
in effect a computer bureau and a software house dedicated to the
commercial exploitation of the Atlas.

ULICS The University of London Institute of Computer Science. Initially, the
institute was independent of any specific college within London
University, and was centred on the use of the London Atlas machine
(q.v.).

UMIST University of Manchester Institute of Science and Technology.

273

UML Unified Modelling Language: a language for modelling processes and
systems based on Object Oriented concepts and defined by the Object
Management Group, a consortium for setting standards in Object
Oriented software engineering. UML is subject to an international
standard17.

Uncle Some SERC-funded academic projects had an industrial “Uncle”, an
individual from industry who would visit the project at intervals,
typically every three months, to provide industrial input and try to keep
the project of ultimate practical utility, even if that was long-term. This
was a very light form of academic-industrial collaboration, but it gave
the academic partner some ratification for government funding.

Unification A technique used in automated theorem proving and automated
deduction, in which two terms are made equal or unified by means of a
syntactic substitution of component variables to other terms.

UNIX An operating system for personal computers developed originally
between 1969 and 1973 at Bell Labs, AT&T, the later versions written
in C, facilitating its portability. UNIX has since been adopted and
further developed by many other academic and industrial institutions
and is a serious rival to IBM’s proprietary operating systems for PCs
and the various versions of MS Windows.

VAX A family of computers developed by DEC in the 1970s, which used a
32-bit word length and instruction set. VAX was originally an acronym
for Virtual Address Extension.

VAX11/780 The first model in the VAX computer series, q.v.

VDL The Vienna Definition Language: a language developed at IBM’s
research laboratory in Vienna for formulating the semantics of PL/1,
dating from the early 1970s.

VDM The Vienna Development Method, developed at the IBM Vienna
Laboratories during the late 1970s. Defining data types through the
elements of set theory and operations by means of pre and post-
conditions and logic, it assists the development of software through
proof by construction.

VDM-SL The VDM Specification Language: the language used in VDM and
standardised in 1996 as BS ISO/IEC 13817-1:1996.

17 See ISO/IEC 19501:2005 Information technology — Open Distributed Processing — Unified Modeling
Language (UML) Version 1.4.2.

274

http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/International_Organization_for_Standardization

VIP VDM Interfaces to PCTE, an ESPRIT project for formally defining
those interfaces.

VLSI Very Large Scale Integration: The technique of etching thousands or
millions of transistors and other semiconductor devices onto a single
semiconductor wafer, known as a chip. The technique was initiated in
the 1970s and has developed apace and increased dramatically in
miniaturisation ever since.

VME An operating system proprietary to ICL developed in the 1970s for the
2900 computer series.

Weakest Precondition A concept invented by E. W. Dijkstra in 1975. If one has a machine
with state P (see Abstract Machine in this glossary), and a post-
condition R which one desires to hold after the execution of P, there
may be a set of preconditions which, if satisfied before the execution of
P, will guarantee that R will hold. These are called preconditions and
the weakest of them, that is the one which is implied by all the others
(and which therefore holds for all values of the state for which the
others hold), is called the weakest precondition and is denoted
wp(P,R). Dijkstra gave formulae for the weakest preconditions of the
normal statements in a traditional imperative programming language,
and rules for combining them into compound statements and
programs18. This led to a method for proving programs correct given a
specification of the required pre and postcondition.

wff Well-Formed Formula: in a formal language a wff is an allowable term
of the language. For example, in a language of algebraic expressions, a
wff might include constants, variables and expressions containing
brackets, operators and other wffs.

Word A word-processing package produced by Microsoft. First issued in
1983, many versions have been and continue to be released.

Wordwright A proprietary early (1973) word processor, consisting of a personal
computer dedicated solely to word processing, and its resident word
processing software package. WordWright is also the name of a more
recent (last updated 1999) free downloadable word processing
package, but it is not clear whether there is a historic or commercial
link between the two.

Wordwise A word processing software package for the BBC Microcomputer
dating from the early 1970s. (The term is also now the name of a
patented predictive text software product used in mobile phones).

18 See Dijkstra 1975, 1976.

275

Workstation A more powerful personal computer designed for engineering
applications, with greater processing power and graphics.

X.25 protocol A packet switching protocol standardised by the CCITT in 1976,
defined in a publication called the “Orange Book”.

YACC “Yet Another Compiler-Compiler”: a compiler-compiler (parser-
generator) with a defined format for expressing computer language
syntax.

Yourdon A flavour of structured programming, as promulgated by Edward
Yourdon.

Z A formal notation for specifying the functions of a program, based on
ZF set theory and logic, developed at the University of Oxford by J-R
Abrial and others in 1977, standardised in 2002 as BS ISO/IEC
13568:2002.

ZF An axiom system for set theory developed by Ernst Zemelo in 1901
and extended by Abraham Fraenkel in 1922.

Z8000, Z8002 The Z8000 was a 16-bit microprocessor manufactured by Zilog from
1979 to the mid-nineties. The Z8002 was a smaller memory version.
The Z8000 was used as the CPU for many popular desk-top personal
computers of that era.

276

W

W These paragraphs are licensed under the GNU Free Documentation License. They use material from the Wikipedia
articles “Runge–Kutta methods”, “Carl David Tolmé Runge”, “INMOS transputer”,

http://www.gnu.org/copyleft/fdl.html

	Chapter 1 Flanges and Festivities
	Chapter 2 Mighty Atlas
	Chapter 3 Workers in Control
	Chapter 4 Running through Treacle
	Chapter 5 The Country Club
	Chapter 6 Service as Usual
	Chapter 7 Reorganisation and Research
	Chapter 8 The Search for Formality
	Chapter 9 The Search for Grants
	Chapter 10 Theory in Practice
	Chapter 11 Civic Duties
	Chapter 12 Independence Days
	References
	Glossary

